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Making Predictions in a Quantum World



Convert a many-qubit quantum state to a succinct classical description. 

Apply classical processing (including machine learning) to the classical 
description. 

Predict properties of exotic quantum systems not previously realized in the lab.

Identify unanticipated quantum phases of matter. 

Huang, Kueng, Preskill 2020; Huang, Kueng, Torlai, Albert 2022; 
Lewis, Huang, Tran, Lehner, Kueng, Preskill 2023

Quantum-enhanced measurement strategies: transduce detected quantum data 
to quantum memory and process it with a quantum computer.  

Exponential quantum advantage in learning properties of states and processes.

Unlocking facets of nature that would otherwise remain concealed. 

Huang, Kueng, Preskill 2021
Aharonov, Cotler, Qi 2021
Huang, Broughton, Cotler, Chen, Li, Mohseni, Neven, Babbush, Kueng, Preskill, McClean 2022

Learning about the quantum world using classical machines

Learning about the quantum world using quantum machines



Quantum tomography

• Quantum state tomography:

Learn a complete representation of the quantum state. 

Sample complexity:

• Sample optimal protocol (Haah et al. 2017; O’Donnell & Wright 2016):

Quantum resource: Clifford circuits and computational  basis measurements

Classical storage:

Classical post-processing:



Shadow tomography

Quantum resource: Quantum memory + exponentially long circuits

Storage:

Post-processing:

• Rigorous protocol (Aaronson, Rothblum 2019; Badescu, O’Donnell 2020):

Don’t learn the quantum state.

Directly predict M properties: 

• Shadow tomography:

Sample complexity:  𝒪(𝑛 log(𝑀)2/𝜖4) n: system size



Classical shadows of quantum states

A tractable protocol backed by rigorous theory.
1) A small number of measurements to estimate 

many properties of a many-qubit quantum state.
2) Succinct classical representations of states, and 

efficient classical computations for estimates.
3) Rigorous performance guarantees.

Huang, Kueng, Preskill 2020 classical shadows



• Make predictions about a large-scale quantum system from 

few measurements.

Classical shadows of quantum states



The Procedure:

Data Acquisition Phase

Given multiple copies of n-qubit quantum state ρ and an ensemble of 

unitary transformations {Ui}, repeat 𝑁 times:

• Sample a random unitary 𝑈𝑖 to rotate the quantum system.

• Measure the system in the computational basis |𝑏𝑖⟩ ∈ {0,1}𝑛.

• Store the “classical snapshot”: |𝑠𝑖⟩ = 𝑈𝑖
†|𝑏𝑖⟩.

★𝔼[|𝑠𝑖⟩⟨𝑠𝑖|] = ℳ(𝜌). (ℳ: some CPTP map)
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Example: a single rebit

The unitary U is either the identity 

or a 90 degree rotation of the 

Bloch sphere.

The Procedure:

Data Acquisition Phase
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The Procedure:

Prediction Phase

Given 𝑆(𝜌) = {|𝑠1⟩, … , |𝑠𝑁⟩} (the classical shadow),

how to predict properties of the quantum state 𝜌?

★𝔼[|𝑠𝑖⟩⟨𝑠𝑖|] = ℳ(𝜌). (ℳ: some CPTP map)

➡𝜌 = 𝔼[ℳ−1(|𝑠𝑖⟩⟨𝑠𝑖|)] ⟹ 𝜌 ≈ ℳ−1(|𝑠𝑖⟩⟨𝑠𝑖|).



1. Learn a classical representation of an unknown 

quantum state 𝜌 from

𝑁 = 𝒪(𝐵 log(𝑀)/𝜖2) measurements.

2.  Subsequently, given any 𝑂1, … , 𝑂𝑀 with 𝐵 ≥ max ∥ 𝑂𝑖 ∥shadow
2 ,

the procedure can use the classical representation to predict 𝑜1, … , 𝑜𝑀 ,

where  |𝑜𝑖 − tr(𝑂𝑖𝜌)| < 𝜖 , for all 𝑖.

Huang, Kueng, Preskill 2020

Classical Shadow Theorem

The shadow norm  is an upper bound on the variance of our estimator; it depends on 
the ensemble of unitaries used during the data acquisition phase.

Random Clifford measurement: 

Random Pauli measurement: 

Application: Quantum fidelity 𝑂 = |𝜓⟩⟨𝜓|

Observable 𝑂
acts on 𝑤 qubits

Application: local Hamiltonian 𝑂

∥ 𝑂 ∥shadow
2 ≤ 3 tr(𝑂2)

∥ 𝑂 ∥shadow
2 ≤ 4𝑤 ∥ 𝑂 ∥∞
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Local vs. Global

Local (Pauli) measurement:
Low depth, noise resilient, feasible today. 

Efficiently predicts local observables.

Global (Clifford) measurement:
Depth scales with system size

Not currently feasible for large systems.
Predicts (some) global observables efficiently.

In between:
Scrambling circuits of intermediate depth. 

Does not require local control. 
Hu, Choi, You 2021



Noise Robustness

The randomized protocol “twirls” the noise.

It becomes a Pauli channel, which can be efficiently characterized.

Include noise in the channel inversion, yielding unbiased estimators.

Sampling error in the Pauli channel characterization contributes to variance.

Chen, Yu, Zeng, Flammia 2021 



“Measure first, ask questions later.”

Elben, Flammia, Huang, Kueng, Preskill, Vermersch, Zoller, 
The randomized measurement toolbox 2022



Energy variance in 1D quantum electrodynamics

• Innsbruck ion-trap experiment: Kokail, Maier, van Bijnen et al. 2019.  

• With classical shadows, # of copies needed to estimate variance of H ~ log(system size)

• Further improvement from derandomization.



Classical machine learning for properties of quantum ground states

Theorem (Learning properties of ground states):
For any smooth family of local Hamiltonians {𝐻 𝑥 , 𝑥 ∈ −1,1 𝑚} in a finite spatial dimension with a 
constant spectral gap, a classical machine learning algorithm can learn to predict an efficient classical 
representation of the ground state 𝜌 𝑥 that approximates few-body reduced density matrices up to a 
constant error. The required amount of training data and computation time are polynomial in 𝑚 and 
linear in system size.

Idea: convert training states to their classical shadows. Then use a classical learning algorithm to predict 
a classical representation for new values of x.

The learning is classical, but we need the quantum platform to prepare and measure the ground state 
during training. With access to training data, we can solve quantum problems that might be too hard to 
solve otherwise.

Huang, Kueng, Torlai, Albert, Preskill 2021
Lewis, Huang, Tran, Lehner, Kueng, Preskill 2023



Example: 1D array of Rydberg atoms

Chain of 51 atoms (as in Bernien et al. 2017). We 

can compute ground state properties using DMRG.

Our rigorous theory does not directly apply, because 

Hamiltonian is not gapped throughout the parameter 

regime considered. Yet predictions work well.

500 snapshots taken at each sampled value of x.



Classical machine learning for identifying quantum phases of matter

Theorem (Identifying quantum phases of matter):
If there exists a polynomial function of few-body reduced density matrices that classifies phases, 
then a (supervised) classical machine learning algorithm can learn to classify phases accurately. 
The required amount of training data and computation time are polynomial in system size.

Idea: convert each quantum state to its classical shadow, and learn to classify these shadows.

Learning strategy: Map each classical shadow to a feature vector in a high-dimensional space.

The learning algorithm discovers the classifying function, which need not be known in advance.

Huang, Kueng, Torlai, Albert, Preskill 2022



Example: Distinguishing the 2D toric code phase from the trivial phase

No local circuit of constant depth acting on a product state can reach a topologically 

ordered state.

Principle components are projections of the data geometry in feature space to a low-

dimensional subspace, chosen to maximize the variance of the data. 

We consider applying low-depth local quantum circuits to (A) a product state and (B) 

the toric code state. The resulting classical shadows are cleanly separated in the 

feature space (and hence a linear classifying function in feature space is easy to 

learn) until the circuit depth approaches half the code distance. 



Conventional experiments vs. quantum-enhanced experiments

How many experiments are needed to learn properties of physical systems, with or without access to 
quantum memory? 

For some tasks, we prove that exponentially fewer experiments suffice in the “quantum-enhanced” 
setting. 

And we demonstrate this advantage in experiments using up to 40 qubits on the Sycamore processor.

Huang, Broughton, Cotler, Chen, Li, Mohseni, Neven, Babbush, Kueng, Preskill, McClean 2022



Conventional experiments vs. quantum-enhanced experiments
How many experiments are needed to learn properties 
of quantum systems, with or without access to quantum 
memory? 

For some tasks, we proved that exponentially fewer 
experiments suffice in the “quantum-enhanced” setting. 

And we demonstrated this advantage in experiments 
using up to 40 qubits on the Sycamore processor.

Exponential quantum advantage in learning 
expectation values of observables.

Will quantum technology revolutionize how we acquire and 
process experimental data to learn about the physical world?

Huang, Broughton, Cotler, Chen, Li, Mohseni, Neven, 
Babbush, Kueng, Preskill, McClean 2022



Making predictions in a quantum world
Classical shadows of quantum states: a feasible procedure converting a quantum state to succinct 
classical data.

O(log M) copies, and efficient classical processing, suffice to predict M properties. “Measure first, 
ask questions later.”

This number of copies is asymptotically optimal for single-copy measurements.

Access to data from quantum experiments may enable classical machine learning to solve 
quantum problems that would be too hard to solve without access to data.

Quantum-enhanced experiments making use of quantum memory and quantum processing can 

have an exponential advantage relative to conventional experiments. 

Richard KuengH.-Y. (Robert) Huang

classical shadows
Giacomo Torlai Victor Albert Google 

Quantum AI
Laura Lewis



Additional 
Slides



Predicting many properties from very few measurements

We want to estimate expectation values of many w-qubit observables in an n-qubit quantum 
state ρ, with error at most ε.

We are provided with N copies of ρ. For each copy we perform 
randomized single-qubit Pauli measurements --- that is, for each qubit in each copy we 
measure one of the Pauli matrices X, Y, Z, chosen equiprobably, obtaining N succinct 
“snapshots” of ρ. These snapshots constitute the “classical shadow”.

From the snapshots, we efficiently compute an approximation (error ε) to expectation values 
of M w-qubit operators. To succeed with high probability, N copies suffice, where:

We can also estimate nonlinear properties, such as Rényi entropies.  (A polynomial of order 
k in the density operator can be viewed as the expectation value of an observable acting on 
k copies of the quantum state.)

Huang, Kueng, Preskill, 2020.

 24 log( ) /wN O M 



Special case: Predicting Pauli operators

-- Iteratively replace each randomized single-qubit Pauli measurement by a fixed Pauli.

-- No worse than the randomized protocol, and possibly much better if target observables 
have structure or include high-weight Pauli ops. Huang, Kueng, Preskill 2021

… X Y X Z Z X Z Y …

… I I X Z Z X I I …Target (weight w=4):

Measured Pauli ops:

Hit probability 3-w Predict M Pauli ops (weight  w) with error  using O(3w log M /  2) measurements.

Derandomize:
Pauli operators

qubits

Fully randomized Partially derandomized Fully derandomized

Evans, Harper, Flammia 2019



Quantum chemistry

BeH2 ground state energy estimation 

error (in Hartree) under Bravyi-Kitaev

encoding of fermions, using various 

measurement schemes.

Locally-biased classical shadows:

Hadfield, Bravyi, Raymond, Mezzacapo 2020. 

Largest degree first (LDF) grouping:

Verteletskyi, Yen, Izmaylov 2020.

Derandomized classical shadow

Huang, Kueng, Preskill 2021



Conventional experiments vs. quantum-enhanced experiments

An unknown unitary evolution operator is drawn from one of 
two ensembles --- it is either a general unitary matrix or a real 
orthogonal matrix (time-reversal symmetric).

How well can we distinguish these two symmetry classes?

We generated the transformations as random circuits on 
Sycamore and applied them to a fixed product input state. In the 
conventional scenario, we measured all output qubits in the Y
basis. In the quantum-enhanced scenario we performed Bell 
measurement across two copies of the output state. 

Based on this measurement data, an unsupervised ML could 
easily distinguish the symmetry classes in the quantum-
enhanced scenario but not in the conventional scenario. In both 
scenarios we ran the quantum circuit 1000 times. 

Hard to learn in conventional scenario: Aharonov, Cotler, Qi 2021; Chen, Cotler, Huang, Li 2021


