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Emergent quantum mechanics at the boundary of a local classical lattice model
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We formulate a model in which quantum mechanics emerges from classical mechanics. Given a local
Hamiltonian H acting on n qubits, we define a local classical model with an additional spatial dimension whose
boundary dynamics is approximately—but to arbitrary precision—described by Schrödinger’s equation and H .
The bulk consists of a lattice of classical bits that propagate towards the boundary through a circuit of stochastic
matrices. The bits reaching the boundary are governed by a probability distribution whose deviation from the
uniform distribution can be interpreted as the quantum-mechanical wave function. Bell nonlocality is achieved
because information can move through the bulk much faster than the boundary speed of light. We analytically
estimate how much the model deviates from quantum mechanics, and we validate these estimates using computer
simulations.
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I. INTRODUCTION

General. relativity and the Standard Model of particle
physics are not exact descriptions of reality; rather they
emerge as low-energy effective field theory descriptions of
some underlying theory (e.g., string theory). A characteris-
tic signature of emergence at low energy or long time and
distance scales is that the resulting physics is typically well
described by remarkably simple equations, which are often
linear (e.g., the harmonic oscillator) or only consist of lowest-
order terms in an effective Lagrangian.

In principle, it is possible that quantum mechanics is
also only an approximate description of reality. Indeed,
Schrödinger’s equation is a simple linear differential equation,
suggesting that it might arise as the leading approximation to
a more complete model. The advent of quantum computing
opens opportunities to probe and test quantum mechanics in
an unprecedented regime. Much evidence indicates that if
standard quantum theory is exactly correct, then the cost of
simulating a quantum computation with a classical computer
must grow exponentially with the size of the quantum com-
puter [1]. To the extent possible, this extraordinary hypothesis
about the quantum world should be tested in the laboratory. In-
deed, if quantum theory actually emerges from an underlying
classical model, then this exponential scaling must eventually
fail for real devices. Therefore, aside from verifying Bell
nonlocality [2] and studying the behavior of macroscopic
superpositions [3], we should also conceive and perform ex-
periments that characterize the computational power of nature
[4–6].

Numerous experiments [2,7–13] and theoretical observa-
tions [14–19] significantly constrain, but do not completely
rule out, possible deviations from standard quantum the-
ory. For example, measurements of the anomalous magnetic

dipole moment of the electron [20] agree with quantum pre-
dictions up to roughly ten digits of precision. However, these
experiments, and most other current tests of quantum theory,
probe properties of matter with relatively low computational
complexity, and so might be insensitive to deviations from
quantum theory that become evident only for more complex
states [21]. Quantum theory also successfully predicts prop-
erties of ground states and of low-energy dynamics for many
materials and molecules, but here too the detailed agreement
between theory and experiment has mostly been limited to
quantum states that are not profoundly entangled [22,23], and
so the successful predictions do not rule out departures from
quantum predictions for states of high complexity. To probe
the high-complexity regime convincingly, highly excited mat-
ter should be carefully studied. It may also be necessary to
measure many observables, since classically tractable mod-
els of thermalization [24,25] and emergent hydrodynamics
[26–28] may suffice for explaining the observed data when
only a few degrees of freedom are measured. In contrast
to more conventional experimental tools, future quantum
computers that prepare highly entangled states and perform
intricate measurements will be well equipped for probing the
behavior of matter in the regime far beyond the reach of
efficient classical simulation [11–13].

Though models in which quantum dynamics emerges from
underlying classical dynamics should be testable in the high-
complexity regime, such tests need not be applicable to other
proposed modifications of standard quantum theory. For ex-
ample, in models with intrinsic wave function collapse [29],
quantum error correction [30] might overcome the damaging
effects of the intrinsic noise, restoring the full computational
power of quantum theory. Furthermore, generic nonlinear cor-
rections to Schrödinger’s equation may well enhance rather
than diminish the computational power of quantum systems
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[31], while our goal is to explore whether nature could be
computationally weaker, not stronger, than standard quantum
theory predicts.

Such considerations motivate the quest for testable models
in which quantum mechanics emerges from classical mechan-
ics and for which deviations from standard quantum theory are
detectable in the high-complexity regime [6,32–41]. In pursuit
of this quest, we aim to construct a local classical lattice model
that exhibits emergent quantum mechanics (EmQM) [42]. We
define a local classical model to consist of a lattice, where the
state at each lattice site is defined by a finite list of numbers
(which does not grow with the system size), and the time
evolution of each lattice site only depends on the state of
nearby sites. The time evolution is allowed to be stochastic
and either continuous or discrete. Cellular automata and local
classical lattice Hamiltonians (and Lagrangians) are examples
of local classical models.

We consider a model to exhibit EmQM if its slowly varying
and long-distance physics is well described by Schrödinger’s
equation:

∂t� = −iH�. (1)

� is the wave function, which encodes the state of the system,
while H is the Hamiltonian,1 which defines the dynamics.

In a sense, the classical model is performing an approxi-
mate simulation of suitably encoded Schrödinger dynamics.
We want more than just that—to the extent possible we want
the classical dynamics to be a reasonable model of how nature
might really behave. Typical classical simulation algorithms
will not fit the bill, for example because the classical dynamics
is spatially nonlocal or because the required number of local
degrees of freedom increases exponentially with system size
(e.g., tensor network methods [43,44] require an exponentially
large bond dimension).2 Drawing inspiration from neutral
network algorithms [46–50], we seek models without such
shortcomings.

We partially succeed in the following sense. Given any
local Hamiltonian and initial value wave function for n
qubits in D spatial dimensions, we can define a local
classical lattice model in D + 1 spatial dimensions whose
D-dimensional boundary dynamics can be well-approximated
by Schrödinger’s equation if the extra spatial dimension has a
length S that is exponentially large in n, i.e., if S � 2n.

We view this as only a partial success because if S � 2n

does not hold, then the boundary dynamics instead obeys a
Schrödinger’s equation with a highly nonlocal Hamiltonian
(i.e., its terms are geometrically nonlocal and also act on many
qubits at once). In order to be a model of EmQM in our
universe, we would like to view n as the number of (possibly
Planckian-sized) qubits in our universe (with an effective low-
energy Lagranian or Hamiltonian consistent with the standard
model [51,52]). More conservatively, we would like to take

1In this work, we will consider only local Hamiltonians for a lattice
of qubits, for which H is a Hermitian matrix and � is a complex-
valued vector. A quantum Hamiltonian is local if it is a sum of terms
that each act only on nearby qubits.

2Spatial locality is also a challenge for tensor networks, although a
spatially local algorithm has been derived in one dimension [45].

n to at least be as large as the number of qubits needed
to describe a macroscopic region of space, e.g., certainly
larger than Avogadro’s number: n > 1023. Thus, in order to be
consistent with local quantum dynamics, the extra dimension
would have to be tremendously long, e.g., S � 21023

. Future
work is necessary to determine if it is possible to alleviate the
S � 2n requirement. For example, one might instead demand
that an EmQM model with fixed S � 2ñ be consistent with
any experiment that probes only ñ highly entangled qubits
with high fidelity, e.g., the logical qubits in a quantum com-
puter. This would be desirable because only ñ ∼ log2 S highly
entangled qubits would be needed to experimentally test such
a model of EmQM, which would be experimentally relevant
in the near term if, e.g., S ∼ 21000.

Various challenges had to be overcome while constructing
our model of EmQM. In Sec. II we recount these challenges
as guiding principles that intuitively motivate necessary ingre-
dients for EmQM. In Sec. III we promote this intuition to an
explicit model. In Sec. IV we estimate how much our EmQM
model deviates from quantum mechanics, and we numerically
validate these estimates in Sec. V. In Sec. VI we discuss possi-
ble experimental tests of EmQM models similar to the model
we study. In Sec. VII we mention future directions, such as
how our EmQM might be modified to possibly alleviate the
S � 2n requirement.

II. INGREDIENTS FOR EmQM

A. Bell nonlocality from fast variables

Bell inequality [53,54] experiments have shown that the
outcomes of spacelike separated quantum measurements are
incompatible with local hidden variable theories unless infor-
mation can travel faster than light. Therefore, we posit the
existence of hidden fast degrees of freedom that move much
faster than the speed of light and change much more rapidly
than the wave function. Although we make no assumptions
regarding local realism (another assumption used to derive
Bell inequalities), we will be led to an EmQM model without
local realism. For simplicity, we consider a wave function for
qubits. Therefore, it is natural to take the fast variables to be
classical bits.

We note that in order for a theory with faster-than-light
degrees of freedom to be consistent with previous tests of
Lorentz invariance [55], we likely also need to posit that
the observed Lorentz invariance in our universe is emergent
(rather than exact). See Appendix C for further discussion
regarding the feasibility of this possibility.

B. Linearity from perturbative expansion

Another notable feature of Schrödinger’s equation is that
it is linear in the wave function, while classical systems
generically exhibit nonlinear behavior. However, linearity is
a generic result of leading-order perturbative expansions. For
example, the linear harmonic oscillator describes small oscil-
lations of a pendulum. The gravitational force in Newtonian
gravity is a linear superposition of forces, which can be
derived from general relativity in a certain limit where the
gravitational force is weak. Even the training dynamics of
wide neural networks (for which there are many neurons per
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layer) can be reduced to a linear equation after a perturbative
expansion about small deviations from the initial conditions
[46,56], which was a significant inspiration for the EmQM
model that we introduce.

We therefore posit that our model contains degrees of free-
dom that change so slowly with time that their dynamics can
be treated in a linear approximation. If we attempt to follow
the evolution for a very long time, terms nonlinear in the
wave function may become significant, resulting in nonlinear
corrections [57] to the emergent Schrödinger equation. These
higher-order corrections might depend on details of the un-
derlying classical dynamics, rather than being expressible in
terms of the emergent wave function alone.

C. Wave function from probability vector

An EmQM model should also explain how the quantum
wave function is related to the classical model. Specifying the
wave function for n qubits requires 2n numbers. This feature
is reminiscent of classical probability distributions, which
also require 2n numbers for n bits. Therefore, we posit that
the wave function is mathematically related to a probability
vector P.

In order to incorporate the previous two guiding principles,
we further posit that P is a probability distribution for the fast
degrees of freedom (i.e., the classical bits) and that P is de-
termined by the slow degrees of freedom. We further assume
that the wave function � for n qubits describes perturbations
from a uniform probability vector for n classical bits:

P = 1
N

+ ε��, (2)

where ε� is perturbatively small. P is a vector of probabilities
for the fast degrees of freedom. 1 is a vector of N = 2n ones
so that 1

N is a uniform probability vector for n bits.
We will be content to describe the evolution of the emer-

gent wave function in our EmQM model and will not discuss
measurement as a separate phenomenon. To accommodate
measurements, one could adopt the Everett interpretation [58]
by including the observer and measurement apparatus as part
of the physical system described by the wave function. See
Appendix A for more details.

Constraints

In order for P to be a valid probability vector, � must be a
real vector with elements that sum to zero:∑

i

�i = 0. (3)

In order to preserve these constraints, the Hamiltonian H in
Schrödinger’s equation (1) must be an imaginary-valued and
antisymmetric matrix with rows and columns that sum to zero:∑

i

Hi j = 0,

∑
j

Hi j = 0. (4)

In order to obtain a local EmQM model, we also require that
every term of the Hamiltonian is local and satisfies Eq. (4).

In Appendix B, we show that these constraints on H and
� do not result in any significant loss of generality. In par-
ticular, given any Hamiltonian H and wave function �(t ) that
satisfy Schrödinger’s equation, we find a linear mapping to
a dual Hamiltonian H̃ and wave function �̃(t ) that satisfy
Schrödinger’s equation and the above constraints. Further-
more, if H is local, then H̃ can also be chosen to be local.
Every term of H̃ will also satisfy Eq. (4).

D. Quantum complexity from a large extra dimension

Simulating Schrödinger’s equation with a classical com-
puter generically requires CPU time that increases exponen-
tially with system size. Therefore, simulating an underlying
classical EmQM model should also have a high cost. To en-
sure that the EmQM model is costly to simulate, we posit a
large extra spatial dimension of length S. In effect, this large
dimension enables the EmQM model to describe quantum
mechanics in an exponentially large Hilbert space.

In our model, the stochastic classical bits are fast in the
sense that they are frequently sampled. But the emergent
wave function is related to the probability distribution P from
which these bits are sampled, where P itself evolves quite
slowly in comparison. A general probability distribution on
n bits is parameterized by 2n − 1 nonnegative real numbers.
If we want to allow general n-qubit quantum pure states in
our EmQM model, then many parameters must be needed to
specify the stochastic process from which P arises. For this
reason we assume that P is obtained by composing stochastic
matrices in a very deep circuit. The number of parameters
needed to parametrize the circuit is linear in its depth S, which
we therefore assume to be exponential in n. We envision this
circuit as extending into an auxiliary spatial dimension, not
to be confused with the spatial dimensions of the emergent
quantum system.

Consider an EmQM model consisting of an S + 1 by n
grid of bits as,x, which are depicted as red dots in Fig. 1.
For simplicity of exposition, we focus on the EmQM of a
one-dimensional chain of n qubits. Generalizations to higher
spatial dimensions are straightforward. Let P be the probabil-
ity distribution for the n bits at the s = S boundary (circled
in red) of the extra spatial dimension. We then suppose that
at the s = 0 boundary, the n bits are generated uniformly at
random, and that the bulk dynamics interpolate between the
uniform distribution 1

N and P = 1
N + ε��.

Next, we take inspiration from unitary circuits, which can
generate entangled wave functions from direct product states
by repeatedly acting on pairs of qubits with unitary matrices.
Since the EmQM model involves classical bits instead of
qubits, we instead consider a circuit of stochastic matrices
Ms,x (yellow in Fig. 1). A stochastic matrix is a matrix with
columns that are probability vectors, i.e., vectors with posi-
tive entries that sum to one. Therefore, given two input bits,
a 4 × 4 stochastic matrix maps those bits to a probability
distribution, from which a new pair of bits can be sampled.
A 4 × 4 stochastic matrix can also be used to linearly map
a probability vector for two bits to a new probability vector.
The EmQM model utilizes a circuit of stochastic matrices to
sample bits from the probability vector P. We emphasize that
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FIG. 1. Square lattice picture of our model (with S = 5 and n =
4), which exhibits EmQM on a one-dimensional boundary (circled
in red) of a two-dimensional bulk. Classical bits as,x (red dots) prop-
agate forward through a slowly time-evolving circuit of stochastic
matrices Ms,x (yellow), and classical bits bs,x,γ propagate backwards
through a time-independent circuit of permutation matrices QT

s,x . The
emergent Schrödinger equation describes the time evolution of the
probability distribution P(aS ) governing the boundary bits. The back-
propagating bits determine how the stochastic matrices are updated
in each time step. See Sec. III A for an overview.

P is not a physical degree of freedom; P is only implicitly
defined by the circuit of stochastic matrices.3

The stochastic matrices Ms,x vary slowly with the time step
τ , and can be decomposed as

Ms,x(τ ) = Qs,x + ms,x (τ ), (5)

where Qs,x is time independent and ms,x(τ ) is a time-
dependent perturbation. We take the Qs,x to be permutation
matrices, which have the useful property that their inverse is
also a stochastic matrix.4 We will assume that at all times,
the perturbation ms,x (τ ) is sufficiently small that we can ac-
curately account for the evolution of P by expanding to linear
order. As a result, the time evolution of the emergent wave
function will also be described by a linear equation.

E. Unitarity from destructive interference

A final challenge is to obtain dynamics for P such that
� in Eq. (2) undergoes a unitary evolution described by
Schrödinger’s equation.5 One route to realizing unitarity is

3The classical bits and stochastic matrices are ontic in our model.
There are thus an infinite number of possible physical states, as
implied by Hardy’s excess baggage theorem [59]. However, P and
the wave function are both fully determined by the stochastic matri-
ces, which implies that our model is ψ-ontic [60] in the sense that
distinct wave functions always correspond to distinct physical states
(of classical bits and stochastic matrices).

4More generic choices for Qs,x could be a useful direction for future
work, which we briefly discuss in Sec. VII A.

5Unitary dynamics implies many other useful properties. For ex-
ample, Tsirelson’s bound is an upper bound for how much quantum

to suppose that after the forward-propagating bits as,x reach
the s = S boundary, the bits are transformed by a shallow
stochastic circuit B that encodes a small unitary time evolution
generated by the Hamiltonian H . The resulting bits could then
back-propagate through the circuit (via QT

s,x) while dictating
how the stochastic matrices slowly evolve such that P under-
goes the desired dynamics.

But how could a stochastic circuit encode a time evolu-
tion by a generic imaginary-valued Hamiltonian satisfying
Eq. (4)? One possibility is that a pair of stochastic circuits
B(±) outputs two sets of bits with probability vectors P± that
“destructively interfere” with each other:

P+ − P− = (−iHδt )P. (6)

This could be achieved by stochastic circuits B(±) defined
such that

B(+) − B(−) = −iHδt. (7)

Such a decomposition is always possible for sufficiently small
δt. For example, if

−iH =

⎛⎜⎜⎝
0 −1 +1 0

+1 0 −1 0
−1 +1 0 0
0 0 0 0

⎞⎟⎟⎠ (8)

for n = 2 qubits, then we can choose

B(+) =

⎛⎜⎜⎝
1 − δt 0 δt 0

δt 1 − δt 0 0
0 δt 1 − δt 0
0 0 0 1

⎞⎟⎟⎠,

B(−) =

⎛⎜⎜⎝
1 − δt δt 0 0

0 1 − δt δt 0
δt 0 1 − δt 0
0 0 0 1

⎞⎟⎟⎠.

(9)

To illustrate how this works in a simple setting, let us continue
this n = 2 example and further suppose that S = 1 such that
there is only a single stochastic matrix M, as depicted below:

(10)

For each discrete time step, all of the bits as,x and bs,x,± are up-
dated. The two input bits a0,1 and a0,2 are chosen uniformly at
random. The boundary bits at s = 1 are randomly chosen from
the conditional probability distributions p(a1|a0) = M(a1, a0)

theory can violate Bell’s inequality [54]. Tsirelson’s bound is satu-
rated by Schrödinger’s equation, but Tsirelson’s bound is exceeded
by some alternatives of quantum theory [61]. If � in our model
obeys a unitary evolution corresponding to a local Hamiltonian, then
in addition to violating Bell’s inequality, our model would saturate
Tsirelson’s bound (in agreement with quantum theory).
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and p(b±|a1) = B(±)(b±, a1), where (for now) as and b± de-
note pairs of bits (as,1, as,2) and (b1,1,±, b1,2,±), which are
used to index the 4 × 4 matrices M and B(±).

In order to get the desired time evolution for P, for each
discrete time step, m in M = Q + m is updated according to

m′ = m + 	m(b̂+ − b̂−) ⊗ ê, (11)

where 	m is a small constant. b̂+ denotes the basis 4-vector
indexed by the two bits b1,1,+ and b1,2,+, and similar for b̂−.
For example, b̂+ = (0, 1, 0, 0) if b1,1,+ = 0 and b1,2,+ = 1. ê
is chosen uniformly at random from the four basis 4-vectors
[(1,0,0,0), (0,1,0,0), etc.] with the constraint that M = Q + m
remains nonnegative. Such a choice always exists as long as
the elements of m (which are assumed to be small) remain
smaller than 1. The choice of Q does not play an important
role in this S = 1 example.

P is the probability distribution that governs the sampled
boundary bits a1,1 and a1,2. In addition, P itself has statistical
fluctuations, because in each time step, the stochastic matrix
M is updated according to Eq. (11), where b̂+ and b̂− are also
stochastic variables. To see that Eq. (11) results in an emergent
Schrödinger equation, we first calculate the expectation values
(denoted by a bar) of the boundary bits:

P = â1 = M
14

4
, (12)

b̂± = B(±)P, (13)

where 14/4 denotes a uniform probability vector with four
elements. Equation (7) then implies that

b̂+ − b̂− = −iδtHP. (14)

Thus, the average change in P after one time step evolves
according to a discrete Schrödinger’s equation:

P′ − P = (m′ − m)
14

4

= 	m

4
(b̂+ − b̂−)

= −i	tHP, (15)

where 	t = 1
4δt	m. The above three equalities follow from

Eqs. (12), (11), and (14), respectively. In the second equality,
we see that the random choice of ê in Eq. (11) does not
matter because ê is multiplied by 14 in the first line. Since P
and � are linearly related by Eq. (2), � obeys Schrödinger’s
equation on average. Statistical fluctuations about this average
are negligible in the small 	m limit.

To quantify statistical fluctuations, let τ denote the discrete
time step of P(τ ). After τ steps, the elapsed time in the emer-
gent quantum mechanics is t ≈ 	tτ . Statistical fluctuations of
P(τ ) grow as6O(	m

√
δtτ ) = O(

√
	mt ). Therefore, statistical

fluctuations become arbitrarily small as 	m decreases.

6δtτ is roughly the number of time steps for which b̂+ − b̂− �= 0.
Each of these time steps changes m by 	m.

F. More qubits

Finally, we must scale up the previous S = 1 and n = 2
example to large S and n, as depicted in Fig. 1. We will now
assume that the time-independent permutation matrices Qs,x

in Eq. (5) are chosen uniformly at random and independently
for each s and x. These random permutation matrices play
an important role as they randomize the subspace in which
each ms,x affects P. Therefore when Sn � N = 2n, the span
of these subspaces covers all N dimensions of P.

When S > 1, the bits bS,x,γ at the boundary will have to
back-propagate through the circuit before affecting the time
evolution of Ms,x. In order to back-propagate the maximal
amount of information from the boundary to the bulk, it would
be ideal to use the inverse of the stochastic matrices M−1

s,x .
But this is not possible since these inverses are generically
not stochastic matrices. However, since ms,x is assumed to be
small, M−1

s,x ≈ QT
s,x and therefore QT

s,x can be used to determin-
istically back-propagate the bits.7

Finally, we must split B(±) into local pieces, as depicted in
Fig. 1. To be concrete, we assume that the Hamiltonian H =∑

x Hx is local such that each Hx only acts on two neighboring
qubits. Generalizing Eq. (7), B(±)

x are chosen such that

B(+)
x − B(−)

x = −iHxδt (16)

with the constraint that the stochastic matrix

B(±)
x = 14 + O(δt ) (17)

is the 4 × 4 identity matrix 14 up to order δt corrections. We
then define four different depth-1 stochastic circuits:

B(±1) = ⊗odd xB(±)
x ,

B(±2) = ⊗even xB(±)
x , (18)

which are now guaranteed to satisfy a generalization of
Eq. (7):

+B(+1) − B(−1) + B(+2) − B(−2) = −iHδt + O
(
δ2

t

)
. (19)

Since there are now four different flavors of B(γ ), we also take
four different flavors of back-propagating bits bs,x,γ with γ =
±1 and γ = ±2. With these ingredients combined, we arrive
at a local model of emergent quantum mechanics.

III. EmQM MODEL

A. Overview

In summary, we introduce a two-dimensional local classi-
cal model for which a wave function � of qubits is encoded
in a probability distribution P = 1

N + ε�� [Eq. (2)] for n
classical bits on a one-dimensional boundary of the model.

7MT
s,x can not be used for back-propagation since MT

s,x is not guar-
anteed to be a stochastic matrix. We can not simply require MT

s,x

to be a stochastic matrix in our model (which would imply that
Ms,x is doubly stochastic) since we require that Ms,x maps a uni-
form probability distribution to a different distribution. But doubly
stochastic matrices always map the uniform distribution to a uniform
distribution since the rows of a doubly stochastic matrix must sum to
one (by definition).
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Generalizing to higher dimensions or Zk qudits (rather than
Z2 qubits) is straightforward. For each discrete time step, a
bit string aS (e.g., aS = 011010) is generated with probability
P(aS ) at the s = S boundary. Our model exhibits EmQM in
the sense that P [i.e., P(aS ) viewed as a vector with N = 2n

components] evolves according to

∂t P ≈ −iHP, (20)

where H is imaginary valued and obeys Eq. (4). Schrödinger’s
equation (1) for � then follows from P = 1

N + ε�� [Eq. (2)].
We will derive Eq. (20) from a well-controlled perturbation
theory, which we verify numerically. Furthermore, the approx-
imate equality in Eq. (20) becomes exact in a well-defined
limit.

Figure 1 summarizes the basic structure of our EmQM
model. The model consists of a square lattice of classical bits
as,x and bs,x,γ (red dots) that propagate through a brick circuit
of slowly varying stochastic matrices Ms,x (yellow). For each
discrete time step, pairs of classical forward-propagating bits
(as,x and as,x+1) are randomly sampled (21) from probability
distributions conditioned on the pair of bits to the left (as−1,x

and as−1,x−1). The conditional probabilities are encoded in
the stochastic matrices Ms,x, which are perturbatively close
to time-independent permutation matrices Qs,x ≈ Ms,x. Also
at each time step, pairs of backward-propagating bits (bs,x,γ

and bs,x+1,γ ) are deterministically replaced (30) by the per-
mutation QT

s,x of bits to their right (bs+1,x and bs+1,x+1). The
bits a0,x at the left s = 0 boundary are uniformly initialized at
random. The bits bS,x,γ at the right s = S boundary result from
applying (29) a shallow stochastic circuit (18) to the bits aS,x

at s = S. The shallow circuit is related (19) to the Hamiltonian
and consists of a layer of time-independent stochastic matrices
B(±)

x (blue). The bits aS,x on the s = S boundary (circled in
red) follow a probability distribution P defined by a tensor
network product (23) of the matrices Ms,x. The time evolution
of Ms,x depends (31) on back-propagating bits bs,x,γ , which
effectively back-propagate the result of a small Hamiltonian
time evolution on P, such that P and � approximately obey
Schrödinger’s equation. See Table I for a notational reference.

B. Stochastic circuit

We now define and study the EmQM model in greater
detail. Each lattice site hosts a classical bit as,x = 0, 1, where
s = 0, 1, . . . , S, and x = 1, . . . , n index the different lattice
sites. s is the coordinate for an extra dimension, while x is the
coordinate for the spatial dimension on which the emergent
qubits live. Our model evolves in discrete time steps indexed
by integer-valued τ , while t is reserved for the emergent time
variable of the emergent quantum mechanics. a(τ )

s,x denotes the
value of the bit as,x at time step τ , and similar for other time-
dependent variables. In contexts where the time step is not
important, we often omit the (τ ) superscript to avoid clutter.

To avoid clutter, we denote a pair of bits (as,x, as,x+1) as
as,x, where x is shorthand for (x, x + 1). For each time step
τ , the classical bits a(τ−1)

s,x with 1 � s � S are stochastically
updated to a(τ )

s,x with conditional probabilities that are condi-

tioned on the bits a(τ−1)
s−1,x. These conditional probabilities are

given by time-dependent stochastic matrices Ms,x:

(21)

For each (s, x) with s = 1, 2, . . . , S and s − x even, Ms,x

is a 4 × 4 stochastic matrix. That is, the columns of Ms,x

are probability vectors; i.e., Ms,x has positive elements and
columns that sum to 1. We index the 4 × 4 matrices using
pairs of bits, such that for fixed a(τ−1)

s−1,x, M (τ−1)
s,x (a(τ )

s,x, a(τ−1)
s−1,x)

is a probability distribution for a(τ )
s,x. The bits along the s = 0

line at the beginning of the circuit are randomly sampled with
equal probability:

p(a0,x ) = 1
2 . (22)

Let as ≡ (as,1, as,2, . . . , as,n) denote the string of bits along
a column of fixed s. For each s, let Ps denote the vector of
probabilities for the different bit strings as. Then P(τ )

s can be
expressed recursively as

P(τ )
s = M (τ−1)

s P(τ−1)
s−1 ,

P(τ )
0 = 1

N
, (23)

where Ms denotes the Kronecker product of stochastic matri-
ces with fixed s:

M (τ )
s = ⊗

even
s−x
x M (τ )

s,x . (24)

The notation on the right-hand side means we take the
Kronecker product of all M (τ )

s,x for even x when s is even (or for
odd x when s is odd), producing the brickwork circuit shown
in Fig. 1. The bit string probabilities at the end of the circuit
are given by P = PS (circled in red in Fig. 1).

C. Perturbative expansion

To gain analytical tractability, we assume that the stochas-
tic matrices are very close to permutation matrices:

M (τ )
s,x = Qs,x + m(τ )

s,x . (25)

Each Qs,x is a randomly chosen (for each s and x) but
time-independent 4 × 4 permutation matrix, while m(τ )

s,x is a
small time-dependent perturbation. A permutation matrix is a
stochastic matrix where all elements are either 0 or 1. A matrix
is a permutation matrix if and only if it is both stochastic
and orthogonal. The dynamics of ms,x will be constrained
such that Ms,x remains a stochastic matrix (with nonnegative
components).

Since they are orthogonal, the permutation matrices have
the effect of a basis transformation. Similar to Eq. (24), let Qs

denote the Kronecker product of permutation matrices with
fixed s:

Qs =
even
s−x⊗

x
Qs,x. (26)

Let QS←s denote the product

QS←s = QSQS−1 · · · Qs+1 (27)
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TABLE I. Notation used throughout the main text (with the exception of Sec. II E, which uses some simplified notations). Notations are
grouped as follows: model parameters, dependent variables, dynamical variables, randomly initialized constants, and other constants.

Variable Definition Reference

n Number of bits output by circuit at each time step Sec. III A
N = 2n Number of bit strings for n bits; x = 1, 2, . . . , n Sec. III A
S Length of extra dimension; s = 1, 2, . . . , S Sec. III A
δt Raw time step (not to be confused with 	t) Sec. II E
m0 Approximate Hilbert-Schmidt norm of each ms,x Eq. (28)
	m Step size for ms,x for each time step Eq. (31)
ε0 Small parameter used to parametrize the above four constants Eq. (79)
H , Hx Effective local Hamiltonian H = ∑

x Hx Sec. III A
G, Gx Real-valued: G = −iH , Gx = −iHx Eq. (36)

	t Effective EmQM time step: t ≈ 	tτ Eq. (50)
ε� Small constant relating P − 1

N ≈ ε�� Eqs. (2) and (54)
B(±)

x 4 × 4 stochastic matrix used to sample bs,x,±γ Eqs. (16), (29), and (37)
B(γ ) Depth-1 stochastic circuit; related to Hamiltonian Eqs. (18) and (19)

	P Rough 2-norm of P(τ ) − P(τ−1) Eq. (53)
P(aS ) Probability the circuit outputs bit string aS Sec. III A
P = PS Expectation value of âS , or P(aS ) viewed as a probability vector Eqs. (23), and (28)
ε(t ) EmQM deviation ||�(t ) − �QM(t )|| from quantum mechanics (QM) Eqs. (52) and (75)
εm(t ), εt (t ) Deviations due to finite m0 and δt Eqs. (63) and (65)
εS(t ), εstat(t ) Deviations due to finite S and statistical fluctuations Eqs. (70) and (74)

τ Integer-valued time step Sec. III B
as,x Forward-propagating stochastic bit Sec. III A
as,x Pair of bits (as,x, as,x+1) Above Eq. (21)
as Bit string (as,1, as,2, . . . , as,n) Below Eq. (22)
âs Length-n basis vector indexed by the bit string as Below Eq. (39)
bs,x,γ Backward-propagating stochastic bit Sec. III A
bs,x,γ Pair of bits (bs,x,γ , as,x+1,γ ) Above Eq. (29)
b̂s,x,γ (1,0,0,0), (0,1,0,0), (0,0,1,0), or (0,0,0,1) when bs,x,γ = 00, 01, 10, or 11 Below Eq. (34)
bs,γ Bit string (bs,1,γ , bs,2,γ , . . . , bs,n,γ ) Below Eq. (34)
b̂s,γ Length-n basis vector indexed by the bit string bs,γ Below Eq. (34)
Ms,x 4 × 4 stochastic matrices, which define the classical circuit Sec. III A
Ms Kronecker product of Ms,x with fixed s Eq. (24)
MS←s = MSMS−1 · · · Ms+1 Eq. (56)
ms,x Perturbations to Ms,x = Qs,x + ms,x Eq. (25)

Qs,x Time-independent 4 × 4 permutation matrices Below Eq. (25)
Qs Kronecker product of Qs,x with fixed s Eq. (26)
QS←s = QSQS−1 · · · Qs+1 Eq. (27)

1 or 1n Vector of n ones
1 or 1n n × n identity matrix
Px Projects out all bits except x and x + 1 Eq. (35)
W Sum of conjugated projectors Px Eqs. (66) and (44)

such that it encodes the change of basis from the column of
bits at s to the end at s = S.

Expanding P to first order in the perturbations ms,x

results in

(28)

where τs = τ − 1 − (S − s) results from a time delay, and
O(m2

0 ) denotes terms that are quadratic in ms,x. For simplicity,
we assume that each ms,x has Hilbert-Schmidt norm roughly
equal to m0. In Sec. IV we will address more precisely the
effects of the nonlinear O(m2

0 ) terms and other approximations
that we make.

As elucidated in the above picture, m(τs )
s,x affects the prob-

abilities for two bits at s and (x, x + 1); these probabilities
span a four-dimensional subspace of the N-dimensional vec-
tor space of probabilities Ps (after averaging over the uniform
distribution of input bits). This subspace is then scrambled
into a different basis by the product QS←s of many random
(but time-independent) permutation matrices. If nS � N =
2n, then the linear combination of these subspaces will span
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the entire N-dimensional vector space. Thus, the sum of
contributions from all ms,x can encode any wave function �

[that is real valued and satisfies Eq. (3)], where P = 1
N + ε��

[Eq. (2)].

D. Time evolution

We now want to give the perturbations ms,x a time evo-
lution that leads to an emergent Schrödinger equation; i.e.,
P(τ ) − P(τ−1) ∝ −iHP. To accomplish this, we introduce a
set of backward-propagating bits bs,x,γ with γ = ±1,±2. At
the s = S boundary, the pair of bits b(τ )

S,x,±γ are randomly
sampled with probabilities that are conditioned on the bits
a(τ−1)

S,x . These conditional probabilities are encoded in time-
independent 4 × 4 stochastic matrices B(±)

x (blue in Fig. 1):

p
(
b(τ )

S,x,±γ |a(τ−1)
S,x

) = B(±)
x

(
b(τ )

S,x,±γ , a(τ−1)
S,x

)
, (29)

where γ = 1 if x is odd, else γ = 2.
The bits bs,x,γ deterministically propagate backwards

through the circuit via the transposed permutation
matrices QT

s,x:

b̂
(τ )
s,x,γ = QT

s,xb̂
(τ−1)
s+1,x,γ . (30)

The hat over b̂
(τ )
s,x,γ denotes the basis 4-vector indexed by the

two bits b(τ )
s,x,γ ; i.e., b̂

(τ )
s,x,γ = (1, 0, 0, 0) if b(τ )

s,x,γ = 00, and

b̂
(τ )
s,x,γ = (0, 1, 0, 0) if b(τ )

s,x,γ = 01, etc.
The time evolution of the perturbations ms,x is stochastic

and depends on the back-propagating bits as follows [extend-
ing Eq. (11)]:

m(τ )
s,x = m(τ−1)

s,x + 	m

∑
γ=1,2

(
b̂

(τ )
s,x,+γ − b̂

(τ )
s,x,−γ

) ⊗ ê(τ )
s−1,x,γ ,

(31)

where 	m is a small positive constant. Similar to b̂
(τ )
s,x,γ (de-

fined in the previous paragraph), ê(τ )
s−1,x,γ is also one of the four

basis 4-vectors, except it is chosen uniformly at random from
the set of basis 4-vectors that keep M (τ )

s,x = Qs,x + m(τ )
s,x non-

negative. Such a choice always exists as long as the elements
of m(τ )

s,x (which are assumed to be small) remain smaller than

1. The random choice of ê(τ )
s−1,x,γ has little effect since m(τ )

s,x
enters Eq. (28) after right-multiplication by 1.

The following quantity will play an important role:(
m(τ )

s,x − m(τ−1)
s,x

)14

4
= 	m

4

∑
γ=1,2

(
b̂

(τ )
s,x,+γ − b̂

(τ )
s,x,−γ

)
, (32)

where 14
4 is a length-4 uniform probability vector. When

m(τ )
s,x − m(τ−1)

s,x acts on two bits of a uniform probability vector
of length N = 2n, the result is similar:(

m(τ )
s,x − m(τ−1)

s,x

)1N

N

= 12x−1

2x−1
⊗

[(
m(τ )

s,x − m(τ−1)
s,x

)14

4

]
⊗ 12n−x−1

2n−x−1
(33)

= 	m

4

∑
γ=1,2

Px
(
b̂

(τ )
s,+γ − b̂

(τ )
s,−γ

)
. (34)

In the last line, b̂s,γ denotes a length-n basis vector indexed
by the bit string bs,γ = (bs,1,γ , bs,2,γ , . . . , bs,n,γ ). For example
if n = 3, then b̂s,γ = (1, 0, 0, 0, 0, 0, 0, 0) if bs,γ = 000, and
b̂s,γ = (0, 1, 0, 0, 0, 0, 0, 0) if bs,γ = 001, etc. m(τ )

s,x − m(τ−1)
s,x

acts only on bits x and x + 1. Therefore the other bits are
projected out by the projection matrix

Px = ⊗n
x′=1

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(

1 0
0 1

) x′ = x
or

x′ = x + 1(
1/2 1/2
1/2 1/2

)
otherwise

. (35)

Expressing Eq. (34) in this way will be useful later on.

E. B(±)
x encode the Hamiltonian

Given a Hamiltonian H = ∑
x Hx, we now wish to choose

B(±)
x such that inserting Eq. (34) into (28) yields a discrete

Schrödinger equation, P(τ ) − P(τ−1) ∝ GP, where we define

G = −iH (36)

and Gx = −iHx.
We assume Hx is Hermitian, imaginary-valued, and acts

only on two neighboring qubits, which implies that Gx is a
real antisymmetric 4 × 4 matrix. In accordance with Eq. (4),
we further assume that Gx has rows and columns that sum to
zero. We also decompose Gx = G(+)

x − G(−)
x such that G(+)

x
and G(−)

x only have nonnegative elements.
We require that B(±)

x satisfy Eqs. (16) and (17) so that these
matrices encode the Hamiltonian, as in Eq. (19). To achieve
this for a general (geometrically two-local) Hamiltonian, we
choose B(±)

x to be the following 4 × 4 matrix:

B(±)
x (b±, a) = δtG

(±)
x (b±, a) +

{
1 − δt gx(a) b± = a
0 b± �= a

,

(37)

where gx(a) is a column sum of G(±)
x :

gx(a) =
∑

b=00,01,10,11

G(±)
x (b, a); (38)

“b+,” “b−,” and “a” each denote a pair of bits, which respec-
tively correspond to bS,x,+γ , bS,x,−γ , and aS,x in Eq. (29). B(±)

x
are 4 × 4 stochastic matrices, which we view as a probability
vector for 2 bits (b±) given two bits (a). Either G(+)

x or G(−)
x

can be used in the right-hand side of Eq. (38); both give the
same result since the column sum of Gx = G(+)

x − G(−)
x is

zero. B(±)
x is a stochastic matrix as long as δt is sufficiently

small. See Eq. (9) for an example.
Importantly, since this choice of B(±)

x implies Eq. (19), the
bits bS,γ encode a short time evolution by the Hamiltonian:∑

γ=1,2

b̂
(τ )
S,+γ − b̂

(τ )
S,−γ

= (+B(+1) − B(−1) + B(+2) − B(−2))â(τ−1)
S

= (−iδtH )P(τ−1) + O
(
δ2

t

)
. (39)

The first equality follows from Eq. (29), where B(γ ) was
defined in Eq. (18). Similar to the b̂s,γ notation, âs denotes
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a length-n basis vector indexed by the bit string as. The final

line follows from Eq. (19) and the definition P(τ ) = â(τ )
S .

F. Emergent quantum mechanics

Now that we have specified the EmQM model, we show
that it can exhibit emergent quantum mechanics. We begin
by evaluating the expectation value of P(τ ) − P(τ−1) using
Eq. (28):

P(τ ) − P(τ−1) =
S∑

s=1

even
s−x∑

x

QS←s
(
m(τs )

s,x − m(τs−1)
s,x

) 1
N

+ O
(
m2

0

)
.

(40)

We can simplify the summand as follows:(
m(τs )

s,x − m(τs−1)
s,x

) 1
N

= 	m

4

∑
γ=1,2

PxQT
S←s

(
b̂

(τ ′
s )

S,+γ − b̂
(τ ′

s )
S,−γ

)
(41)

= 	m

4
PxQT

S←s(−iδtH )P(τ ′
s−1) + O

(
δ2

t

)
. (42)

Equation (41) is obtained from Eq. (34) after replacing

b̂
(τs )
s,γ = QT

S←sb̂
(τ ′

s )
S,γ , where τ ′

s = τs − (S − s) = τ − 1 − 2(S −
s). Equation (42) follows from Eq. (39).

We assume 	m � S−1 such that the slow variables ms,x

change very little over S time steps so that we can approxi-
mate P(τ ′

s−1) = P(τ−1) + O(S	m). Inserting Eq. (42) into (40)
results in

P(τ ) − P(τ−1) = 	m

4
δt W (−iH )P(τ−1) + O

(
m2

0, δ
2
t ,	

2
m

)
.

(43)

where W is a sum of conjugated projectors Px [Eq. (35)]:

W =
S∑

s=1

even
s−x∑

x

QS←sPxQT
S←s. (44)

The error estimates O(m2
0, δ

2
t ,	

2
m) in Eq. (43) neglect factors

of S and N , which will be accounted for in Sec. IV.
If Sn � N , then W approaches a simple form:

W = Sn

2
P1 + Sn

2

3

N − 1
P⊥

1︸ ︷︷ ︸
W0

+O

(√
Sn

N

)
. (45)

where the matrix P1 = 1⊗1
N projects onto the one-dimensional

subspace spanned by 1 (i.e., the vector of N ones) and P⊥
1 =

1 − P1 projects into the orthogonal subspace. 1 is an N × N
identity matrix.

The first term in Eq. (45) follows from multiplying Eq. (44)
by 1, and noting that Sn/2 is the number of terms summed
in Eq. (44). To understand the following two terms, note that
within the (N − 1)-dimensional subspace orthogonal to 1, the
set of permutation matrices is a unitary 1-design [62] up to a
constant factor. That is,

E
Q

Q⊥ ⊗ QT
⊥ = 1

1 − N−1
EU U⊥ ⊗ U †

⊥, (46)

where Q⊥ = P⊥
1 QP⊥

1 and U⊥ = P⊥
1 UP⊥

1 , and EQ averages
over all permutation matrices Q while EU averages over
all unitary matrices.8 Our numerical experiments show that
the permutation matrices QS←s with S − s � n summed in
Eq. (44) are an approximate 1-design in the same sense
[65–67]:

E
Qs,x

(QS←s)⊥ ⊗ (QS←s)T
⊥ ≈ 1

1 − N−1
EU U⊥ ⊗ U †

⊥, (47)

where (QS←s)⊥ = P⊥
1 QS←sP⊥

1 . The above equation allows us
to approximate the average of W (in the subspace orthogonal
to 1) as

P⊥
1 WP⊥

1 ≈ S

2

1

1 − N−1

∑
x

EU U⊥PxU
†
⊥

= S

2

1

N − 1

∑
x

P⊥
1 PxP⊥

1

= Sn

2

3

N − 1
P⊥

1 . (48)

Although QS←s near the boundary (i.e., S − s � n) will not
obey the approximate 1-design property (used to obtain the
first equality), the sum of conjugated projection operators
near the boundary in Eq. (44) only contributes at order
O(n2), which is negligible compared to the other terms in
Eq. (45). We used EUUi j ⊗ U ∗

kl = 1
N δikδ jl (where δi j denotes a

Kronecker delta) to obtain the second line above. The final
line follows from the definitions of P⊥

1 and Px [Eq. (35)].
This is the second term in Eq. (45). To quantify statistical
fluctuations about the above mean, we numerically find that
the standard deviation of the eigenvalues of W within the sub-
space orthogonal to 1 is approximately 4

√
Sn/2N [the third

term in Eq. (45)], which is much smaller than the O(Sn/N )
mean.

Note that 1H = 0 since the columns of H sum to zero
[Eq. (4)]. Therefore inserting Eq. (45) into (43) yields

P(τ ) − P(τ−1) ≈ −	tiHP(τ−1) (49)

up to O(m2
0, δ

2
t ,	

2
m,

√
N/Sn) corrections, where

	t = 	m

4

Sn

2N

3

1 − N−1
δt (50)

is the effective EmQM time step. Equation (49) is precisely
the discrete-time analog of the emergent Schrödinger’s equa-
tion (20) that we wanted.

The emergent wave function �(t ) can be extracted from
P(τ ) in Eq. (2) as follows:

�(t = 	tτ ) ∝ P(τ ) − 1
N

. (51)

8Equation (46) also holds if EU only averages over orthogonal
matrices (since the set of orthogonal matrices is also a unitary 1-
design) or if EQ averages only over permutation matrices that are
affine transformations (which is equivalent to the set of matrices
generated by permutation matrices that act only on two bits [63,64]).
Equation (46) follows after evaluating EQQi jQkl = 1

N 1ik1 jl +
1

N (N−1) (1 ⊗ 1 − 1)ik (1 ⊗ 1 − 1) jl and EUUi j ⊗ U ∗
kl = 1

N 1ik1 jl . The
components 1i j of the identity matrix 1 are equivalent to a Kronecker
delta: δi j = 1i j .
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� obeys Schrödinger’s equation exactly in a m0, δt, S−1,

	m → 0 limit, which we derive below.

IV. DEVIATIONS FROM QUANTUM MECHANICS

We now study how much the EmQM model deviates from
Schrödinger’s equation. In particular, we will estimate how

ε(t ) = ||�(t ) − �QM(t )|| (52)

grows with time, where � is the EmQM wave function de-
fined by Eq. (51), �QM is calculated using Schrödinger’s
equation (1), and || · · · || denotes a Euclidean 2-norm. At
time t = 0, we take �QM(0) = �(0). The deviation ε(t ) from
quantum mechanics increases due to four separate contribu-
tions resulting from finite m0, δt, S−1, and 	m. We find that
small values of these parameters result in linearity, unitarity,
locality, and small statistical fluctuations, respectively.

Calculating the contributions to ε(t ) is rather technical. For
brevity, we will only sketch the derivation, which we verify
numerically in Sec. V. While estimating ε(t ), we also ignore
constant factors (e.g., factors of 2), which we emphasize by
using “∼” symbols (instead of “≈”).

A. Preliminaries

It is essential to differentiate systematic and statistical
errors, which respectively add coherently and incoherently.
That is, if one adds a series of n errors following a normal
distribution with mean μ (systematic error) and standard devi-
ation σ (statistical error), then the total error is also normally
distributed with mean nμ and standard deviation

√
nσ . We

say that the means add coherently (∝ n), while the standard
deviation adds incoherently (∝ √

n).
It is instructive to first roughly estimate the 2-norm of

P(τ ) − P(τ−1) ≈ −	tiHP(τ−1) in Eq. (49):

	P ≈ ||	t iHP|| ∼ 	t
√

n ε�. (53)

This follows from HP = ε�H� via the constraint (4) that∑
j Hi j = 0. And ||H�|| ∼ √

n due to the n terms in H =∑
x Hx which add up incoherently for generically random

wave functions � (which we consider in our numerical valida-
tion)9 due to approximate orthogonality. This results in the

√
n

factor above. For simplicity, we assume that each Hx (viewed
as a 4 × 4 matrix) has norm roughly equal to 1.

We will also require an estimate for ε� , which is defined
by P = 1

N + ε�� in Eq. (2) with ||�|| = 1:

ε� ∼
√

Sn

N
m0. (54)

This expression results from Eq. (28), which expresses P − 1
N

as a sum of roughly Sn/2 terms of the form QS←sms,x
1
N . These

Sn/2 terms add up incoherently, and each term has a norm of
roughly m0/

√
N (since 1 has norm

√
N), which results in the

above expression.

9||H�|| ∼ n for low-energy states. Such states thus require an extra
factor of

√
n in Eq. (53), but this is relatively negligible compared

e.g., to factors of N .

B. Small m0 controls linearity

As noted in Sec. II B, we expect linearity to result only if
Ms,x changes very little over time, which is controlled by the
smallness of m0. This limit also allowed us to expand Eq. (28)
to first order in m0. Keeping all higher-order terms yields a
more accurate version of Eq. (40):

P(τ ) − P(τ−1) =
S∑

s=1

even
s−x∑

x

MS←s
(
m(τs )

s,x − m(τs−1)
s,x

) 1
N

+ O
(
	2

m

)
,

(55)

where we only drop terms that are second order in 	m ∼
||m(τs )

s,x − m(τs−1)
s,x ||op � m0. We use ||M||op to denote the op-

erator norm of a matrix M, which is equivalent to the largest
singular value of M. Analogous to QS←s, we define MS←s as
a product of stochastic matrices Ms′,x with S � s′ > s:

MS←s = MSMS−1 · · · Ms+1. (56)

This leads to a nonlinear Schrödinger’s equation

∂t� ≈ −iW̃H�, (57)

where W̃ is similar to W in Eq. (44) but with QS←s replaced
with MS←s:

W̃ =
S∑

s=1

even
s−x∑

x

MS←sPxQT
S←s. (58)

Equation (57) is highly nonlinear because the right-hand-side
depends on the product of many dynamical variables ms,x (via
W̃) in addition to �. Furthermore, unlike Schrödinger’s equa-
tion, time-evolving � using Eq. (57) also requires keeping
track of the time evolution of ms,x.

To estimate how much nonlinear corrections to the emer-
gent Schrödinger equation contribute to the deviation ε(t ) in
Eq. (52), consider the O(Sn) many O(m0) terms in W̃ that
were neglected in W . These terms add up coherently10 by
subtracting weight from the identity matrix component of W̃ ,
such that ∣∣∣∣W̃ − W

∣∣∣∣
op ∼ min(Snm0, 1). (59)

The min(· · · , 1) results because once Snm0 � 1, most of the
weight has been removed from the identity matrix component.
This correction to W adds coherently to ε(t ) over many time
steps. Indeed, we find that ∂tε(t ) ∝ ||W̃ − W||op:

∂tε(t ) = ∂t ||� − �QM||

= Re
(� − �QM)∗

||� − �QM|| · ∂t (� − �QM)

�
∣∣∣∣∣∣∣∣Im (� − �QM)∗

||� − �QM|| · (W̃H� − WH�QM)

∣∣∣∣∣∣∣∣ (60)

∼
∣∣∣∣∣∣∣∣Im (� − �QM)∗

||� − �QM|| · (W̃ − W )H�

∣∣∣∣∣∣∣∣ (61)

10There is also an incoherent contribution. However, the coherent
contribution dominates for large S since it adds up more rapidly.
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�
∣∣∣∣W̃ − W

∣∣∣∣
op ||H�||

∼ min(Snm0, 1)
√

n. (62)

In Eq. (60) we wish to bound how quickly the deviation ε(t )
increases just due to finite m0. Thus, we inserted the nonlin-
ear Eq. (57) in for ∂t�, and we used ∂t�QM ≈ −iWH�QM

since here we want to ignore the O(
√

Sn/N ) corrections to
W in Eq. (45). Equation (61) also follows from ignoring the
O(

√
Sn/N ) corrections to W since Im(� − �QM)∗H (� −

�QM) = 0. Equation (62) follows from Eq. (59). The
√

n
factor results from the n terms in the Hamiltonian, which add
incoherently as in Eq. (53).

We therefore find that the small m0 approximation con-
tributes εm(t ) to ε(t ) where

εm(t ) ∼ min(Snm0, 1)
√

n t . (63)

C. Small δt controls unitarity

To obtain Eq. (39), which is inserted into Eq. (42), we kept
only terms with a single factor of δtHx, which is justified for
small δt. Terms that are higher-order in δt lead to a nonunitary
evolution in �. A more accurate version of Eq. (49) would
replace

−iδtH → odd⊗
x

B(+)
x − odd⊗

x
B(−)

x + even⊗
x

B(+)
x − even⊗

x
B(−)

x , (64)

which leads to an effective Hamiltonian that has O(δt ) non-
Hermitian terms.

To estimate the contribution of finite δt to ε(t ), note that
the right-hand side of Eq. (64) contains roughly n2 many
O(δ2

t ) terms. When Eq. (64) is inserted into Schrödinger’s
equation, these n2 terms add up incoherently, leading to an
O(nδt ) correction. Similar to Eq. (62), after many time steps,
this correction adds coherently and contributes εt(t ) to ε(t ),
where

εt(t ) ∼ nδt t . (65)

D. Large S controls emergent locality

Equation (43) leads to a modified Schrödinger’s equation:

∂t� ≈ −iWH�. (66)

W was defined in Eq. (44) and consists of a sum of Sn/2
projection matrices QS←sPxQT

S←s, which each project onto
a four-dimensional subspace. These are the four-dimensional
subspaces for which the Sn/2 stochastic matrices Ms,x can
affect P. Therefore, W is a real symmetric matrix that has
at most 2Sn nonzero eigenvalues. If 2Sn � N , then W re-
duces the dynamics of � to a random (2Sn)-dimensional
subspace.11 If Sn � N , then W has full rank; however, re-
call from Eq. (45) that the eigenvalues of W are randomly
distributed (due to the random Qs,x) with a standard deviation
that is

√
N/Sn times smaller than the mean. The eigenvectors

11The subspace is spanned by states that are each a symmetric
superposition of a random quarter of the states in the classical basis,
e.g., states like 1

2 |0011〉 + 1
2 |0110〉 + 1

2 |1010〉 + 1
2 |1111〉.

of W do not have any special property that preserves locality.
Therefore, the dynamics of � are local only to the extent that
Sn � N . That is, far-away terms in the effective Hamiltonian
WH = ∑

x WHx commute only in the Sn � N limit (which
we have checked numerically); when Sn < N , the noise in the
randomness of W leads to nonlocal dynamics.

To intuitively understand the last point, once could
consider approximating the randomness in W − W0 as a sym-
metric matrix of small Gaussian random entries. W0, defined
in Eq. (45), is the nonrandom part of W . Since W − W0 is
highly nonlocal, it makes WH also become nonlocal. Techni-
cally, this nonlocality occurs only for circuit depths S between
n � S � N/n. If the circuit depth is very small S � n, then
the dynamics of the emergent wave function [Eq. (51)] will
actually be local. This results because the “light cone” of
back-propagating bits can only spatially extend to 	x ∼ S
when S � n. However, although the dynamics are local when
S � n, W will have very few nonzero eigenvalues, which
causes the EmQM model to be a very bad approximation to
quantum mechanics.

The Sn � N requirement for locality is problematic be-
cause if there are many n � 1 qubits, then the length S of the
extra dimension would have to be tremendously large (Sn �
2n) in order for � to have local dynamics. Mitigating this
nonlocality is an important future direction that we elaborate
on in Sec. VII A.

Interestingly, WH at least has real eigenvalues. This occurs
because WH is similar12 to

H̃ = W1/2HW1/2 (67)

(when W is invertible), which implies that WH and H̃
have the same eigenvalues. W1/2 is Hermitian, which im-
plies that H̃ is also Hermitian. Therefore H̃ and WH both
have real eigenvalues. Furthermore, by absorbing W into the
Hamiltonian as above, we obtain an effective Schrödinger’s
equation:

∂t �̃ = −iH̃�̃, (68)

where the wave function is

�̃ = W−1/2�. (69)

However, the issue of nonlocality remains in the sense that H̃
contains geometrically nonlocal and high-weight terms.

To estimate the contribution of finite S to ε(t ), recall from
Eq. (45) that the eigenvalues of W are random with standard
deviation

√
N/Sn. This randomness induces an O(

√
N/Sn)

correction to W in Eq. (66). Similar to Eq. (62) [but with W̃
and W respectively replaced by W and W0 from Eq. (45)],
this correction adds coherently over many time steps and
contributes εS(t ) to ε(t ), where

εS(t ) ∼
√

N

S
t . (70)

Similar to Eqs. (53) and (62), the extra factor of
√

n results
from the n terms in the Hamiltonian.

12Matrices A and B are similar if B = PAP−1 for some invertible
matrix P.
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E. Small �m controls statistical fluctuations

So far, we have focused on only the mean of P(τ ). But P is
defined by the stochastic matrices Ms,x, which have stochastic
dynamics that induce statistical fluctuations on the time evolu-
tion of Ms,x and P. However, these statistical fluctuations will
be small if the perturbations ms,x change very slowly with time
and aren’t too small, which will give the output bits aS enough
time to thoroughly sample the wave function � ∝ P − 1/N .

The contribution of statistical fluctuations to ε(t ) can be
estimated by considering how much P will be affected by sta-
tistical fluctuations after τ time steps. P [defined in Eq. (23)]
will change only after time steps for which an Ms,x matrix
changes, which occurs only if the ± back-propagating bits
are different [see Eq. (31)], i.e., when bS,+γ �= bS,−γ [defined
below Eq. (34)]. For small nδt � 1, this occurs for roughly a
nδt fraction of time steps since B(±)

x = 14 + O(δt ) [Eq. (17)].
We can then think of the statistical fluctuations as a

random-walk in an N-dimensional space. Recall that after
nsteps steps with typical step length �step, a random walker will
have moved a Euclidean distance of roughly �step

√
nsteps. After

τ time steps, our random walker will move nsteps ∼ nδtτ times
due to the arguments above. Below we argue that the length
of each step will be roughly

�step ∼ 	m

N
Sn. (71)

This implies that the statistical fluctuations to P will grow as
	m

N
Sn

√
nδtτ . (72)

Consider a time step for which bS,+γ �= bS,−γ . Most of the
Sn/2 perturbations ms,x will be modified by an amount propor-
tional to 	m due to the resulting back-propagating bits. Each
such modification shifts P by roughly a distance 	m/

√
N ,

since N−1/2 is the norm of the uniform probability vector
1/N that multiplies ms,x in Eq. (28). However, one component
of the shift to P adds up coherently (over the Sn/2 many
perturbations ms,x), while the other N − 1 basis components
add incoherently. [The coherent component is spanned by
b̂S,+γ − b̂S,−γ , which appears in Eq. (41).] The incoherent
components are negligible when Sn � N . Projecting onto the
coherent contribution reduces 	m/

√
N by a factor13 of N−1/2.

This explains the 	m/N factor in Eq. (71). The Sn factor
occurs because there are Sn/2 many perturbations ms,x.

These statistical fluctuations bound ε(t ) � εstat(t ) where

εstat(t ) ∼ ε−1
�

	m

N
Sn

√
nδtτ . (73)

The factor of ε−1
� [Eq. (54)] over Eq. (72) results from solving

for � in Eq. (2): P = 1
N + ε��. The above simplifies to

εstat(t ) ∼ m−1
0

√
	mn t (74)

after replacing τ → t/	t using Eq. (50).

13To understand the N−1/2 factor, consider the signed sum S =∑K
k=1 sign(v(k)

1 )v(k) of random unit-normalized length-N vectors v(k).
Only the first component S1 adds up coherently, while the other N −
1 components add incoherently, resulting in ||S|| ∼ K/

√
N + √

K
for large K and N . When K � N , the coherent contribution (first
term) dominates.

F. Negligible delay

There is an O(S) discrete time delay between when a string
of output bits aS is sampled to when the perturbations ms,x are
updated. However, if the perturbations ms,x change sufficiently
slowly with time due to small 	m, then this delay has a
negligible effect on the wave function [which we will find to
be the case in Eq. (80)].

To estimate the contribution to ε(t ), recall that in Eq. (43)
we assumed that P(τ ) varies slowly over 2S time steps such
that P(τ ′

s−1) = P(τ−1) + O(S	P) where τ ′
s = τ − 1 − 2(S −

s), and 	P is defined in Eq. (53). This approximation induces
an O(	t

√
nS	P) correction in Eq. (49), where the 	t

√
n fol-

lows for the same reason as in Eq. (53). After τ time steps, this
correction adds coherently and contributes εdelay(t ) to ε(t ),
where εdelay(t ) ∼ 	t

√
nS	P τ/ε� , which simplifies to

εdelay(t ) ∼ 	t nS t

∼ 	m
n2S2

N
δt t . (75)

G. Convenient limit

The above contributions to ε(t ) = ||�(t ) − �QM(t )||
add up incoherently, such that the total deviation from
Schrödinger’s equation is roughly

ε(t ) ∼
√

εm(t )2 + εt(t )2 + εS(t )2 + εstat(t )2 (76)

until saturation near orthogonality at ε(t ) ≈ √
2. εdelay(t ) also

contributes, but we neglect it here since it contributes negligi-
bly in the limit that we consider.

It is convenient to consider a limit of S, δt, m0, and 	m as a
function of a single small parameter ε0 such that ε(t ) → 0 in
the ε0 → 0 limit. We shall consider the parametrization such
that all errors are roughly equal at time t = ε−1

0 :

εm(t ) ∼ εt(t ) ∼ εS(t ) ∼ ε0 t,

εstat(t ) ∼ √
ε0 t . (77)

This parametrization results in a deviation

ε(t ) ∼
√

ε0t + 3(ε0t )2

∼ √
ε0t when t � t−1

0 , (78)

which is dominated by statistical fluctuations εstat(t ) ∼ √
ε0t

until t � ε−1
0 . Solving Eq. (77) for S, δt, m0, and 	m results in

the following parametrization:

S ≈ N ε−2
0 ,

δt = ε0

n
,

m0 = ε0

Sn3/2
≈ ε3

0

n3/2N
,

	m = m2
0ε0

n
≈ ε7

0

n4N2
. (79)
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FIG. 2. (a, b) To validate our error estimates, we plot the deviation ε(t ) = ||�(t ) − �QM(t )|| vs time t between the quantum mechanics
(QM) wave function �QM and emergent QM (EmQM) wave function � [Eq. (51)] for (a) n = 4 and (b) n = 6 qubits using three different
random initializations (colored lines) for each choice of the control parameter ε0 [see Eq. (79)]. As ε0 decreases, the EmQM model
becomes increasingly more accurate, roughly agreeing with QM out to time t ∼ ε−1

0 . Dashed black lines show the estimated deviation
ε(t ) ∼

√
ε0t + 3(ε0t )2 [Eq. (78)] for the three different values of ε0, which match the simulated data remarkably well. (c, d) To demonstrate

that the EmQM model is reproducing nontrivial dynamics, we also plot the 0110 (and 010110) component of the n = 4 (and n = 6) wave
functions vs time for QM and the EmQM model with ε0 = 0.02 (and ε0 = 0.05), for which S = 800 (and S = 1280) [in accordance with
Eq. (79)].

Plugging the above parameters into εdelay(t ) in Eq. (75) shows
that deviations due to εdelay(t ) are negligibly small:

εdelay(t ) ∼ ε4
0

n3N
t � ε(t ). (80)

V. SIMULATION

To numerically verify our theoretical results, we simulate
the Hamiltonian H = ∑

x Hx within the EmQM model with

Hx = YxXx+1 − Yx, (81)

which is a simple choice that satisfies the Hamiltonian con-
straints (4). To do this, we pick a ε0 to define the model
parameters according to Eq. (79). We then initialize the ms,x

matrices using Gaussian random numbers with standard de-
viation m0 and then subtract a constant from each column
such that all columns sum to zero. This random initialization
implicitly defines a random wave function [via (51)]. We then

time evolve the circuit for many steps. � is normalized and
extracted from P using Eq. (51).

However, simulating the EmQM model is extremely ex-
pensive for small ε0 or many qubits since the CPU time
required to simulate out to time t scales as

CPU time ∼ Sn t/	t ∼ N

δt	m
t ≈ n5N3

ε8
0

t . (82)

The first relation follows since t/	t time steps are required
on an S × n lattice. The second relation is obtained by in-
serting Eq. (50) for 	t. The final expression is valid for
the ε0 parametrization (79). However, we can approximately
simulate the EmQM model with high accuracy using the sig-
nificantly faster method defined and verified in Appendix D.

We validate our theory for the EmQM model in Fig. 2 by
plotting the deviation ε(t ) of the emergent wave function �

from the quantum mechanics prediction. We find that the devi-
ation is in agreement with the estimated Eq. (78). This verifies
that as the control parameter ε0 decreases, the EmQM model
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FIG. 3. Deviation ε(t ) = ||�(t ) − �QM(t )|| from quantum me-
chanics (QM) vs time t . The deviation is dominated by statistical
fluctuations εstat(t ) until the change in slope, after which the deviation
is dominated by other contributions. Blue, yellow, and red lines show
dominant contributions from εS(t ), εt (t ), and εS(m), respectively,
defined in the legend (with εstat(t ) ∼ 10−2√ε0t and εS(t ) ∼ εt (t ) ∼
εm(t ) ∼ ε0t whenever unspecified). Simulations are for n = 4 qubits
and ε0 = 0.05 with parameters S, δt, m0, and 	m chosen to target the
previously mentioned contributions [using Eqs. (63), (65), and (70)].
The dashed lines plot the expected deviations ε(t ) using Eq. (76),
which agree remarkably well with the simulation data (colored lines).

deviates less from quantum mechanics. All data are generated
using the approximate simulation method (Appendix D) ex-
cept for the n = 4 data with ε0 = 0.5 [purple in Fig. 2(a)], for
which we could directly simulate the EmQM model.

The deviations from quantum mechanics shown in Fig. 2
are dominated by the statistical deviation εstat(t ). To verify
the other contributions to the deviation ε(t ), we solve for
parameters S, δt, m0, and 	m such that the statistical deviation
is much smaller and such that only one of the other contribu-
tions is expected to dominate. This allows us to verify each
contribution individually in Fig. 3.

VI. EXPERIMENTAL SIGNATURES

A. Many entangled high-fidelity qubits

Evidence that an EmQM model really describes nature
might be found by measuring deviations from Schrödinger’s
equation, such as the ε(t ) [Eq. (52)] studied in the previous
section. In Sec. IV we calculated several contributions to ε(t ).
All contributions to ε(t ) can be made extremely small for very
long times by taking S−1, δt, m0, and 	m to be very small.
εS(t ) ∼ t

√
N/S in Eq. (70) is the only deviation that increases

polynomially with N . This increase with N is significant be-
cause N = 2n is exponentially large in the number of qubits n.
Therefore, even if S ∼ 10100 or 101000, only n ∼ 350 or 3500
qubits would be needed to obtain a large deviation εS(t ) ∼ 1
after a short time t � 1.

But what should be the value of n? If n is taken to be the
number of qubits needed to describe just a mesoscopic region
of space, e.g., Avogadro’s number n ∼ 1023, then a large
deviation from quantum mechanics due to εS(t ) is already
predicted for very short times unless S is extremely large

S � 21023
. Indeed, in Sec. IV D we found that our model ex-

hibits nonlocal EmQM dynamics unless Sn � 2n. Therefore,
it seems implausible that the particular EmQM model studied
in this work accurately describes a possible EmQM for our
universe.

However, we speculate that modifications to our model,
such as those discussed in Sec. VII A, could alleviate the
Sn � 2n requirement for local dynamics of the emergent
wave function and thus yield a more useful toy model for
EmQM. For example, perhaps deviations from quantum me-
chanics might only be detectable if Sn � 2ñ, where ñ is the
number of highly entangled qubits that are measured with high
fidelity. This hypothesis has not yet been tested experimen-
tally beyond very modest values of ñ, but might be tested in
the future for gradually increasing values of ñ by executing
deep quantum circuits using quantum computers. Such exper-
iments would significantly constrain the length S of the extra
dimension because of the requirement that S be exponential
in ñ. This idea motivated Ref. [5], which proposed to test the
validity of quantum mechanics using a Loschmidt echo circuit
on many qubits.

B. Bell inequality tests

Any attempt to describe quantum reality in terms of an un-
derlying local classical model faces the potential obstacle that
locally realistic classical models conform to Bell inequalities
which are known to be experimentally violated. Yet our model
of EmQM agrees with quantum mechanics to high accuracy
and so can be expected to pass such tests.

One way to understand why Bell inequality violation can-
not easily exclude our model is to note that the speed of
information propagation among the underlying classical bits,
though finite, is much faster than the emergent speed of light
on the boundary. This feature makes it exceedingly hard to
close the “locality loophole,” that is, to rule out communica-
tion between Alice’s and Bob’s labs during the test.

The classical bits carry information at the speed

vfast ≈ l0
	t

≈ l0
	mδt

N

Sn
, (83)

where l0 is the spatial distance between bits and where 	t

[Eq. (50)] is how much time elapses in the EmQM for
each discrete time step. If, for example, we insert the ε0

parametrization from Eq. (79) and neglect negligible factors
of n, we obtain

vfast ∼ l0
t0

N2ε−6
0 , (84)

where t−1
0 ∼ ||Hx||op is the norm of the local terms in the

Hamiltonian (which we previously set to be roughly equal
to 1). However, according to local quantum mechanics, all
particle velocities (e.g., the speed of light) should be upper
bounded by vQM ∼ l0/t0. Therefore, since vfast � vQM � c,
Bell tests cannot easily detect signatures of our model.

VII. OUTLOOK

In future work, it will be interesting to investigate how
generic emergent quantum mechanics (EmQM) is. That is, if
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our model is changed slightly, will EmQM still be exhibited?
Or do additional ingredients need to be added to our model
such that EmQM is a generic result? Or from another point
of view, can EmQM be thought of as a highly exotic phase of
classical matter? In a sense, research showing that quantum
mechanics is “an island in theory space” [68] that can be
derived axiomatically [69–71] suggests that EmQM might
indeed be a stable fixed point under coarse graining in a broad
class of local classical models. It would also be useful to
determine if EmQM can result without relying on very small
parameters (e.g., δt, m0, and 	m).

A. Mitigating nonlocality

As emphasized in Sec. VI A, a crucial remaining future
direction is to determine if modifications of our EmQM model
could alleviate the Sn � 2n requirement for local EmQM
dynamics. We would prefer to have an EmQM model such
that S � 2ñ implies consistency with any experiment that only
probes ñ highly entangled qubits with high fidelity, e.g., the
logical qubits in a quantum computer. This would be desirable
because only ñ ∼ log2 S highly entangled qubits would be
needed to experimentally test such a model of EmQM, which
would be experimentally relevant in the near term if e.g.,
S ∼ 21000.

Nonlocal dynamics when Sn � 2n in our model may re-
sult because the stochastic circuits we consider are not very
efficient at encoding the wave function. In particular, the
emergent wave function is encoded using random permutation
matrices. This inefficient encoding could be contrasted with
MERA tensor networks [72] or deep neural networks, where
each layer can perform a more useful entanglement renormal-
ization [73] or coarse graining [74].

One possible approach to achieve more efficient circuits
could be to relax the requirement (25) that the stochastic
matrices Ms,x are perturbatively close to permutation matrices.
But then the subleading (i.e., all but the largest) singular
values of MS←s [Eq. (56)] will generically be exponentially
small in S − s. If that occurs, then the overwhelming majority
of singular values of W̃ [Eq. (58)] will also be extremely
small, which will lead to emergent dynamics [Eq. (57)] that
do not approximate quantum mechanics well. In this scenario,
deep circuits of stochastic matrices are not useful because
each layer destroys too much information.

To mitigate this problem, we could consider promoting the
classical bits to real numbers. Then the permutation matrices
of two bits are promoted to invertible functions from R2 to
R2, which can be viewed as a permutation of R2. But unlike
permutation matrices, such functions can map the uniform
distribution to a different probability distribution. Further-
more, this map can be perfectly inverted. Therefore, unlike
deep circuits of generic stochastic matrices, deep circuits of
functions do not destroy information. Composing a deep cir-
cuit of functions in this way can produce arbitrary probability
distributions (and thus arbitrary wave functions for EmQM),
an observation which has been utilized within the deep learn-
ing community [75,76].

B. Quantum computation and fundamental physics

If quantum mechanics does emerge from classical me-
chanics, then the computational power of quantum computers

could be severely limited [5,6]. For example, BQP-hard prob-
lems may only be tractable in actual devices for limited
problem sizes. On the other hand, it is possible that deviations
from quantum mechanics (such as nonlinear corrections to the
Schrödinger equation) could enhance the power of quantum
computers [31,77] for some problems of (possibly) limited
size.

Even more speculatively, discovering that quantum me-
chanics emerges from an underlying local classical model
might open new directions for understanding dark matter, dark
energy, early universe cosmology, and the black hole informa-
tion paradox [78]. Finally, that our EmQM model encodes the
quantum wave function on the boundary of an extra spatial di-
mension suggests possible connections to holographic duality
in quantum gravity [79].
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APPENDIX A: MEASUREMENTS

In this Appendix we clarify how measurements could be
interpreted in our model within the Everett interpretation of
quantum theory. We also speculate how possible improve-
ments upon our EmQM model might lead to a resolution of
the measurement problem.

1. Everett interpretation review

In the Everett interpretation, the observer is included in the
wave function. In principle, the measurement process can then
be formalized as a Hamiltonian evolution via Schrödinger’s
equation. After the measurement, Schrödinger’s equation pre-
dicts that the observer becomes entangled with the measured
system. That is, the resulting wave function is in a super-
position of states, where each state describes one of the
measurement outcomes (from the observer’s perspective).

For example, consider an observer who measures whether
the state of a spin is |↑〉 or |↓〉. Before the measurement,
suppose that wave function of the spin is

|ψbefore〉 = a |↑〉 + b |↓〉 . (A1)

In the Everett interpretation, we imagine describing the mea-
surement process using a wave function |�〉 for the entire
universe. Before the measurement, we schematically write the
universe’s wave function as

|�before〉 = |observer〉 ⊗ (a |↑〉 + b |↓〉), (A2)
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where |observer〉 is the wave function for the observer (and
the rest of the universe other than the spin). After the measure-
ment (assuming it is performed perfectly), the wave function
of the universe should be

|�after〉 = a |observer sees ↑〉 ⊗ |↑〉
+ b |observer sees ↓〉 ⊗ |↓〉 , (A3)

where |observer sees ↑〉 ⊗ |↑〉 is the wave function of the
universe where the observer has observed the |↑〉 state, and
similar for |observer sees ↓〉 ⊗ |↓〉.

This exemplifies that in the Everett interpretation, the
wave function consists of a superposition of all measure-
ment outcomes. The different states in the superposition are
macroscopically different and are consequently extremely un-
likely to significantly interfere with each other. These different
states effectively behave as different “worlds.” Indeed, this
interpretation is also often referred to as the many-worlds
interpretation.

But then how does one predict the probability that an
observer will measure a given outcome (from the observer’s
perspective)? Born’s rule implies that the probabilities for the
two states, or worlds, in Eq. (A3) are |a|2 and |b|2. But in
the Everett interpretation, there are no measurement axioms
or applications of Born’s rule; only Schrödinger’s equation is
used to evolve the wave function. In Schrödinger’s equation,
a and b are just coefficients in a linear expansion, and it is
not clear why or how these coefficients should be assigned to
probabilities associated with the observer’s experience.

Nevertheless, many authors have argued [80–86] that
Born’s rule is the only reasonable or consistent choice, un-
der various reasonable assumptions. For example, Ref. [85]
gives a brief argument that merely assumes unitary invari-
ance, continuity, and system size invariance. Yet it remains
controversial whether the Everett interpretation (without mea-
surement axioms) provides a complete description of quantum
theory [87].

2. EmQM and the Everett interpretation

In our EmQM model, the slow time dynamics of the
boundary degrees of freedom can be accurately predicted
using Schrödinger’s equation. That is, there is an emergent
wave function [� in Eq. (2)] whose time dynamics can be well
approximated by Schrödinger’s equation. Similar to Everett’s
interpretation, neither measurement axioms nor Born’s rule
explicitly appears in our EmQM model. Thus we are left with
a similar challenge as in Everett’s interpretation: does Born’s
rule somehow follow from the equations of motion alone?

But for a model of EmQM from classical mechanics, we
would not expect the emergent wave function to be able to
store very many different worlds in superposition. Instead,
there must eventually be some sort of “collapse” of the
emergent wave function to only a subset of the superposed
measurement outcomes. Importantly, this collapse of states
should be (at least approximately) consistent with Born’s rule
if the EmQM model closely approximates standard quantum
theory. Perhaps an EmQM model with this property could
provide a satisfying solution to the measurement problem.

Unfortunately, our EmQM model does not appear to be
successful enough to study this hypothetical wave function

collapse. As explained in Sec. VI A, in a certain limit with
an extremely large extra dimension, our model simply repro-
duces Schrödinger’s equation. Therefore this limit is similar
to the Everett interpretation, and it is not obvious how the
measurement probabilities for an observer should be assigned,
although some of the arguments in Refs. [80–86] might still
be applicable. If the extra dimension isn’t sufficiently large,
then there are nonlocal violations of Schrödinger’s equa-
tion, but we have no reason to expect these violations to
imply an approximate version of Born’s rule (although we
have not checked thoroughly). It seems that better models
are needed to assess whether the Born rule, in addition to
Schrödinger’s equation, could arise from a sensible classical
model of EmQM.

APPENDIX B: REAL-VALUED QUANTUM MECHANICS

In this Appendix we show that any quantum Hamiltonian
and wave function in Schrödinger’s equation can be linearly
mapped to real-valued analogs with zero row and column
sums that satisfy Eqs. (3) and (4) while preserving locality.
We do this by first mapping to real-valued quantum mechanics
[88–91] in Appendix B 1 and then focus on zero sums in
Appendix B 2.

Both mappings generically require adding additional
qubits. Preserving locality requires multiplying the qubit
count by a constant factor (when using the systematic map-
ping). As a result, the possible real-valued wave functions
that result from this mapping are highly constrained in
the sense that these wave functions only span a subset of
the Hilbert space. Therefore, although there are well-known
fundamental differences between complex and real-valued
quantum mechanics [68,69,92–96], this mapping shows that
complex-valued quantum mechanics is equivalent to real-
valued quantum mechanics constrained to a subspace of the
Hilbert space. However in Appendix B 1c, we emphasize that
in real-valued quantum mechanics, it is not correct to assume
that “the state representing two independent preparations of
the two systems is the tensor product of the two preparations”
[92].

1. Mapping from complex to real QM

a. Geometrically nonlocal mapping

If we do not require that the mapping is geometrically
local, then mapping to real values can be achieved simply
by splitting complex numbers into their real and imaginary
parts [88–90]. This can be achieved for operators via the
replacement

i → −iσ 2, (B1)

where

σ 2 =
(

0 −i
i 0

)
(B2)

is a Pauli operator acting on an additional qubit.
We note that

|±i〉 = 1√
2
(|↑〉 ± i |↓〉) (B3)

012217-16



EMERGENT QUANTUM MECHANICS AT THE BOUNDARY OF … PHYSICAL REVIEW A 108, 012217 (2023)

are eigenstates of σ 2 with eigenvalues ±1, and that

P(±) = 1
2 (1 ± σ 2) (B4)

are orthogonal projectors onto these eigenstates. Furthermore,
|+i〉 and |−i〉 are complex conjugates of one another, as are
P(+) and P(−). We map an n-qubit wave function |ψ〉 to a
real (n+1)-qubit wave function |ψ̃〉 according to

|ψ〉 → |ψ̃〉 = 1√
2
(|ψ〉 ⊗ |−i〉 + |ψ〉∗ ⊗ |+i〉), (B5)

and map an n-qubit operator Q to a real (n+1)-qubit operator
Q̃ according to

Q → Q̃ = Q ⊗ P(−) + Q∗ ⊗ P(+), (B6)

where the asterisk (*) denotes complex conjugation; thus

Q̃ |ψ̃〉 = 1√
2
(Q |ψ〉 ⊗ |−i〉 + Q∗ |ψ〉∗ ⊗ |+i〉). (B7)

Under this mapping, Schrödinger’s equation ∂t |ψ (t )〉 =
−iH |ψ (t )〉 is equivalent to

∂t |ψ̃ (t )〉 = −(ĩH ) |ψ̃ (t )〉 . (B8)

That is, it is mapped to Schrödinger’s equation for the
real wave function |ψ̃〉 with imaginary Hamiltonian −i(ĩH ),
where ĩH denotes the result of mapping Q = iH using
Eq. (B6).

Another way to express the mapping is sometimes conve-
nient. Note that if Q is real, then

Q̃ = Q ⊗ 1, (B9)

while if Q is imaginary, then

Q̃ = (−iQ) ⊗ (−iσ 2); (B10)

more generally

Q̃ = ReQ ⊗ 1 + ImQ ⊗ (−iσ 2). (B11)

Similarly, if |ψ〉 is real in some basis, then

|ψ̃〉 = |ψ〉 ⊗ |↑〉 , (B12)

while if |ψ〉 is imaginary, then

|ψ̃〉 = −i |ψ〉 ⊗ |↓〉 ; (B13)

and more generally

|ψ̃〉 = |Reψ〉 ⊗ |↑〉 + |Imψ〉 ⊗ |↓〉 . (B14)

b. Local mapping

Now suppose that H = ∑
x Hx is a local Hamiltonian,

where each Hx acts only on qubits near the spatial point x.
If Hx and Hy act on sets of qubits that are distantly separated
from one another, then it’s not possible to put the additional
qubit close to both sets. Therefore, the above operator map
does not preserve the geometric locality of the Hamiltonian.

In order to promote the nonlocal mapping to a mapping
that preserves locality for local operators Qx, we can instead
add a new qubit adjacent to each lattice site and map

i → −iσ 2
x (B15)

at each site. Wave functions are then mapped according to

|ψ〉 → |ψ̃〉 = 1√
2
(|ψ〉⊗

x
|−i〉x + |ψ〉∗ ⊗

x
|+i〉x ). (B16)

Now suppose that Qx is a k-local operator (e.g., a term in the
Hamiltonian) acting on k qubits near x. After the mapping, the
site x is accompanied by an adjacent auxiliary qubit, and Qx

is mapped to

Q̃x = Qx ⊗ P(−)x + Q∗
x ⊗ P(+)x, (B17)

a (k + 1)-local operator acting on the k qubits together with
the auxiliary qubit adjacent to site x. Another way to express
the mapping is

Q̃x = ReQx ⊗ 1x + ImQx ⊗ ( − iσ 2
x

)
. (B18)

Thus the k-local Hamiltonian H = ∑
x Hx can be mapped to

the (k + 1)-local Hamiltonian H̃ = ∑
x H̃x.

As we found for the nonlocal mapping, Schrödinger’s
equation ∂t |ψ (t )〉 = −iH |ψ (t )〉 is equivalent to to
Schrödinger’s equation for the real wave function |ψ̃〉
with imaginary Hamiltonian

−i(ĩH ) =
∑

x

[
iIm(Hx ) ⊗ 1x − Re(Hx ) ⊗ σ 2

x

]
. (B19)

c. Dynamics

Here we briefly review some dynamical properties of real-
valued quantum mechanics. We want iH to be real such
that no imaginary values appear in Schrödinger’s equation,
which implies that H must be imaginary and antisymmet-
ric. Thus for each eigenvector |E〉, taking the complex
conjugate of H |E〉 = E |E〉 (in any basis) implies that the
complex-conjugated |E〉∗ has eigenvalue −E . Therefore,
eigenvectors with nonzero eigenvalues come in complex-
conjugate pairs with negated eigenvalues. It is convenient to
consider real-valued linear combinations |E〉± = 1√±2

(|E〉 ±
|−E〉) for each E > 0. The coefficients aE ,±(t ) of a wave
function |ψ (t )〉 = ∑

E ,± aE ,±(t ) |E〉± obey the time evolution
∂t aE ,±(t ) = ∓EaE ,∓(t ) for each E > 0.

A real-valued wave function can not be in an eigenstate
|E〉 with nonzero E since |E〉 is complex valued when E �= 0.
In complex-valued quantum mechanics, eigenstates are steady
states, i.e., states that do not change with time. The analog of
steady states in real-valued quantum mechanics are oscillating
superpositions of |E〉±:

|ψ (t )〉 = cos(Et ) |E〉+ − sin(Et ) |E〉−
= 1√

2
e−iEt |E〉 + 1√

2
e+iEt |−E〉 . (B20)

The analog of the lowest-energy ground state is the above
state with the largest possible E . Notably, this “steady state”
looks like a cat state from the perspective of complex-valued
quantum mechanics. Indeed, the steady state of two discon-
nected subsystems will share an entangled qubit from the
perspective of complex-valued quantum mechanics. For ex-
ample, if H = −Y1 − Y2 is the Hamiltonian for two qubits,
then the lowest-energy steady state is not a tensor product
state; instead, it is maximally entangled:

|ψ (t )〉 = [cos(t ) |↑〉 − sin(t ) |↓〉] ⊗ [cos(t ) |↑〉 − sin(t ) |↓〉]
− [sin(t ) |↑〉+cos(t ) |↓〉]⊗[sin(t ) |↑〉+cos(t ) |↓〉].

(B21)

In complex-valued quantum mechanics, the following tensor
product axiom holds for combining quantum states of two
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systems: “the state representing two independent preparations
of the two systems is the tensor product of the two prepara-
tions” [92]. However, this axiom does not hold in real-valued
quantum mechanics. Indeed, Refs. [93,94] have verified that
real-valued quantum mechanics with this tensor product ax-
iom is not consistent with experiment. Nevertheless, our
analysis above shows that real-valued quantum mechanics
is consistent with complex-valued quantum mechanics if the
tensor product axiom is dropped. Indeed the tensor product
axiom is not consistent with our local mapping (B16), which
maps complex-valued tensor product wave functions to a sum
of two tensor products. Furthermore, Eq. (B21) shows that a
sum of two tensor products arises naturally for ground-state
wave functions of two disconnected subsystems in real-valued
quantum mechanics.

2. Zero sum

To satisfy the zero-sum conditions (3) and (4), we once
again introduce an additional qubit. We map the wave function
|ψ〉 to

|ψ̃〉 = |ψ〉 ⊗ |−〉 , (B22)

where

|−〉 = 1√
2
(|↑〉 − |↓〉). (B23)

Similarly, any operator Q can be linearly mapped to a new
operator

Q̃ = Q ⊗ |−〉〈−|, (B24)

where

|−〉〈−| = 1
2 (|↑〉 〈↑| − |↑〉 〈↓| − |↓〉 〈↑| + |↓〉 〈↓|). (B25)

By construction, |ψ̃〉 and Q̃ obey the zero-sum conditions:∑
i

ψ̃i = 0,

∑
i

Q̃i j = 0 =
∑

j

Q̃i j (B26)

in any basis where the additional qubit has basis vectors
|↑〉 and |↓〉. Furthermore, the zero-sum constraints are pre-
served under evolution under the Schrödinger equation for a
Hamiltonian that obeys the zero-sum constraints.

In order to preserve geometric locality, we add another set
of new qubits adjacent to each x. The mapping for wave func-
tions and local operators (including terms in the Hamiltonian)
is

|ψ〉 → |ψ̃〉 = |ψ〉 ⊗x |−〉x , (B27)

Qx → Q̃x = Qx ⊗ |−〉x 〈−|x . (B28)

3. Examples

a. Ising (systematic mapping)

As an example, we can consider applying these system-
atic mappings to a transverse-field Ising model Hamiltonian

H = ∑
x Hx:

Hx = −JZxZx+1 − hYx

→ JZxZx+1 ⊗ σ 2
x − hYx

→ (
JZxZx+1 ⊗ σ 2

x − hYx
) ⊗ |−〉x 〈−|x . (B29)

Xx, Yx, Zx are Pauli operators in the Ising model
Hamiltonian, while σ 2

x is a Pauli operator acting on additional
qubits. |−〉x 〈−|x acts on an additional set of qubits. A trans-
verse hYx term was considered in the first line instead of the
traditional hXx term to make the example more useful. The
second line is the result of applying Eq. (B19) to obtain an
imaginary-valued Hamiltonian. Eq. (B28) is applied to obtain
the third line, for which the resulting Hamiltonian has zero
row and column sums.

b. Ising (clever duality)

However, adding additional qubits is not always necessary.
For example, the XY Hamiltonian is dual to an imaginary-
valued Hamiltonian with zero row and column sums:

Hx = −JXY (XxXx+1 + YxYx+1) (B30)

↔ JXY (Xx−1YxXx+1 − Yx ). (B31)

The second Hamiltonian describes the phase transition be-
tween a SPT cluster state [97] and the trivial disordered phase.

The duality mapping used above is

YxYx+1 ↔ Yx

Zx ↔ Xx−1Xx, (B32)

which implies that XxXx+1 ↔ −Xx−1YxXx+1. This duality only
maps symmetric operators to local operators. Symmetric oper-
ators are operators that commute with certain Z2 symmetries,
which are

∏
x Zx and

∏
x Yx for the respective left and right

sides of the duality. The duality maps the Z2 symmetries to
the identity (ignoring boundary conditions):∏

x

Zx ↔ 1,

1 ↔
∏

x

Yx. (B33)

These properties are common in duality mappings, such as the
self-duality [98] of the transverse-field Ising model.

APPENDIX C: EMERGENT LORENTZ INVARIANCE

In Sec. II A we had to posit that the observed Lorentz
invariance in our universe is emergent (rather than exact).
This may not be a major hurdle since emergent Lorentz in-
variance has been shown to be a stable fixed point under
the renormalization group (RG) in several strongly coupled
models [99–101]. Indeed, emergent Lorentz invariance is
rather ubiquitous in low-energy physics. For example, emer-
gent Lorentz invariance occurs in materials such as graphene,
which exhibits an electron band structure with a Lorentz-
invariant Dirac cone at low energy. As a result, the electrons
in graphene experience a Lorentz-invariant speed limit that is
much smaller than the speed of photons.
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But with multiple species of fermions, emergent Lorentz
invariance would require that all Dirac fermions have the same
velocity. Although the velocities for different species flow
to the same value under RG, the flow is very slow; hence
emergent Lorentz invariance seems to require fine tuning in
order to be consistent with certain very precise experiments.
[102,103] Furthermore, general relativity would likely also
need to be emergent in this scenario [104,105].

It is not clear if including the effects of a fully quan-
tized theory of emergent quantum gravity could significantly
affect the RG flow such that Lorentz invariance emerges
more rapidly. In particular, we note that when Lorentz invari-
ance is broken, the local diffeomorphism “gauge symmetry”
of general relativity is broken. This reminds us of (3 + 1)-
dimensional U (1) gauge theory, in which we could imagine
adding an A2 = AμAμ term to the Lagrangian, which breaks
the gauge symmetry. However, although A2 naively appears
to be relevant in (3 + 1) dimensions since A2 has energy
dimension 2, A2 is actually an irrelevant perturbation. In fact,
all perturbations to (3 + 1)-dimensional U(1) gauge theory
are irrelevant, including the perturbations that break gauge
invariance [106].

We emphasize that although these gauge-symmetry-
breaking terms are irrelevant for the compact gauge group
U(1), such terms are relevant (as naively expected) for the
noncompact gauge group R. Note that both of these gauge
groups lead to the same classical equations of motion since
they have the same Lie algebra. It is remarkable that it is only
after quantizing these two different gauge theories, with gauge
groups U(1) or R, that we discover that gauge invariance can
be emergent in U(1) gauge theory but not in R. With this
in mind, we speculate that emergent Lorentz invariance may
occur sufficiently rapidly in some theories of emergent gravity
such that it could be consistent with experiments. [107]

One approach to intuitively understanding why A2 is irrel-
evant in U(1) gauge theory is to consider the corresponding
lattice gauge theory (without constraining the Hilbert space
to the gauge-invariant states). The lattice gauge theory is
similar to the toric code [108], except the Z2 qubits are re-
placed by integer-valued degrees of freedom Ee ∈ Z on each
edge e of the lattice. The Hamiltonian is H = ∑

i(∇in)2 −∑
p cos(∇p × A). ∇in denotes the lattice divergence of ne

centered at the vertex i, while ∇p × A is the lattice curl of
Ae around the plaquette p. The commutation relations are
[eiAe , ne′ ] = δe,e′ . The states with ∇in = 0 obey Gauss’s law
and are the gauge-invariant states.

Gauge invariance is often imposed by taking ∇in = 0 to
be a constraint on the Hilbert space. Here we do not con-
strain the Hilbert space; instead we use the first term of the
Hamiltonian to impose an energy penalty on states that are
not gauge invariant. Since ne is integer valued, all energy
excitations of

∑
i(∇in)2 cost finite energy, which makes the

gauge invariance stable to perturbations. For example, a εA2

term in the U(1) gauge theory Lagrangian is analogous to a
ε
∑

e cos(Ae) term in the lattice gauge theory Hamiltonian.
If ε is sufficiently small, this term does not does not lead
to confinement since its excitations cost finite energy due
to the (∇in)2 term. This can be shown more formally using
degenerate perturbation theory [109]. Similarly, in the toric

code (i.e., Z2 lattice gauge theory where Gauss’s law enters
the Hamiltonian as an energy penalty rather than a Hilbert
space constraint), arbitrary perturbations are irrelevant and do
not destabilize the emergent gauge invariance or topological
order. [108]

We emphasize that even if there are faster-than-light de-
grees of freedom, it could still be very difficult for observers
to send information faster than light. Suppose a Hamiltonian
H is Lorentz invariant (either exactly or approximately at
low energies) with velocity c, and suppose an observer living
within the wave function � wants to use the fast classical
degrees of freedom to send signals faster than c (without
exceeding low energies if the Lorentz-invariance is approxi-
mate). If �(t ) is well described by Schrödinger’s equation for
a local Hamiltonian, then the observer will only be able to
send signals much faster than c by taking advantage of very
small possible violations of Schrödinger’s equation [15,16].

APPENDIX D: APPROXIMATE SIMULATION

As noted in Eq. (82), simulating the EmQM model is very
CPU intensive. Fortunately, we can approximately simulate
the EmQM model significantly faster by “integrating out”
the fast degrees of freedom (i.e., the forward and backward-
propagating bits) so that we only have to directly simulate the
slow degrees of freedom (i.e., the stochastic matrices). This
will allow us to simulate 	jump � S many time steps all at
once with negligible error.

To do this, we approximate the stochastic matrices Ms,x as
constant over 	jump many time steps. We then estimate how
much the stochastic matrices might change after these 	jump

time steps. If 	jump � N = 2n, then each bit string will occur
many times over this many time steps. Therefore, simulating
the propagation of 	jump many bit strings involves a lot of
duplication of effort. To speed up the simulations, we can
instead just calculate how much each stochastic matrix will
be affected by the propagation of all N possible bit strings,
each weighted by its probability times 	jump.

1. Approximate algorithm

The approximate algorithm to compute how 	jump time
steps could affect the stochastic matrices is as follows.

We first compute P(τ )
S using Eq. (23) to get the probability

vector for the output bits aS of the stochastic circuit.
Then for each γ = 1, 2, we sample an N × N matrix

β
(τ )
S,γ from the multinomial distribution of 	jump trials with

a matrix of probabilities (B(+γ )P(τ )
S ) ⊗ (B(−γ )P(τ )

S ), where
B(γ ) is the N × N stochastic matrix defined in Eq. (18).
Therefore, β

(τ )
S,γ (bS,+γ , bS,−γ ) counts how many times the pair

(bS,+γ , bS,−γ ) of bit strings could have occurred after 	jump

time steps. Note that we approximated M (τ )
s,x as constant over

these 	jump time steps.
Next we back-propagate [analogous to Eq. (30)] β (τ )

s,γ using
the permutation matrices Qs defined in Eq. (26):

β (τ )
s,γ = QT

s β
(τ )
s+1,γ Qs. (D1)

Finally, we wish to update the perturbations ms,x in ac-
cordance with Eq. (31) using β

(τ )
S,γ . To do this, we modify
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Eq. (31) to

m
(τ+	jump )
s,x = m(τ )

s,x + 	m

∑
b+
x

∑
b−
x

∑
ex

⎡⎣ ∑
γ=1,2

β (τ )
s,x,γ (b+

x, b−
x ) p(τ )

s,x (ex|b−
x )(b̂

+
x − b̂

−
x ) ⊗ êx

⎤⎦, (D2)

where b+
x , b−

x , and ex are each a pair of bits (00, 01, 10,
or 11). These bit pairs index the 4 × 4 matrices m(τ )

s,x and

β (τ )
s,x,γ . The bit pairs also determine the basis 4-vectors b̂

±
x and

êx; e.g., b̂
+
x = (1, 0, 0, 0) if b+

x = 00. Above, β (τ )
s,x,γ (b+

x, b−
x )

counts how many times the pair (b+
x, b−

x ) could have occurred
over the 	jump time steps. That is,

β (τ )
s,x,γ =

∑
b+

∑
b−

b̂
+
x ⊗ b̂

−
x β (τ )

s,γ (b+, b−), (D3)

where
∑

b± sums over the N = 2n different bit strings of n

bits, and b̂
±
x is the basis 4-vector that depends on bits x and x +

1 of the bit string b±; e.g., b̂
±
x = (1, 0, 0, 0) [or (0,1,0,0)] if

bits x and x + 1 of b± are 00 [or 01]. In Eq. (D2), p(τ )
s,x (ex|b−

x )
is a conditional probability distribution for ex given b−

x .
We need to calculate p(τ )

s,x (ex|b−
x ) such that it is approx-

imately equal to the probability that ê(τ )
s−1,x,γ = êx given

b̂
(τ )
s,x,−γ = b̂

−
x in Eq. (31) over the 	jump time steps. Recall that

ê(τ )
s−1,x,γ is chosen uniformly at random from the set of basis

4-vectors that keep M (τ )
s,x = Qs,x + m(τ )

s,x nonnegative. There-
fore we can take p(τ )

s,x (ex|b−
x ) = 1/4 to be uniform probabil-

ities as long as this results in a stochastic matrix M
(τ+	jump )
s,x

with nonnegative entries.
However, if M

(τ+	jump )
s,x has negative entries, then

p(τ )
s,x can not be uniform. Instead, for each negative

M
(τ+	jump )
s,x (b−

x, ex) < 0 entry that we find, we must make

FIG. 4. Deviation ||�(t ) − �QM(t )|| vs time t for n = 4 qubits
with ε0 = 1, showing agreement between the EmQM model (gray),
approximate algorithm with εj = 0.02 (red), and estimated ε(t ) from
Eq. (78) (dashed black). For the EmQM model and approximate
algorithm, we average over 1000 random realizations and plot the
mean (thick lines) along with the mean plus or minus the standard
deviation (thin lines) to demonstrate that both the mean and statistical
fluctuations agree well. Error bars denote one standard deviation of
statistical error resulting from the finite number of 1000 samples.

p(τ )
s,x (ex|b−

x ) a free parameter [while uniformly adjusting the
other entries such that p(τ )

s,x (ex|b−
x ) is a probability distribution

for ex given b−
x]. We then solve for these free parameters such

that the previously negative entries of M
(τ+	jump )
s,x are zero. If

M
(τ+	jump )
s,x for the new p(τ )

s,x has additional negative entries,
then we repeat the procedure until all entries are nonnegative.
That is, we make more entries in p(τ )

s,x free parameters and
resolve for the old and new free parameters such that any
previously negative entry of M

(τ+	jump )
s,x is zero. At most, p(τ )

s,x
can only have 4 × 3 free parameters, since it describes four
different probability distributions, each with up to three free
parameters. Therefore, the above procedure can not repeat
more than 12 times. As desired, this procedure results in
a p(τ )

s,x that is approximately equal to the probability that

ê(τ )
s−1,x,γ = êx given b̂

(τ )
s,x,−γ = b̂

−
x in Eq. (31) over the 	jump

time steps.

2. Approximation error

The approximate algorithm makes the approximation that
M (τ )

s,x is constant over 	jump many time steps. This approxi-
mation is very similar to the cause of the deviation εdelay(t )
[Eq. (75)] that results from the O(S) discrete time delay for
the classical bits to move through the circuit. The primary
difference is that the delay is 	jump instead of O(S) for the
approximate algorithm. Therefore, the approximate algorithm
results in an error similar to Eq. (75), except a factor of S is

FIG. 5. Deviation ||�(t ) − �QM(t )|| (red) vs time t calculated
using the approximate algorithm with a large εjump = 10 so that
we can study errors due to the approximate simulation algorithm.
Simulations use n = 4 qubits and three different random initializa-
tions with ε = 0.01 [in Eq. (79)]. In all simulations in this work,
	jump is chosen to be as large as possible without exceeding 	max

jump.
	jump is sometimes limited (shown by blue dots) when the time
step is very small (due to the logarithmic time axis). By inserting
the actual time-dependent 	jump(t ) into Eq. (D4), our estimate ε̃(t )
[(D7), dashed black line] for the deviation (under the influence of
the approximation) matches the εjump(t )-dominated simulation data
(red) remarkably well. In contrast, the dashed gray curve shows the
expected deviation ε(t ) of the EmQM model without approximation,
which is significantly smaller when 0.01 � t � 10. This validates
Eq. (D7).

012217-20



EMERGENT QUANTUM MECHANICS AT THE BOUNDARY OF … PHYSICAL REVIEW A 108, 012217 (2023)

replaced by 	jump:

εjump(t ) ∼ 	jump

S
εdelay(t )

∼ n	t	jump t . (D4)

In our simulations, we want to choose 	jump to be as large as
possible without introducing noticeable errors in our plots. To
achieve this, we choose 	jump such that εjump(t ) in Eq. (D4) is
parameterized by a new control parameter εj:

εjump(t ) ∼ ε0 εj t . (D5)

Small εj will then ensure that εjump(t ) contributes negligibly
to ε(t ) = ||� − �QM|| in comparison to the estimated ε(t ) ∼√

ε0t in Eq. (78). Therefore, Eq. (D4) implies that we must
limit 	jump to be no larger than

	max
jump ≈ ε0 εj

	t n

∼ n3N2

ε5
0

εj. (D6)

Due to this additional source of error, the approximate algo-
rithm will produce slightly larger deviations from quantum
mechanics, which we estimate to be

ε̃(t ) ∼
√

ε(t )2 + εjump(t )2. (D7)

To ensure that the error εjump(t ) from the approximate algo-
rithm remains negligible, we use small εj = 0.02 for most
simulations (excluding Fig. 5). The only exception is the
ε0 = 0.05 data in Figs. 2(b) and 2(d), which used εj = 0.1 in
order to keep the simulation time under one month.

To validate that our approximate algorithm does not sig-
nificantly affect the deviation ||� − �QM|| or its statistical
fluctuations when εjump is small, in Fig. 4 we compare
these quantities for the EmQM model and the approximate
algorithm. To validate Eq. (D7), in Fig. 5 we plot the de-
viation ||�(t ) − �QM(t )|| from quantum mechanics using
the approximate model with large εj such that the error from
approximation dominates.
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[99] B. Roy, V. Juričić, and I. F. Herbut, Emergent Lorentz sym-
metry near fermionic quantum critical points in two and three
dimensions, J. High Energy Phys. 04 (2016) 018.

[100] G. Bednik, O. Pujolàs, and S. Sibiryakov, Emergent Lorentz
invariance from strong dynamics: Holographic examples, J.
High Energy Phys. 11 (2013) 064.

[101] A. Belenchia, A. Gambassi, and S. Liberati, Lorentz viola-
tion naturalness revisited, J. High Energy Phys. 06 (2016)
049.

[102] J. Collins, A. Perez, D. Sudarsky, L. Urrutia, and H. Vucetich,
Lorentz Invariance and Quantum Gravity: An Additional Fine-
Tuning Problem? Phys. Rev. Lett. 93, 191301 (2004).

[103] J. Polchinski, Comment on “Small Lorentz violations in quan-
tum gravity: Do they lead to unacceptably large effects?”,
Class. Quantum Gravity 29, 088001 (2012).

[104] R. B. Laughlin, Emergent relativity, Int. J. Mod. Phys. A 18,
831 (2003).

[105] S. Carlip, Challenges for emergent gravity, arXiv:1207.2504
(2012).

[106] M. Hermele, M. P. Fisher, and L. Balents, Pyrochlore photons:
The U (1) spin liquid in a S = 1

2 three-dimensional frustrated
magnet, Phys. Rev. B 69, 064404 (2004).

[107] Z.-C. Gu and X.-G. Wen, A lattice bosonic model as a quantum
theory of gravity, arXiv:gr-qc/0606100 (2006).

[108] A. Yu. Kitaev, Fault-tolerant quantum computation by anyons,
Ann. Phys. 303, 2 (2003).

[109] S. Bravyi, D. P. DiVincenzo, and D. Loss, Schrieffer-Wolff
transformation for quantum many-body systems, Ann. Phys.
326, 2793 (2011).

012217-23

http://arxiv.org/abs/arXiv:1410.3831
http://arxiv.org/abs/arXiv:1505.05770
http://arxiv.org/abs/arXiv:1810.01367
http://arxiv.org/abs/arXiv:quant-ph/0412187
https://doi.org/10.1088/0264-9381/25/15/154010
https://doi.org/10.1088/0264-9381/32/12/124010
https://doi.org/10.1098/rspa.1999.0443
http://arxiv.org/abs/arXiv:0906.2718
https://doi.org/10.1098/rsta.2018.0107
https://doi.org/10.1038/s41467-019-09348-x
https://doi.org/10.1016/j.aop.2020.168394
http://arxiv.org/abs/arXiv:0905.0624
https://doi.org/10.1103/PhysRevLett.102.020505
https://doi.org/10.1103/PhysRevA.87.052106
https://doi.org/10.5169/seals-113093
http://arxiv.org/abs/arXiv:quant-ph/9905037
https://doi.org/10.1038/s41586-021-04160-4
https://doi.org/10.1103/PhysRevLett.128.040402
https://doi.org/10.1103/PhysRevLett.128.040403
http://arxiv.org/abs/arXiv:quant-ph/0009063
https://doi.org/10.1063/1.1494475
https://doi.org/10.1007/s11128-011-0346-7
http://arxiv.org/abs/arXiv:1809.07757
https://doi.org/10.1007/JHEP04(2016)018
https://doi.org/10.1007/JHEP11(2013)064
https://doi.org/10.1007/JHEP06(2016)049
https://doi.org/10.1103/PhysRevLett.93.191301
https://doi.org/10.1088/0264-9381/29/8/088001
https://doi.org/10.1142/S0217751X03014071
http://arxiv.org/abs/arXiv:1207.2504
https://doi.org/10.1103/PhysRevB.69.064404
http://arxiv.org/abs/arXiv:gr-qc/0606100
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1016/j.aop.2011.06.004

