
Encoding a qudit in an oscillator

Daniel Gottesman
Alexei Kitaev
John Preskill

Encoding a qudit in an oscillator
-- Classical information can be either analog or digital.
Digital classical information is more robust.

-- Quantum information can be carried by either a finite-dimensional
system (two-level atom, electron spin, . .) or an infinite-dimensional
system (harmonic oscillator, rotor, . .).

-- Although a qubit is in a sense continuous (vector in a Hilbert space), a
qubit like a classical bit, if cleverly encoded, can be protected from the
gradual accumulation of small errors, or from decoherence due to
interactions with the environment.

-- Can we also protect the quantum state of a system described by
continuous quantum variables?

-- Probably not. But we can use the continuous variable systems
available in the physics laboratory to encode a robust finite-dimensional
system. (“Encoding a qudit in an oscillator”)

Error model: shifts in amplitude and phase
Consider a d-dimensional system (“qudit”):

amplitude
shift

phase
shift

q

p

q

p
Or the “quantum diffusion” of a particle:

Qudit

Basis: | , 0,1, 2, , (1)j j d〉 = −

: | | 1 ,
: | | ,

exp(2 /)

j

X j j
Z j j

i d
ω

ω π

〉 → + 〉
〉 → 〉

=
Operators: (amplitude shift)

(phase shift)

, , 0,1, 2, , (1)
a b

X Z a b d= −

Pauli
Operator
Basis:

Can we correct errors with |a|, |b| << d?

Commutator: Z X X Zω=

Stabilizer Codes
-- A code is a simultaneous eigenspace of a set of commuting operators Si ,
the generators of the code’s stabilizer group S.

-- {Ea} is a unitary operator basis (e.g., the Pauli operators).

-- E is the set of “likely” errors that we want to be able to correct.

-- Nondegenerate code: All Ea in E modify the eigenvalues of the
stabilizer generators in distinguishable ways:

We can diagnose the errors, without disturbing the encoded state, by
measuring the generators.

-- We usually assume that E is the set of tensor products of Pauli
operators with weight up to t, but the same principles allow us to protect
against errors with other properties.

, .i a a i a iS E E Sω=

Encoding one oscillator in nine
Braunstein,
Lloyd-Slotine
(Shor)

The code is the simultaneous eigenspace (with eigenvalue 0) of the
eight mutually commuting operators:

1 2

2 3

0 ,
0 ,

q q
q q

− =
− =

4 5

5 6

0,
0,

q q
q q

− =
− =

7 8

8 9

0,
0,

q q
q q

− =
− =

1 2 3 4 5 6

4 5 6 7 8 9

() () 0,
() () 0 .
p p p p p p
p p p p p p

+ + − + + =
+ + − + + =

“Logical” operators that preserve the code space are:

1 4 7

1 2 3

,
.

q q q q
p p p p

= + +
= + +

This code is designed to correct errors in which one particle makes a
large jump in p or q, while the others hold fixed. But it does not protect
against small diffusive motions that allow the logical operators to drift.

A shift-resistant code with d=18

The code is the simultaneous eigenspace with eigenvalue 1 of the two
stabilizer generators:

There is an encoded qubit; logical operators that commute with the
stabilizer (and so preserve the code space) are:

For a, b = {-1, 0, 1}, there is a unique syndrome for each error. The
code can correct a shift by one unit in amplitude or phase.

The commutation relations of the stabilizer generators with the Pauli
operators are:

6 6,X Z

3 3,X X Z Z= =

6 6 6

6 6 6

() () ,
() () .

a b b a b

a b a a b

X Z X X X Z
X Z Z Z X Z

ω

ω

=

=

A shift-resistant code with d=18

A basis for the code space
with Z6 = X6 = 1 is:

The code is “perfect”: there are (3) X (3) = 9 possible
syndromes for the phase and amplitude errors, and the code
space has dimension 2; since (2) X (9) = 18, every possible
syndrome is valid.

d=18 is the minimal dimension for correcting shifts by one
in amplitude and phase.

Shifts in amplitude by +1 or -1 are corrected by
adjusting to the nearest multiple of 3. Phase
shifts are corrected similarly in the conjugate basis.

1| 0 (| 0 | 6 |12) ,
3

1| 1 (| 3 | 9 |15) .
3

〉 = 〉 + 〉 + 〉

〉 = 〉 + 〉 + 〉

| j〉

Shift-resistant codes
Suppose that d = rsn , where r, s, n are integers.
A basis for the n-dimensional code space is:

This code can correct all shifts that satisfy:

| | (1) / 2, | | (1) / 2a r b s≤ − ≤ −

1| 0 (| 0 | | 2 | (1)) ,

1| 1 (| | (1) | (2 1) | [(1) 1]) ,

1| 1 (| (1) | (2 1) | (3 1) | (1)) .

nr nr s nr
s

r n r n r s n r
s

n n r n r n r sn r
s

〉 = 〉 + 〉 + 〉 + + − 〉

〉 = 〉 + + 〉 + + 〉 + + − + 〉

− 〉 = − 〉 + − 〉 + − 〉 + + − 〉

Similar in the conjugate (Fourier transformed) basis, but with r and s
interchanged.

The limit
We cannot scale while holding r/d and s/d fixed, since

Nevertheless interesting codes are obtained in the limit of continuous
variables, because the ranges of q and p are unbounded.

(Alternatively, we can take with r/d fixed and obtain a
periodically identified rotor with quantized but unbounded angular
momentum.)

Stabilizer generators:

Encoded operators:

The n-dimensional code space is protected against shifts that satisfy:

1 1,r s
d n s d n r

= =

d → ∞
d → ∞

d → ∞

exp(2 /) , exp()iq inpπ α α

exp(2 /) , exp()Z iq n X ipπ α α= =

| | , | | .
2

q p
n

α π
α

∆ < ∆ <

A qubit encoded in an oscillator
Formally, the basis states for the code space are coherent
superpositions of equally spaced states, infinitely squeezed in p and q:

q
2α

q
2α

p
2 /π α

p
2 /π α

| 0 :〉

| 1 :〉

| 0 | 1 :〉 + 〉

| 0 | 1 :〉 − 〉
This code can correct all shifts that satisfy:

| | , | | .
2 2

q pα π
α

∆ < ∆ <

Stabilizer: a lattice of commuting
translations in phase space

q

p

2 .nπ

The unit cell of the
stabiilzer lattice has area

(one encoded state per
area h in phase space).

2 / .nπ

The encoded operations
(commuting with
stabilizer) form a finer
lattice, whose unit cell
has area

Generalizes to a commuting lattice in
2N-dimensional phase space.

q

q

Finitely squeezed codewords
Realistic codewords are normalizable, finitely squeezed in p and q:

Not

but

Small shifts in p and q can still be detected
and reversed with high fidelity.

Symplectic operations

Clifford group gates on the code space, generated by:

H P

-- Can be implemented as linear transformations on the p’s annd q’s
(that preserve the canonical commutation relations) -- the symplectic
transformations. These gates are “easy”: they can be implemented with
linear optics and squeezing.

Furthermore, the implementation is fault tolerant. In this context, fault
tolerance means that the gates do not magnify errors; e.g., do not turn a
(tolerable) small shift in q or p into a (damaging) large shift.

To complete the universal gate set, we must reach transformations that
are not symplectic. This can be achieved via photon counting.

Universal computation via photon counting
-- We can complete the universal gate set by preparing an eigenstate of
the single-qubit Hadamard gate:

H
-- The Hadamard is implemented on the code space by performing a
Fourier transform on p and q:

1 11
1 12

= −

†exp[(/ 2)] :i a aπ
q p
p q

→
→ −

-- The eigenvalue of the Hadamard is the photon number modulo 4.

-- We can prepare an entangled state of two encoded qubits, and
measure photon number of one of the oscillators, preparing the other
oscillator in a Hadamard eigenstate.

-- The state can then be purified.

Error detection and recovery

CNOT is the symplectic transformation:

1 1

2 1 2

q q
q q q

→
→ +

1 1 2

2 2

p p p
p p

→ −
→

| 0 | 1〉 + 〉

| codeψ 〉

Homodyne
measurement of q

-- The CNOT propagates the shift in q of the data forward to the
ancilla, where it can be read out via a destructive measurement of the
q quadrature of the ancilla.

--To recover, apply a shift by -q modulo α to the data.

--Similar procedure corrects shift in p.

Preparing an encoded state
Encoding is the most challenging part of using continuous variable
codes. Symplectic operations alone are not adequate for encoding, since
each letter must satisfy two independent stabilizer conditions.

Then measure q modulo α .

q
To prepare:

q

Start with p
eigenstate:

For example: couple the oscillator to a meter †() .meterH q b bκ′ =
Frequency of the meter shifts by .meter qω κ∆ =

2 / ,t π κα= 2 /qθ π α=In time phase of meter
advances by

Quantum key distribution with squeezed states

To prepare:
Alice Bob

Alice and Bob generate a key bit by transmitting an
oscillator, as follows:

1) Alice sends either a q eigenstate or a p eigenstate.

2) Bob measures either q or p.

3) Alice broadcasts q modulo α , or p modulo π /α .

4) Bob subtracts Alice’s value from what he measured, and then corrects to the
nearest integer multiple of α or π /α .

5) The key bit is determined by whether the multiple of α or π /α is even or odd.

-- Alice and Bob sacrifice some bits for verification. If the error rate is below 11%
for both p and q transmissions, then the protocol, enhanced by classical binary error
correction and privacy amplification, is provably secure.

-- The proof bounds the eavesdropper’s mutual information with the key by
invoking the ability of the continuous variable code to correct errors in both p and q.

-- q “eigenstates” need to be squeezed to width small compared to α, and range of q
sampled needs to be ~ 13 α (or larger). Similar for p (with α replaced by π /α) .

Encoding a qudit in an oscillator
• Eventually, continuous variable codes may be used for robust storage
and processing of quantum information.

• Some physical realizations:

-- mode of electromagnetic field in a cavity, protected against drift in p
and q.

-- a superconducting dot, protected against drift in phase θ and jump
in charge Q.

-- single electron in a Landau level, protected against drift in px and py.

• Continuous variable codes can be used to demonstrate the security of
quantum key distribution protocols using squeezed states. For these
protocols, it is necessary only to prepare and transmit states squeezed in
q or p, and to measure the q or p quadrature.

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19

