The point is that the acceleration takes place only while the electron is between the plates; hence the appearance of l. After that, v_y remains constant.

[3 POINTS] b) Ignore the small displacement of the electrons in the short field region, and consider only their displacement in the field-free region of length L. Then use geometry to relate v_x, v_y, L, and y of the displaced beam. From this derive the ratio e/m in terms of l, V, d, v_x, L, and y.

$$y = v_y T$$

where

$$L = v_y T.$$

So

$$y = \frac{e}{m} \frac{V}{d} \frac{L}{v_x}.$$

or

$$\frac{e}{m} = \frac{y d v_x^2}{V IL}.$$

This ignores the y-displacement acquired while traversing the plates, allowed because $l \ll L$.

[4 POINTS] c) The only unknown in the result of part b) is v_x. This can be measured in the following clever way. Increase the crossed B-field from zero until the electron beam returns to its original, undeflected location. Derive v_x from the resulting measured values of B, V, and d, and use this to write an equation for e/m that involves only the known values l, V, d, L, y, and B.

B is such that $F_{\text{total}} = 0$, i.e., $ev_x B = eE = e\frac{V}{d}$. Thus

$$\frac{e}{m} = \frac{d V^2}{V IL B^2} = \frac{V}{ILB^2}.$$