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Quantum Information Science
Quantum sensing
Improving sensitivity and spatial resolution.

Quantum cryptography
Privacy founded on fundamental laws of quantum physics.

Quantum networking
Distributing quantumness around the world.

Quantum simulation
Probes of exotic quantum many-body phenomena.

Quantum computing
Speeding up solutions to hard problems.  

Hardware challenges cut across all these application areas.



Quantum sensing

A quantum sensor is (usually) a few-level quantum system that 
senses something.

High resolution scanning probes of living cells and advanced 
materials. E.g., NV center = Nitrogen vacancy color center in 
diamond. 

Accelerometers, gyrometers, gravitometers, gravity gradiometers 
for navigation and surveying. E.g., atom interferometry.

Detection of axions and other dark matter candidates. E.g., 
superconducting nanowire detectors.

Wanted: Better materials, more precise coherent control, longer 
coherence times, more efficient readout, compact devices, … and 
new ideas.



“Next generation” quantum sensing
Higher sensitivity by exploiting squeezing and entanglement. But there is 
a tradeoff … what enhances sensitivity may also reduce coherence time. 

LIGO: Enhanced sensitivity in the current observing run from injecting 
squeezed light into the dark port of the interferometer. 

Quantum radar (a.k.a. quantum illumination). Create entangled photon 
pair and bounce one photon off a target. Entanglement enhances signal to 
noise.  

What quantum states of multi-qubit sensors provide the best sensing 
enhancements? 

Entangled sensor arrays for geodesy and geophysics: Improved predictions 
of earthquakes and volcanoes. 

Maybe someday: Seeing a city on another planet using a long-baseline 
network of telescopes performing interferometry using shared quantum 
entanglement.



Battling noise: Quantum error correction
Measurement precision is limited by noise: decoherence and imperfect control of 
the probe system.

Noise also threatens the scalability of quantum computing. The theory of 
quantum error correction (QEC) and fault tolerance quantum computing (FTQC) 
was developed in the mid-1990s to show that scalable quantum computing is 
possible in principle, under plausible assumptions about the noise.

QEC is a fundamental idea, arguably comparable in importance to the discovery 
of algorithmic quantum speedups. It can be either active or passive (e.g. 
topological quantum computing) --- or both. 

This talk: How can QEC enhance measurement precision, for a reasonable noise 
model, and under idealized assumptions about experimental control?

The purpose is to address issues of principle. In particular, how can QEC suppress 
the noise, without also suppressing the signal?

We’ll find a necessary and sufficient condition for achieving Heisenberg-limit 
scaling of precision with probing time. 



Quantum sensing: the standard example(s)

Repeat this single-qubit measurement protocol n times. How does the 
precision of our estimate improve with the number of repetitions?
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Prepare an initial state and then evolve for time t:

For example, a spin 
in a magnetic field.

Measure X:
( )1Prob( )= 1 cos( )

2
tω± ±

Our goal: to estimate the a priori unknown parameter 𝜔𝜔 in the Hamiltonian. 
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This is the Standard Quantum Limit (SQL) scaling of 
the measurement precision with the number of 
probing qubits. Precision is limited by shot noise. 
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Instead of repeating the single-qubit protocol n times, run the protocol once 
using an n-particle cat state (Bollinger et al. 1996).

For example, a spin 
in a magnetic field.

Measure �𝑋𝑋 = 𝑋𝑋 ⊗𝑋𝑋⊗𝑋𝑋⊗⋯⊗𝑋𝑋
(which is equivalent to measuring X for each 
qubit and computing parity of outcomes).

( )1Prob( )= 1 cos( )
2

n tω± ±

Our goal: to estimate the a priori unknown parameter 𝜔𝜔 in the Hamiltonian. 
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This is the Heisenberg limit (HL) scaling of measurement 
precision with the number of probing qubits, so called 
because it saturates the uncertainty principle applied to 
the energy 𝜔𝜔 and the total probing time nt. 



But what about noise?

Single qubit with dephasing:

Optimal sensitivity to ω is achieved for Γ𝑡𝑡 = 𝑂𝑂 1 for single qubit, and for 
𝑛𝑛Γ𝑡𝑡 = 𝑂𝑂(1) for the n-qubit cat state. But that optimal sensitivity is the same in 
both cases. The entanglement allows us to extract our estimate n times faster, 
but using n qubits instead of just one, so the total probing time is the same. 
Hence entanglement provides no advantage --- how the precision scales with 
total probing time does not improve, at least for this particular noise scenario  
(Huelga et al. 1997).

Can quantum error correction suppress the noise without suppressing the 
signal, allowing us to do better? 

( )1Prob( )= 1 cos( )
2

te tω−Γ± ±

Suppose the probe is subject to dephasing noise in the 𝑍𝑍 basis with dephasing 
rate 𝛤𝛤. Then, aside from rotating n times faster than a single qubit, the n-qubit 
cat state also decoheres n times faster. 

( )1Prob( )= 1 cos( )
2

n te n tω− Γ± ±n-qubit cat stat with dephasing:



Example: An idealized “NV center”
To illustrate how coding might help, consider a two-qubit system. An electron 
spin probes the field, but is subject to bit flip errors. An ancilla nuclear spin does 
not sense the field, but has a long coherence time. We can apply joint unitary 
transformations to the two spins.

Electron spin states (frequency = ω): |0 , |1 .〉 〉

Nuclear spin states: | , | .↑〉 ↓〉

Encode and decode with CNOT. Probe with entangled code state.
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Check the electron spin after decoding, and if it has flipped, flip it back. Now 
run this protocol quickly many times in succession, correcting electron bit flips 
as they occur. The effective time evolution of the nuclear spin is coherent 
(Unden et al. 2016).



Example: An idealized “NV center”
Encode and decode with CNOT. Probe with entangled code state.

Check the electron spin after decoding, and if it has flipped, flip it back. Now 
run this protocol quickly many times in succession, correcting electron bit flips 
as they occur. The effective time evolution of the nuclear spin is coherent 
(Unden et al. 2016) --- no dephasing. 

Why does this work?

-- The code space span{ ↑ 0 , ↓ 1 } protects against electron spin flips.
-- Evolution governed by Hamiltonian 𝐻𝐻 𝜔𝜔 preserves the code space and acts 
nontrivially within the code space. (The noise is “perpendicular” to signal.)
-- The ancilla is assumed noiseless.
-- We can coherently control the probe and the ancilla.

How far can we generalize this idea?
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Assumption 1: Markovian noise
Let’s assume that the noise is Markovian, described by a Lindblad master 
equation. † †) ,(dt a a a a
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We’ll make us of the gauge freedom in the choice of Kraus operators (freedom 
to choose a different unraveling of the master equation).

We’ll want a code that can correct the errors described by this master equation.



Assumption 2: Fast and accurate control 
+ noiseless ancilla



Criterion: Heisenberg scaling is achievable if and 
only if the Hamiltonian is “not in the Lindblad span”

† †span{ , , , }a a a bI L L L L=Lindblad span:

Hamiltonian not in Lindblad span (HNLS): 𝐻𝐻 𝜔𝜔 = ∉ 𝑆𝑆

If the Hamiltonian is Not in the Lindblad Span (HNLS), then a 
quantum code can be constructed that protects the probe 
against the noise, and the Heisenberg limit (HL) scaling of 
precision is achievable (under our assumptions).

If the Hamiltonian is in the Lindblad Span (HNLS fails), then HL 
is not achievable. The SQL cannot be surpassed. 

HL HNLS⇔



Quantum Fisher Information (QFI)
A probability distribution 𝑝𝑝ω depends on the real parameter ω. We want to 
estimate ω by sampling from 𝑝𝑝ω. An unbiased estimator for 𝜔𝜔 obeys:
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(Cramér-Rao bound)Fisher information:

Relative entropy quantifies 
distinguishability of distributions.

Quantum Fisher Information, derived from quantum relative entropy, quantifies 
distinguishability of density operators (Holevo, Helstrom, …) and bounds the Fisher 
information of any measurement to estimate the state (Braunstein & Caves). 
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time, then …
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Quantum Fisher Information (QFI)

( ) ( ) ( )
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Using ideas from Fujiwara and Imai 2008, further developed by Demkowicz-
Dobrzański and Maccone 2014, we can derive an upper bound on the QFI of the 
solution to our Markovian master equation, of the form 
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where the coefficients A and B depend on the chosen gauge for the Kraus 
operators. Therefore, we are free to choose the gauge to optimize the bound. We 
find that if HNLS fails, then the gauge can be chosen so that B=0. Hence SQL 
applies.  The same result was found independently by Demkowicz-Dobrzański, 
Czajkowski, and Sekatski 2018.

This result confirms the intuition that the Heisenberg Limit is not attainable if the 
signal cannot be distinguished from the noise. 



QEC: The Knill-Laflamme Conditions
A “logical qubit” is encoded using (perhaps many) “physical qubits.” 
We want to protect the logical qubit, with orthonomal basis states |�0〉
and |�1〉, from a set of possible error operators { Ea }. Errors must not 

destroy the distinguishability of these code basis states. 

For protection against bit flips: (off-diagonal KL).

For protection against phase errors: 

In fact, these conditions suffice to ensure the existence of a recovery 
map. 

It follows that: (on-diagonal KL).

Correctability of the errors means that the operators
cannot access information about the code state (no leakage of 
information to the environment). 
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Code construction I
To construct our code, we use the noisy probe P and the noiseless ancilla A. We 
may choose the code to be two-dimensional (just one encoded qubit), as this 
suffices for optimizing our estimator. Error operators act on P, not on A. 

To satisfy the off-diagonal Knill-Laflamme condition,
we may choose the two code basis states to have orthogonal support on A. 
(In some cases this won’t be necessary, and the ancilla is not needed.)

To satisfy the on-diagonal Knill-Laflamme condition, we require that operators in 
the Lindblad span are unable to distinguish the codewords.  That is,
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The difference of reduced density operators of the codewords must be 
orthogonal to the Lindblad span in the Hilbert-Schmidt inner product. This is a 
nontrivial constraint on the code construction. 

There is a further condition: the error-corrected time evolution in the code space 
induced by the Hamiltonian 𝐻𝐻 𝜔𝜔 must be nontrivial; i.e. not proportional to the 
identity. (Otherwise the code freezes the evolution and there is no signal.)



Code construction II
Here’s a way to construct a code that works. Decompose the Hamiltonian into 
components along and orthogonal to the Lindblad span (in the Hilbert-Schmidt 
inner product). 

We don’t care about the component along the Lindblad span --- the KL condition 
says that it’s proportional to the identity when projected onto the code space. 
Furthermore, the orthogonal component 𝐻𝐻⊥ must be nonzero if HNLS is satisfied; 
in addition, 𝐻𝐻⊥ is traceless, since the identity is in the Lindblad span. 

where 𝜎𝜎0 and 𝜎𝜎1 are positive Hermitian operators with equal trace. 
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Now we can choose the basis states of the code to be normalized purifications of 
𝜎𝜎0 and 𝜎𝜎1, which have orthogonal support on the ancilla A. Thus the KL 
conditions are satisfied, and expectation values of the Hamiltonian in the two 
code basis states have distinct values (nontrivial evolution in the code space). 

The effectively noiseless evolution in the code space achieves HL scaling of 
precision for asymptotically large t. In fact this code achieves optimal precision if 
𝐻𝐻⊥ has rank two (one positive and one negative eigenvalue), but not in general. 



Semidefinite program for code optimization
How do we find the best possible code? Consider first the noiseless case (with no 
ancilla). To get the most precise estimate of 𝜔𝜔 we should prepare a uniform 
superposition of energy eigenstates with the largest possible energy difference. 
That is, we superpose pure states 𝜌𝜌0 and 𝜌𝜌1 of the probe that achieve

( )( )0 1 max minmax tr Hρ ρ λ λ− = −
This maximum is the difference between the maximal and minimal eigenvalues of 
H. 

The same quantity can be computed in an alternative way:

( )op max minmin / 2H Iα α λ λ− = −‖ ‖

(where the norm is the operator norm). This matching of the maximum and 
minimum (up to the factor 2) is an instance of semidefinite programming duality.

This relationship generalizes to the noisy case. There the maximum is over
𝜌𝜌0 − 𝜌𝜌1 orthogonal to the Lindblad span (primal problem), and the minimum is 
over H shifted by an element of the Lindblad span (dual problem). The program 
can be solved efficiently (in time polynomial in dimension of probe space), and 
sometimes the dual problem is more convenient to solve. 



Example: Kerr nonlinearity and photon loss
Consider a single bosonic mode, subject to loss. The Hamiltonian is quadratic in 
occupation number n, and we want to estimate its coefficient. Suppose the 
maximum occupation is n = 4.
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In contrast, in the noiseless case,
which is four times larger. The noise reduces the precision of our estimate by a 
factor of 4 if we use the optimal code.  Furthermore the ancilla is not needed. We 
can choose

λ λ ω=−max min 16

( )|0 |0 |4 / 2,

|1 |2

〉 = 〉+ 〉

〉 = 〉

This is a binomial code, constructed earlier 
by the Yale group. We can measure photon 
parity to detect the errors. 



Example: Spatial filtering for correlated noise
Consider multiple sensors, all detecting a magnetic field in the Z direction, and all 
subject to dephasing in the Z basis. 

In this case, the operators in the Lindblad span and the Hamiltonian are all 
mutually commuting. If HNLS is satisfied, an optimal code can be constructed 
without ancillas (Layden and Cappellaro 2018).

A simple case with two sensors: 

Choose the code:

In this case, the code space is actually a decoherence-free subspace (DFS), not 
affected by the noise at all. Therefore, time evolution preserves the code space, 
and furthermore, the two code basis states have different energy, so the 
evolution in the code space is nontrivial. In more general cases, nontrivial 
recovery is needed, but still no ancilla.

This noise model with one jump operator for two qubits is nongeneric. The same 
remark applies to HNLS in general --- no HL scaling when noise is full rank.

1 2 1 2,H Z Z L Z Z∝ + ∝ −

0 |00 , | | 1| 1 1〉 = 〉 〉 = 〉



Extensions of the HNLS criterion
Under our assumptions (Markovian noise, noiseless ancillas, fast and accurate 
coherent processing) we’ve shown HL if and only if HNLS.

HNLS is nongeneric but can be approximately satisfied, implying large constant 
factor improvements in precision (relative to unencoded SQL) achieved by coding. 

If Lindblad operators and Hamiltonian are mutually commuting, no ancilla
needed to achieve HL with optimal precision if HNLS is satisfied (Layden, Zhou, 
Cappellaro, Liang 2019).

Multiparameter case (Gorecki, Zhou, Jiang, Demkowicz-Dobrzański 2019). HL is 
achievable (for any positive cost matrix) if no linear combination of 𝐻𝐻𝑖𝑖 in Lindblad
span. (May not be able to saturate CR bound if measurements incompatible.)

Noisy ancillas. Might use coding and fault tolerance to control the ancilla noise. 

What can we say under realistic assumptions about accuracy and speed of 
processing, e.g. when ancilla as well as probe are noisy?

Non-Markovian noise: How to combine dynamical decoupling with coding to 
achieve optimal precision?
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