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Encoding a qudit in an oscillator
-- Classical information can be either analog or digital.
Digital classical information is more robust.

-- Quantum information can be carried by either a finite-dimensional 
system (two-level atom, electron spin, . .) or an infinite-dimensional 
system (harmonic oscillator, rotor, . .).

-- Although a qubit is in a sense continuous (vector in a Hilbert space), a 
qubit like a classical bit, if cleverly encoded, can be protected from the 
gradual accumulation of small errors, or from decoherence due to 
interactions with the environment.

-- Can we also protect the quantum state of a system described by 
continuous quantum variables?

-- Probably not. But we can use the continuous variable systems 
available in the physics laboratory to encode a robust finite-dimensional 
system. (“Encoding a qudit in an oscillator”)



Error model: shifts in amplitude and phase
Consider a d-dimensional system (“qudit”):

amplitude
shift

phase
shift

q

p

q

p
Or the “quantum diffusion” of a particle:
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Stabilizer Codes
-- A code is a simultaneous eigenspace of a set of commuting operators Si , 
the generators of the code’s stabilizer group S.

-- {Ea} is a unitary operator basis (e.g., the Pauli operators).

-- E is the set of  “likely” errors that we want to be able to correct.

-- Nondegenerate code: All Ea in E modify the eigenvalues of the 
stabilizer generators in distinguishable ways:

We can diagnose the errors, without disturbing the encoded state, by 
measuring the generators.

-- We usually  assume that E is the set of tensor products of Pauli 
operators with weight up to t, but the same principles allow us to protect 
against errors with other properties.
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Encoding one oscillator in nine
Braunstein,
Lloyd-Slotine
(Shor)

The code is the simultaneous eigenspace  (with eigenvalue 0) of the 
eight  mutually commuting operators:
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“Logical” operators that preserve the code space are:
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This code is designed to correct errors in which one particle makes a 
large jump in p or q, while the others hold fixed. But it does not protect 
against small diffusive motions that allow the logical operators to drift.



A shift-resistant code with d=18

The code is the simultaneous eigenspace with eigenvalue 1 of the two 
stabilizer generators:

There is an encoded qubit; logical operators that commute with the 
stabilizer (and so preserve the code space) are:

For a, b = {-1, 0, 1}, there is a unique syndrome for each error. The 
code can correct a shift by one unit in amplitude or phase. 

The commutation relations of the stabilizer generators with the Pauli 
operators are:
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A shift-resistant code with d=18

A basis for the code space  
with Z6 = X6 = 1 is: 

The code is “perfect”: there are (3) X (3)  = 9 possible 
syndromes for the phase and amplitude errors, and the code 
space has dimension 2; since (2) X (9)  = 18, every possible 
syndrome is valid.  

d=18 is the minimal dimension for correcting shifts by one 
in amplitude and phase.

Shifts in amplitude by +1 or -1 are corrected by 
adjusting          to the nearest multiple of 3.  Phase 
shifts are corrected similarly in the conjugate basis.
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Shift-resistant codes
Suppose that d = rsn , where r, s, n are integers.
A basis for the n-dimensional code space is:

This code can correct all shifts that satisfy:
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Similar in the conjugate (Fourier transformed) basis, but with r and s
interchanged.



The limit 
We cannot scale                  while holding r/d and s/d fixed, since

Nevertheless interesting codes are obtained in the limit of continuous 
variables, because the ranges of q and p are unbounded. 

(Alternatively, we can take                with r/d fixed and obtain a 
periodically identified rotor with quantized but unbounded angular 
momentum.)

Stabilizer generators:

Encoded operators:

The n-dimensional code space is protected against shifts that satisfy:
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A qubit encoded in an oscillator 
Formally, the basis states for the code space are coherent 
superpositions of equally spaced states, infinitely squeezed in p and q:
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Stabilizer: a lattice of commuting 
translations in phase space
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The unit cell of the 
stabiilzer lattice has area 

(one encoded state per  
area h in phase space). 
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The encoded operations 
(commuting with 
stabilizer) form a finer 
lattice, whose unit cell 
has area 

Generalizes to a commuting lattice in 
2N-dimensional phase space.
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Finitely squeezed codewords 
Realistic codewords are normalizable, finitely squeezed in p and q:

Not

but

Small shifts in p and q can still be detected 
and reversed with high fidelity.



Symplectic operations 

Clifford group gates on the code space, generated by:

H P

-- Can be implemented as linear transformations on the p’s annd q’s 
(that preserve the canonical commutation relations) -- the symplectic
transformations. These gates are “easy”: they can be implemented with 
linear optics and squeezing.

Furthermore, the implementation is fault tolerant. In this context, fault 
tolerance means that the gates do not magnify errors; e.g., do not turn a 
(tolerable) small shift in q or p into a (damaging) large shift.

To complete the universal gate set, we must reach transformations that 
are not symplectic. This can be achieved via photon counting.



Universal computation via photon counting 
-- We can complete the universal gate set by preparing an eigenstate of 
the single-qubit Hadamard gate:

H
-- The Hadamard is implemented on the code space by performing a 
Fourier transform on p and q:
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-- The eigenvalue of the Hadamard is the photon number modulo 4.

-- We can prepare an entangled state of two encoded qubits, and 
measure photon number of one of the oscillators, preparing the other 
oscillator in a Hadamard eigenstate.

-- The state can then be purified.



Error detection and recovery 

CNOT is the symplectic transformation:
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Homodyne 
measurement of q

-- The CNOT propagates the shift in q of the data forward to the 
ancilla, where it can be read out via a destructive measurement of the 
q quadrature of the ancilla.

--To recover, apply a shift by -q modulo α to the data.

--Similar procedure corrects shift in p.



Preparing an encoded state 
Encoding is the most challenging part of using continuous variable 
codes. Symplectic operations alone are not adequate for encoding, since 
each letter must satisfy two independent stabilizer conditions.

Then measure q modulo α .

q
To prepare:

q

Start with p
eigenstate:

For example: couple the oscillator to a meter †( ) .meterH q b bκ′ =
Frequency of the meter shifts by .meter qω κ∆ =

2 / ,t π κα= 2 /qθ π α=In time phase of meter 
advances by  



Quantum key distribution with squeezed states

To prepare:
Alice Bob

Alice and Bob generate a key bit by transmitting an 
oscillator, as follows:

1) Alice sends either a q eigenstate or a p eigenstate.

2) Bob measures either q or p.

3) Alice broadcasts q modulo α , or p modulo π /α .

4) Bob subtracts Alice’s value from what he measured, and then corrects to the 
nearest integer multiple of α  or π /α .

5) The key bit is determined by whether the multiple of α  or π /α is even or odd.

-- Alice and Bob sacrifice some bits for verification. If the error rate is below 11% 
for both p and q transmissions, then the protocol, enhanced by classical binary error 
correction and privacy amplification, is provably secure.

-- The proof bounds the eavesdropper’s mutual information with the key by 
invoking the ability of the continuous variable code to correct errors in both p and q.

-- q “eigenstates” need to be squeezed to width small compared to α, and range of q
sampled needs to be  ~ 13 α (or larger). Similar for p (with α replaced by π /α) .



Encoding a qudit in an oscillator
• Eventually, continuous variable codes may be used for robust storage 
and processing of quantum information.

• Some physical realizations:

-- mode of electromagnetic field in a cavity, protected against drift in p
and q.

-- a superconducting dot, protected against drift in phase θ and jump 
in charge Q.

-- single electron in a Landau level, protected against drift in px and py.

• Continuous variable codes can be used to demonstrate the security of 
quantum key distribution protocols using squeezed states. For these 
protocols, it is necessary only to prepare and transmit states squeezed in 
q or p, and to measure the q or p quadrature.
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