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Learning in a Quantum World



Paul A. M. Dirac
In 1933 (age 31)



“Under these circumstances one would be 

surprised if Nature had made no use of it.”

Paul A. M. Dirac, Quantized Singularities in the 

Electromagnetic Field, Proceedings of the Royal 

Society, 1931
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“When I was a young man, Dirac was my hero. He 

made a breakthrough, a new method of doing 

physics. He had the courage to simply guess at the 

form of an equation, the equation we now call the 

Dirac equation, and to try to interpret it 

afterwards.” 

Richard P. Feynman

The Reason for Antiparticles

Dirac Lecture, 1986



Overheard at the 1961 Solvay Conference on Physics

Feynman: I am Feynman.
Dirac: I am Dirac.

[Silence]

F: It must be wonderful to be the discoverer of that equation.
D: That was a long time ago.

[Pause]

D: What are you working on?
F: Mesons
D: Are you trying to discover an equation for them?
F: It is very hard.
D: One must try.

Abraham Pais, Inward Bound (1986)

Feynman’s sketch of Dirac – Caltech Archives



The underlying physical laws necessary 
for the mathematical theory of a large 
part of physics and the whole of 
chemistry are thus completely known, 
and the difficulty is only that the exact 
application of these laws leads to 
equations much too complicated to be 
soluble. 

Paul A. M. Dirac, Quantum Mechanics of 
Many-Electron Systems, Proceedings of the 
Royal Society, 1929



Richard Feynman
(1981)

“You can simulate this with a 
quantum system, with quantum 

computer elements. It’s not a 
Turing machine, but a machine 

of a different kind.”



Peter Shor
(1994) 

“These algorithms take a number of 
steps polynomial in the input size, 

for example, the number of digits of 
the integer to be factored.”



Frontiers of Physics

short distance long distance complexity

Higgs boson

Neutrino masses

Supersymmetry

Quantum gravity

String theory

Large scale structure

Cosmic microwave 

background

Dark matter

Dark energy

Gravitational waves

“More is different”

Many-body entanglement

Phases of quantum 

matter

Quantum computing

Quantum spacetime



Two fundamental ideas

(1) Quantum complexity

Why we think quantum computing is powerful.

(2) Quantum error correction

Why we think quantum computing is scalable.



Quantum entanglement

Nearly all the information in a typical 
entangled “quantum book” is encoded in 
the correlations among the “pages”.

You can't access the information if you 
read the book one page at a time. 
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A complete description of a typical quantum state of just 300 qubits 
requires more bits than the number of atoms in the visible universe. 



Why we think quantum computing is powerful

(1) Problems believed to be hard classically, which are easy for 
quantum computers. Factoring is the best known example. 

(2) Complexity theory arguments indicating that quantum 
computers are hard to simulate classically.

(3) We don’t know how to simulate a quantum computer
efficiently using a digital (“classical”) computer. 

But … the power of quantum computing is limited. For example, 
we don’t believe that quantum computers can efficiently find 
exact solutions to worst-case instances of NP-hard optimization 
problems (e.g., the traveling salesman problem). 



Classically Easy

Quantumly Hard

Quantumly Easy

Problems



Classically Easy

Quantumly Hard

Quantumly Easy

Problems

What’s in 

here?



A quantum computer can simulate efficiently any 

physical process that occurs in Nature.

(Maybe. We don’t actually know for sure.)

particle collision entangled electronsmolecular chemistry

black hole early universesuperconductor



Why quantum computing is hard

We want qubits to interact strongly with 
one another.

We don’t want qubits to interact with 
the environment.

Except when we control or measure 
them. 



EnvironmentDecoherence

ERROR!

To resist decoherence, we must 
prevent the environment from 
“learning” about the state of the 
quantum computer during the 
computation.

Quantum

Computer



Quantum error correction

The protected “logical” quantum information is 
encoded in a highly entangled state of many 
physical qubits.

The environment can't access this information if it 
interacts locally with the protected system.
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superconducting qubits

photonics

trapped ions

silicon spin qubits



Quantum computing in the NISQ Era

The (noisy) 50-100 qubit quantum computer has arrived.
(NISQ = noisy intermediate-scale quantum.)

NISQ devices cannot be simulated by brute force using the most 
powerful currently existing supercomputers. 

Noise limits the computational power of NISQ-era technology.

NISQ will be an interesting tool for exploring physics. It might also 
have other useful applications. But we’re not sure about that.

NISQ will not change the world by itself. Rather it is a step toward 
more powerful quantum technologies of the future. 

Potentially transformative scalable quantum computers may still be 
decades away. We’re not sure how long it will take.

Quantum 2, 79 (2018), arXiv:1801.00862



Applications of Quantum Computing

Catch: perfect qubits with no noise



Applications of Quantum Computing

Qubits with 0.1% error rate



(Much) better gate error rates?

Zero-pi qubit
Princeton 2019

0 q or p

GKP codes
ETH 2018 (ions)
Yale 2019 (superconductors)

Concatenated cat codes
Yale 2019
Paris 2019

q

p

Majorana qubit



Open Questions

How will we scale up to quantum computing 
systems that can solve hard problems?

What are the important applications for 
science and for industry?



Prospects for the next 5 years

Encouraging progress toward scalable fault-tolerant 
quantum computing.

Scientific discoveries enabled by programmable 
quantum simulators and circuit-based quantum 
computers. 



Making predictions in a quantum world

We live in a quantum world, yet we are classical 
beings.

Sometimes our classical nature impedes our ability 
to interact with, learn from, and understand the 
underlying quantum reality.

How can classical and quantum machines enhance 
our ability to learn about the quantum world?



Convert a many-qubit quantum state to a succinct classical description. 

Apply classical processing (including machine learning) to the classical description. 

Predict properties of exotic quantum systems not previously realized in the lab.

Identify unanticipated quantum phases of matter. 

Huang, Kueng, Preskill 2020; Huang, Kueng, Torlai, Albert, Preskill 2022; 
Lewis, Huang,Tran, Lehner, Kueng, Preskill 2023

Learning about the quantum world using classical machines



Quantum-enhanced measurement strategies: transduce detected quantum data to quantum 
memory and process it with a quantum computer.  

Exponential quantum advantage in learning properties of states and processes.

Unlocking facets of nature that would otherwise remain concealed. 

Huang, Kueng, Preskill 2021
Aharonov, Cotler, Qi 2021

Huang, Broughton, Cotler, Chen, Li, Mohseni, Neven, Babbush, Kueng, Preskill, McClean 2022

Learning about the quantum world using quantum machines



An n-qubit quantum system has Hilbert space dimension 2n.

A complete classical description of a generic quantum state requires O(4n) bits.

In the worst case, acquiring such a description requires O(4n) experiments.

Using the classical description to predict a property (such as the expectation value of an 
observable) has a (worst-case) classical computation cost O(4n).

But a complete description might not be needed. We might be satisfied if we can predict 
many properties of the state.

Curse of dimensionality

Unknown Quantum System Classical Description



Classical shadows of quantum states

A tractable protocol backed by rigorous theory.
1) A small number of experimentally feasible 

measurements to estimate many properties of a 
many-qubit quantum state.

2) Succinct classical representations of states, and 
efficient classical computations for predictions.

3) Rigorous performance guarantees.

Huang, Kueng, Preskill 2020

classical shadows

Unknown Quantum System Efficient Classical Description Predicted Properties



• Make predictions about a large-scale quantum system from 

few measurements.

Classical shadows of quantum states



The Procedure:

Data Acquisition Phase

Given multiple copies of n-qubit quantum state ρ and an ensemble of 

unitary transformations {Ui}, repeat 𝑁 times:

• Sample a random unitary 𝑈𝑖 to rotate the quantum system.

• Measure the system in the computational basis |𝑏𝑖⟩ ∈ {0,1}𝑛.

• Store the “classical snapshot”: |𝑠𝑖⟩ = 𝑈𝑖
†|𝑏𝑖⟩.

★𝔼[|𝑠𝑖⟩⟨𝑠𝑖|] = ℳ(𝜌). (ℳ: some CPTP map)

|𝑏1⟩ |𝑏2⟩

|𝑏3⟩

𝑈1𝑈2

𝑈3



The Procedure:

Prediction Phase

Given 𝑆(𝜌) = {|𝑠1⟩, … , |𝑠𝑁⟩} (the classical shadow),

how to predict properties of the quantum state 𝜌?

★𝔼[|𝑠𝑖⟩⟨𝑠𝑖|] = ℳ(𝜌). (ℳ: some CPTP map)

➡𝜌 = 𝔼[ℳ−1(|𝑠𝑖⟩⟨𝑠𝑖|)] ⟹ 𝜌 ≈ ℳ−1(|𝑠𝑖⟩⟨𝑠𝑖|).



1. Learn a classical representation of an unknown 

quantum state 𝜌 from

𝑁 = 𝒪(𝐵 log(𝑀)/𝜖2) measurements.

2.  Subsequently, given any 𝑂1, … , 𝑂𝑀 with 𝐵 ≥ max ∥ 𝑂𝑖 ∥shadow
2 ,

the procedure can use the classical representation to predict 𝑜1, … , 𝑜𝑀 ,

where  |𝑜𝑖 − tr(𝑂𝑖𝜌)| < 𝜖 , for all 𝑖.

Huang, Kueng, Preskill 2020

Classical Shadow Theorem

The shadow norm  is an upper bound on the variance of our estimator; it depends on 
the ensemble of unitaries used during the data acquisition phase.

Random Clifford measurement: 

Random Pauli measurement: 

Application: Quantum fidelity 𝑂 = |𝜓⟩⟨𝜓|

Observable 𝑂
acts on 𝑤 qubits

Application: local Hamiltonian 𝑂

∥ 𝑂 ∥shadow
2 ≤ 3 tr(𝑂2)

∥ 𝑂 ∥shadow
2 ≤ 4𝑤 ∥ 𝑂 ∥∞

2
a

a

H H 

2

shadowO‖ ‖



“Measure first, ask questions later.”

Elben, Flammia, Huang, Kueng, Preskill, Vermersch, Zoller, 
The randomized measurement toolbox 2022



Energy variance in 1D quantum electrodynamics

• Innsbruck ion-trap experiment: Kokail, Maier, van Bijnen et al. 2019.  

• With classical shadows, # of copies needed to estimate variance of H ~ log(system size).

• Further improvement from derandomization.



Classical machine learning for properties of quantum ground states

Theorem (Learning properties of ground states):
For any smooth family of local Hamiltonians {𝐻 𝑥 , 𝑥 ∈ −1,1 𝑚} in a finite spatial dimension with a 
constant spectral gap, a classical machine learning algorithm can learn to predict an efficient classical 
representation of the ground state 𝜌 𝑥 that approximates few-body reduced density matrices up to a 
constant error. The required amount of training data and computation time are polynomial in 𝑚 and 
linear in system size.

Idea: convert training states to their classical shadows. Then use a classical learning algorithm to predict 
a classical representation for new values of x.

The learning is classical, but we need the quantum platform to prepare and measure the ground state 
during training. With access to training data, we can solve quantum problems that might be too hard to 
solve otherwise.

Huang, Kueng, Torlai, Albert, Preskill 2021
Lewis, Huang, Tran, Lehner, Kueng, Preskill 2023



Example: 1D array of Rydberg atoms

Chain of 51 atoms (as in Bernien et al. 2017). We 

can compute ground state properties using DMRG.

Our rigorous theory does not directly apply, because 

Hamiltonian is not gapped throughout the parameter 

regime considered. Yet predictions work well.

500 snapshots taken at each sampled value of x.



Classical machine learning for identifying quantum phases of matter

Theorem (Identifying quantum phases of matter):
If there exists a polynomial function of few-body reduced density matrices that classifies phases, 
then a (supervised) classical machine learning algorithm can learn to classify phases accurately. 
The required amount of training data and computation time are polynomial in system size.

Idea: convert each quantum state to its classical shadow, and learn to classify these shadows.

Learning strategy: Map each classical shadow to a feature vector in a high-dimensional space.

The learning algorithm discovers the classifying function, which need not be known in advance.

Huang, Kueng, Torlai, Albert, Preskill 2022



Example: Distinguishing the 2D toric code phase from the trivial phase

No local circuit of constant depth acting on a product state can reach a topologically 

ordered state.

Principle components are projections of the data geometry in feature space to a low-

dimensional subspace, chosen to maximize the variance of the data. 

We consider applying low-depth local quantum circuits to (A) a product state and (B) 

the toric code state. The resulting classical shadows are cleanly separated in the 

feature space (and hence a linear classifying function in feature space is easy to 

learn) until the circuit depth approaches half the code distance. 



Conventional experiments vs. quantum-enhanced experiments

How many experiments are needed to learn properties of physical systems, with or without access to 
quantum memory? 

For some tasks, we prove that exponentially fewer experiments suffice in the “quantum-enhanced” 
setting. 

And we demonstrate this advantage in experiments using up to 40 qubits on the Sycamore processor.

Huang, Broughton, Cotler, Chen, Li, Mohseni, Neven, Babbush, Kueng, Preskill, McClean 2022



Conventional experiments vs. quantum-enhanced experiments
How many experiments are needed to learn properties 
of quantum systems, with or without access to quantum 
memory? 

For some tasks, we proved that exponentially fewer 
experiments suffice in the “quantum-enhanced” setting. 

And we demonstrated this advantage in experiments 
using up to 40 qubits on the Sycamore processor.

Exponential quantum advantage in learning 
expectation values of observables.

Will quantum technology revolutionize how we acquire and 
process experimental data to learn about the physical world?

Huang, Broughton, Cotler, Chen, Li, Mohseni, Neven, 
Babbush, Kueng, Preskill, McClean 2022



Conventional experiments vs. quantum-enhanced experiments

An unknown unitary evolution operator is drawn from one of 
two ensembles --- it is either a general unitary matrix or a real 
orthogonal matrix (time-reversal symmetric).

How well can we distinguish these two symmetry classes?

We generated the transformations as random circuits on 
Sycamore and applied them to a fixed product input state. In the 
conventional scenario, we measured all output qubits in the Y
basis. In the quantum-enhanced scenario we performed Bell 
measurement across two copies of the output state. 

Based on this measurement data, an unsupervised ML could 
easily distinguish the symmetry classes in the quantum-
enhanced scenario but not in the conventional scenario. In both 
scenarios we ran the quantum circuit 1000 times. 

Hard to learn in conventional scenario: Aharonov, Cotler, Qi 2021; Chen, Cotler, Huang, Li 2021



Learning in a quantum world
Broadly useful applications of quantum computing may still be a ways off, and quantum error correction is most 
likely the key to getting there. But existing quantum platforms already provide unprecedented opportunities for 
exploring exotic properties of quantum matter. 

Classical shadows of quantum states: a feasible procedure converting a quantum state to succinct classical data.

O(log M) copies, and efficient classical processing, suffice to predict M properties. “Measure first, ask questions 
later.”

Access to data from quantum experiments may enable classical machine learning to solve quantum problems that 
would be too hard to solve without access to data.

Quantum-enhanced experiments making use of quantum memory and quantum processing can have an 
exponential advantage relative to conventional experiments. 

Richard KuengH.-Y. (Robert) Huang

classical shadows
Giacomo Torlai Victor Albert Google 

Quantum AI
Laura Lewis



The underlying physical laws necessary 
for the mathematical theory of a large 
part of physics and the whole of 
chemistry are thus completely known, 
and the difficulty is only that the exact 
application of these laws leads to 
equations much too complicated to be 
soluble. 

Paul A. M. Dirac, Quantum Mechanics of 
Many-Electron Systems, Proceedings of the 
Royal Society, 1929


