Week 3 (due April 20)

1. A model with a moduli space of supersymmetric vacua is described at low energies by a supersymmetric version of the sigma-model, whose target is the space of vacua. That is, the low-energy effective action has the form

\[S = -\frac{1}{2} \int d^4x \, g_{ij}(\phi) \partial_\mu \phi^i(x) \partial^\mu \phi^j(x) + \ldots, \]

where dots denote terms containing fermions, and \(g_{ij}(\phi) \) is a Riemannian metric on the target space with coordinates \(\phi^i \).

(a) Consider \(N = 1 \) SUSY gauge theory with gauge group \(U(1) \) and two chiral superfields of charge +1. Determine \(g_{ij}(\phi) \) as a function of the FI parameter. (The target space here is \(S^2 \) if \(\zeta > 0 \), a single point if \(\zeta = 0 \), and empty if \(\zeta < 0 \).)

(b) The same, but for two chiral superfields of charges \(Q_1 \) and \(Q_2 \). Consider separately the cases when \(Q_1 \) and \(Q_2 \) have the same sign and when they have opposite signs.