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1 Introduction

Recently, Akers et al. proposed a solvable model of black hole complementarity [1]. This
model describes the physics of an evaporating black hole from two perspectives: the effective
picture and the fundamental picture. The effective picture describes physics seen by
someone who falls into the black hole and experiences effective field theory on a weakly
curved background. The fundamental picture describes physics seen by someone far outside
the black hole, to whom the black hole is a fast scrambling quantum mechanical system
interacting with its surroundings. To illuminate the properties of the black hole interior and
to explain how information escapes from the interior, Akers et al. proposed a non-isometric
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map from the effective picture to the fundamental picture, which can be realized as a random
unitary transformation followed by postselection. They argued that this map has desirable
features; for example, it follows that deviations from unitarity can be negligibly small in
the effective description, and that entropy in the fundamental description can be computed
by applying the quantum extremal surface formula [2–4] in the effective description.

A central thesis of Akers et al. is that the fundamental description can be precisely
unitary, while the effective description is indistinguishable from unitary to observers who
perform operations of subexponential complexity. This idea is appealing, but due to the
postselection inherent in the non-isometric map, it is not obvious whether it is consistent. In
particular, the authors of ref. [1] considered observers who interact with either the exterior
or the interior of the black hole, but not with both. Suppose instead that, after a black hole
forms, an infalling agent interacts with radiation both outside and inside the black hole.
When this black hole evaporates completely, how are the incoming and outgoing quantum
states related? If the resulting process were flagrantly non-unitary due to the agent’s actions
combined with the non-isometric map relating the interior and exterior, this would cast
doubt on the proposal in ref. [1]. In this paper we investigate just such a scenario.

In the context of the black hole final state proposal [5], postselection can result in
non-unitary and retro-causal effects [6]. In the proposal of ref. [1], postselection is a feature
of the holographic map rather than a physical process occurring in the bulk. Nevertheless,
although the physical setting is different, similar technical issues arise as we will discuss.

Aside from the issue of unitarity, the computational complexity of the black hole
S-matrix is also of great interest. Aaronson showed that polynomial-time quantum compu-
tation, accompanied by postselection, can solve any problem in the complexity class PP [7],
which includes the well-known class NP. One wonders, then, whether the postselection
postulated in ref. [1] endows an evaporating black hole with unreasonable computational
power, in violation of the quantum extended Chuch-Turing thesis [8, 9]. We investigate this
issue as well.

We formulate thought experiments in which the unitarity and the complexity of
the black hole S-matrix can be assessed by a single observer living outside the black
hole. First, following ref. [1], we model the black hole dynamics by a Haar-random
unitary transformation, and conclude that the deviations from unitarity induced by the
infaller are negligible. Then, more realistically, we assume that the black hole dynamics
is pseudorandom [10, 11], and infer that deviations from unitarity are small if operations
performed by the infaller have complexity polynomial in the black hole entropy. Moreover,
under related assumptions, we show that the computational complexity of the black hole
S-matrix remains polynomial in its entropy. Thus, from the perspective of an observer
staying outside, the known laws of physics remain intact to high precision. That the
proposal in ref. [1] passes these nontrivial tests adds credence to its validity.

Briefly summarized, our work goes beyond the analysis of Akers et al. [1] in three
significant ways. First, we consider the consequences of infalling agents that interact with
both the exterior and interior of the black hole. This modification could also be viewed
as taking into account the interactions between left-moving and right-moving modes in
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the interior.1 Second, while the internal dynamics of the black hole was modeled as a
Haar-random unitary in ref. [1], we reach similar conclusions by modeling the dynamics more
realistically as a computationally efficient pseudorandom unitary transformation [10, 11].
Third, we show that, even in the presence of infalling agents, the non-isometric map of
ref. [1] does not enable the black hole to perform operations of superpolynomial complexity.

We should clarify what we mean by a computation of the “black hole S-matrix” in
our work. The S-matrix is normally construed as the unitary transformation that maps
asymptotic incoming states to asymptotic outgoing states. We are particularly interested in
a nonasymptotic setting, in which a incoming state is mapped to the joint quantum state
of a partially evaporated large black hole and the degrees of freedom outside the black hole
horizon. According to the “central dogma” of black hole physics, this map, too, should be
precisely unitary in the fundamental picture, and in an abuse of language we call this map
the black hole S-matrix even though the outgoing state is not asymptotic. We study this
regime because, since the black hole in the outgoing state has a large entropy, the effective
picture of its interior should be trustworthy.

In the case where we model the black hole’s internal dynamics as a Haar-random unitary
transformation, the computations we perform are similar to computations in ref. [1], but our
motivation and interpretation are different. We consider how actions of an infalling agent
in the effective description induce deviations from exact unitarity in the S-matrix. We find
that these deviations are very small, and so infer that correspondingly small adjustments
in the effective description can restore exact unitarity in the fundamental picture. If the
deviations had been large instead, we would have expected correspondingly large deviations
from unitarity in the asymptotic S-matrix as well, which would be detectable in principle
by observers outside the black hole. In that case, we would have concluded that a more
extensive modification of the holographic map is needed to ensure compatibility with the
central dogma. In contrast, Akers et al. investigated whether deviations from the predictions
of quantum mechanics are detectable in the effective description, and concluded that these
deviations are negligible if quantum states and observables in the effective description have
reasonable computational complexity.

The rest of the paper is structured as follows. In section 2, we briefly review ref. [1] and
provide a simplified model that we use in our thought experiments, which are formulated in
section 3. In section 4 we describe an example to demonstrate that the unitarity of the
black hole S-matrix cannot be guaranteed unconditionally in the presence of an infaller.
This example, however, is not a realistic model of the black hole because the internal black
hole dynamics is not described by a scrambling unitary. In section 5, we go to the opposite
extreme and show that, provided that the internal black hole dynamics is described by
a Haar-random unitary, unitarity of the black hole S-matrix can be preserved with high
precision and high probability, even in the presence of an infaller. The drawback of this
model is that Haar-random unitaries generally have exponentially large complexity, while in
contrast a realistic black hole is expected to be described by a unitary whose complexity is
polynomial in its entropy. In section 6, we show that unitarity of the S-matrix can also be

1We thank Daniel Harlow for pointing this out.
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ensured when the black hole dynamics has polynomial complexity. This is achieved under
the assumption that the internal black hole dynamics is pseudorandom [10] and also that
the infaller performs an operation with complexity scaling polynomially in the entropy of
the black hole. Moreover, under similar assumptions, we show that the complexity of the
black hole S-matrix is polynomial in the black hole entropy. In section 7, we discuss some
pathologies that may arise if we allow the infaller to perform operations of exponential
complexity in the interior of the black hole. Specifically, such an infaller can induce a sizable
violation of unitarity that can be observed from outside the black hole. We summarize our
conclusions in section 8.

2 Modeling the black hole interior

2.1 Effective and fundamental pictures

We now present a simplified version of the model in ref. [1]. In their model, there are two
complementary pictures, referred to as the “effective picture” and the “fundamental picture.”
The effective picture describes the viewpoint of observers who may encounter the interior
of the black hole. The fundamental picture describes the viewpoint of observers who stay
outside the black hole.

Let us discuss the structure of the Hilbert space in these two different pictures. In the
effective picture (see figure 1a), the Hilbert space has the structure

H` ⊗Hr ⊗Hf ⊗HR (2.1)

where ` and r represent the left-moving and the right-moving modes in the black hole
interior,2 and R is a radiation reservoir outside the black hole. The system f accounts for
additional fixed degrees of freedom which do not play an essential role in our analysis. We
may think of ` as keeping track of the infalling matter that gravitationally collapses to form
the black hole, as well as additional matter that might have fallen in while the black hole
was evaporating. In this effective picture, the Hawking radiation arises from entanglement
between the right-moving interior modes in r and the exterior radiation modes in R, as
captured in figure 1a where |MAX〉 denotes a maximally entangled state of rR.

In the fundamental picture, we have

HB ⊗HR, (2.2)

where R is again the exterior radiation reservoir and B describes the microscopic state of
the black hole as viewed from outside. Hence, its dimension |B| is given by eSB , where SB
is the black hole’s Bekenstein-Hawking entropy.

A puzzling feature of black hole physics is that in the effective picture, as the black hole
evaporates, the Hilbert space dimension |`rf | of the black hole’s interior grows monotonically,
as does the entanglement entropy of rR. Meanwhile, the dimension |B| of the black hole
in the fundamental description decreases, unless additional matter falls in during the

2These are the modes that move in the radial direction either inwardly (left) or outwardly (right).
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√
|r|〈MAX|

` |ψ0〉f r R

|MAX〉

B

(a) Effective picture

B

|r|〈MAX|

U

` |ψ0〉f r R

|MAX〉

(b) Fundamental picture

Figure 1. A simplified version of the model in ref. [1]. The part enclosed by dashed lines is the
holograhic map VH .

evaporation process. Eventually, the two pictures conflict when the entanglement entropy of
rR in the effective picture exceeds the black hole entropy SB in the fundamental description.
Akers et al. proposed to resolve this conflict by defining an appropriate dictionary (a
“holographic map”) relating the internal black hole degrees of freedom in the effective picture
to the black hole microstates in the fundamental description.

This map VH : H`⊗Hf ⊗Hr → HB , depicted inside the dotted line shown in figure 1b,
is defined as

VH = (IB ⊗ |r|〈MAX|r′r)U, (2.3)

where U : H` ⊗Hf → HB ⊗Hr′ describes the scrambling unitary dynamics of the black
hole Here |r| = dim(Hr), r′ is an auxiliary Hilbert space whose dimension matches that
of r, and |MAX〉r′r denotes the maximally entangled state of r′ and r. Note that, upon
applying the holographic map to a state in the effective picture, we may interpret U as
a unitary process in the fundamental picture mapping an infalling state of matter to the
black hole B and its emitted Hawking radiation R:

B

|r|〈MAX|

U

` |ψ0〉f r R

|MAX〉

=

B R

U

` |ψ0〉f

. (2.4)

A crucial feature of the holographic map is that it is non-isometric, capable of mapping
a very-high-dimensional black hole interior in the effective description to a much-lower-
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dimensional black hole system B in the fundamental description. This reduction in dimension
is achieved by projecting the state of r′r to a particular maximally entangled state. We may
interpret this projection as an orthogonal measurement of r′r in a maximally entangled
basis, followed by postselection onto one particular outcome of the measurement. In effect,
this postselected measurement outcome teleports quantum information from the black hole
interior into the radiation system R, providing an intuitively appealing explanation for
how information escapes from inside the black hole. If such a measurement were really
performed, the desired outcome would occur with probability 1/|r|2, and the factor of |r| in
the map VH ensures that the output of the map is a properly normalized state. Importantly,
this postsection is not to be regarded as an actual physical process occurring inside the
black hole; instead it is a property of the holographic map that reconciles the effective and
fundamantal descriptions.

Akers et al. considered a more refined model of black hole dynamics, in which U is
decomposed as a sequence of many unitary transformations, each representing the evolution
of the black hole during a short interval of time [1]. For our purposes this refinement is
not needed, so we have simplified their model by replacing the product of many unitary
transformations by the single unitary U . Though the model is far from a fully realistic
description of black hole dynamics, Akers et al. argue persuasively that it captures relevant
features of the realistic case; see ref. [1] for a detailed discussion.

2.2 Testing the model

The premise underlying the model of ref. [1] is that evolution in the fundamental picture
is precisely unitary, what has been called the “central dogma” of black hole physics [12].
The model aims to reconcile this central dogma with the assertion that effective quantum
field theory accurately describes the experience of an observer who falls into a black hole
and interacts with its interior (at least until the observer reaches regions of high spacetime
curvature close to the singularity).

Our goal in this paper is to test the robustness of the conclusions of ref. [1] under
well-motivated modifications to the effective picture beyond those explicitly considered
in [1]. Specifically, we will investigate deviations from exact unitarity that arise when the
holographic map is applied to the modified effective picture. To be clear, if large deviations
from unitarity were found, we would regard this not as evidence against the central dogma,
but rather as a reason to question the modified effective picture, the holographic map,
or both.

We will see that reasonable modifications to the effective picture map to deviations
from unitarity in the fundamental picture which are superpolynomially small in the black
hole entropy. Our attitude is that such small deviations are acceptable, under the presump-
tion that a minuscule tweak in the holographic map could restore exact unitarity in the
fundamental picture. On the other hand, if significantly larger deviations from unitarity
had been found under the same conditions, we would have concluded that a more extensive
overhaul of the holographic map may be needed.

– 6 –



J
H
E
P
0
2
(
2
0
2
3
)
2
3
3

u
v

√
|r|〈MAX|

` |ψ0〉f I r R

|MAX〉

(a) Effective picture

u
v

B

|r|〈MAX|

U ′

` |ψ0〉f I r R

|MAX〉

(b) Fundamental picture

Figure 2. A model with an infaller. The infaller can interact with the exterior (blue gate) or
interior (red gate) radiation modes.

2.3 Interactions of an infaller with the radiation

Concretely, we will modify the model described in figure 1 by adding a party who falls into
the black hole (an “infaller”). Until the infaller closely approaches the black hole singularity
(where the semiclassical effective picture breaks down) we expect the interactions of the
infaller with other degrees of freedom to be well-approximated by effective quantum field
theory on a semiclassical spacetime background. We accommodate the infaller by adding
another tensor subfactor to the Hilbert space, denoted I. Thus, the Hilbert space in the
effective picture enlarges to become

H = H` ⊗Hr ⊗Hf ⊗HI ⊗HR. (2.5)

The infaller interacts unitarily first with R while still ouside the black hole, and then with
r after crossing the event horizon. We call the corresponding unitary transformations u
acting on IR and v acting on Ir; see figure 2(a).

How should we map this effective picture to the fundamental picture? The answer
depends on whether the infaller has already entered the black hole or not. If not, we can
assume that the scrambling unitary U — a simple model of black hole’s internal dynamics
— acts trivially on the infaller. On the other hand, if the infaller has entered the black hole,
the scrambling unitary should act on the infaller as well. We thus modify the model by
replacing U by a new unitary U ′ that acts on I as well as `f , as shown in figure 2(b).

Throughout this paper, we will be agnostic about precisely how the infaller’s interaction
with R and r modifies the infaller’s own memory; that is why we speak of an “infaller”
rather than an “infalling observer.” Under the holographic map, the infaller’s memory
gets scrambled so that from the fundamental viewpoint the information encoded in this
memory winds up shared between B and R, just like the rest of the quantum information
that fell into the black hole. The important thing is that the infaller is a system that
interacts with R and then r, and we are interested in how those interactions impact the
black hole’s evolution as seen by an agent who stays outside the black hole, as we describe
in the following section.
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2.4 A challenge to unitarity

A potential issue with the model in figure 2 is that this model may not be unitary in the
fundamental picture. To see why, let us “straighten out” some of the edges:

u
v

B

|r|〈MAX|

U ′

` |ψ0〉f I r R

|MAX〉

=

u

v

RB

U ′

` |ψ0〉f I

. (2.6)

We immediately see two issues. First, the red unitary is partially transposed. Generally
speaking, a partial transpose of a unitary is not a unitary.3 Secondly, the order in which u,
v, and U ′ act on I is the opposite of the order in which they act on R. Generally speaking,
even if the partially transposed v is a unitary, it is not clear if the combined effect of the u
and v, in conjunction with U ′, remains unitary.

Similar issues were raised by Lloyd and Preskill [6] and by Gottesman and Preskill [13]
for the black hole final state proposal [5]. In that proposal, the projection of r′r onto a
maximally entangled state is regarded as an actual physical process occurring inside the
black hole. Here, instead, the projection is a feature of the holographic map rather than
a physical process. Nevertheless, we should consider how the actions of the infaller in
the effective description, together with the holographic map, affect phenomena that are
accessible to exterior observers.

3 Detecting nonunitarity

Since we will be studying potential deviations from unitarity in the black hole S-matrix, it
is important to establish that such deviations are really operationally meaningful. For that
purpose, we will formulate a thought experiment illustrating how an observer outside a
black hole could verify the failure of unitarity. The observer who conducts this experiment
can manipulate the Hawking radiation emitted by the black hole using a quantum computer,
but we will insist that operations performed by the observer have computational complexity
scaling polynomially with the entropy of the black hole. Here we adopt the computer
scientist’s credo that operations of polynomial complexity are physically plausible, while
operations of superpolynomial complexity are physically unreasonable. Indeed, we expect
that operations of superpolynomial complexity could undermine foundations of effective
field theory on a semiclassical background [11, 14], and are therefore beyond the scope of
our discussion.

3This fact can be verified for randomly generated two-qubit unitaries.

– 8 –



J
H
E
P
0
2
(
2
0
2
3
)
2
3
3

|0〉 H H

|ψ1〉

|ψ2〉

Figure 3. Circuit for the swap test estimating the overlap of |ψ1〉 and |ψ2〉.

Having set the ground rules, let us now discuss the setup of the thought experiment.
We consider an observer who can create two identical black holes and can send identical
robots into the black holes. Let us label these black holes and robots as 1 and 2; robot
1 falls into the black hole 1 and robot 2 falls into the black hole 2. The robots shall be
initialized to the states |φ1〉 and |φ2〉, respectively, prior to being sent into the black holes.
Each robot is programmed to interact with the radiation in the exterior (R) and in the
interior (r) via unitary transformations u and v. Each robot can be regarded as an infaller
as in figure 2, programmed to perform these specific tasks.

Now two identical black holes are created each in the same pure state, and start to emit
Hawking radiation. When the black holes are old enough to have radiated away more than
half of their initial entropy, the exterior observer sends in the robots to the respective black
holes; then both black holes evaporate completely. The observer collects all the Hawking
radiation emitted by black hole 1, both before and after robot 1 fell in, and deposits it in
a quantum memory, acquiring a quantum state ρ1. The observer does the same for black
hole 2, acquiring the state ρ2 in a second quantum memory. If this entire process is unitary,
then the states ρ1 = |ψ1〉〈ψ1| and ρ2 = |ψ2〉〈ψ2| are pure, and furthermore their overlap
|〈ψ1|ψ2〉|2 matches |〈φ1|φ2〉|2. A detected deviation of the overlap from |〈φ1|φ2〉|2 would
indicate that unitarity is violated.

The overlap can be estimated using the swap test. Suppose we want to compute the
overlap of two pure states |ψ1〉 and |ψ2〉. In the swap test, one executes a swap operation
on the two states controlled by a single qubit as in figure 3, where H denotes the Hadamard
gate. When the control qubit is measured in the standard basis, the outcome |0〉 occurs
with probability 1

2
(
1 + |〈ψ1|ψ2〉|2

)
. By repeating this experiment sufficiently many times,

then, we can estimate the overlap with a small statistical error. If |ψ1〉 and |ψ2〉 are n-qubit
states, the controlled-swap gate can be decomposed into O(n) one-qubit and two-qubit
gates. Thus, the overlap can be computed efficiently.

Coming back to our physical setup, the entire unitarity test can be conducted efficiently.
Since the robots are small compared to the black holes, their initialization is efficient. A
black hole evaporates in a time that scales polynomially with the entropy of the black hole
that initially forms, and the number n of radiation qubits after the evaporation process is
complete also scales polynomially with this entropy. Since the swap test has complexity
scaling linearly with n, as we have just seen, the complete experiment has complexity
polynomial in the initial black hole entropy.

Now suppose that V is a linear map which takes pure states to pure states, but is
not isometric. Its non-isometric nature can be verified by using the swap test to estimate
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state overlaps. Let |φi〉 be an eigenstate of V †V with eigenvalue λi, where λ1 6= λ2. Upon
applying V to these states, we obtain |ψi〉 = V |φi〉/‖V |φi〉‖, assuming V does not annihilate
|φi〉.4 Then we find

|〈ψ2|ψ1〉|2 = |〈φ2|V †V |φ1〉|2

|〈φ2|V †V |φ2〉| · |〈φ1|V †V |φ1〉|
= λ2

1
λ1λ2

|〈φ2|φ1〉|2 6= |〈φ2|φ1〉|2. (3.1)

Thus the swap test detects that the overlap of the output states differs from the overlap of
the input states.

4 Violation of unitarity: a simple example

We emphasize again that the circuit shown in eq. (2.6) is not necessarily unitary. To be
concrete, suppose that f is one-dimensional, that `, I, B, and R all have dimension d, that
U ′ and u are identity maps, and that v is the swap operation. Then the right-hand-side of
eq. (2.6) is the partial transpose of the swap; represented diagrammatically, this partial
transpose is

1 2

T1−→

1 2

, (4.1)

where the bottom two legs are the input and the top two legs are the output; under
transposition applied to the first leg, the input and output are interchanged. Thus, the
partial transpose of swap is d|MAX〉〈MAX|, where |MAX〉 is a normalized maximally
entangled state. Evidently, this map is not isometric — in particular, it annihilates any
state orthogonal to |MAX〉.

This simple example clearly illustrates that the circuit in eq. (2.6) need not be unitary,
but on the other hand, choosing U ′ to be the identity does not capture the chaotic nature of
black hole dynamics. In section 5, following ref. [1], we analyze the departure from unitarity
when U ′ is a Haar-random unitary transformation, finding that in that case the violation of
unitarity is very strongly suppressed with very high probability. Then in section 6, we find
similar supression under the more realistic assumption that U ′ is pseudorandom, if u, v
have computational complexity scaling polynomially with the black hole entropy.

5 Average-case analysis

For a realistic black hole, we expect the unitary U ′ to be a scrambling unitary [15]. A simple
model of scrambling unitary is a Haar-random unitary. In this section, we investigate whether
the process in eq. (2.6) is unitary on average, and we also characterize the fluctuations from
the average behavior.

4Here we used a prescription in which the state obtained after applying V is normalized; otherwise the
result of the swap test may not lie in the interval [0, 1], which is nonsensical.
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To be concrete, we view the operator in eq. (2.6) as a linear map V (U ′) that depends
on U ′, and seek to compute the average of V (U ′)†V (U ′). To that end, we can use the
formula [16] ∫

UijU
†
j′i′dU = 1

d
δii′δjj′ , (5.1)

where d is the dimension of the Hilbert space that U acts on and the integration is over
the Haar measure on the unitary group. This expression admits a convenient graphical
representation:

∫
dU

 U

U †

j

i
i′

j′


= 1
d

U

U †

j

i
i′

j′

. (5.2)

This leads to an expression for the Haar average of V (U ′)†V (U ′):

∫
dU ′



u
v

U ′

` |ψ0〉f I

u†
v†
U ′†

` 〈ψ0|f I



= 1
|`||I||f | u

v

` |ψ0〉f I

u†
v†

` 〈ψ0|f I

= |B|
|`||I||f | u

v

` I

u†
v†

` I

= I` ⊗ II ,

(5.3)
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where in the last line we used the following identity:

u
v

I

u†
v†

I

=
u

v

I

u†

v†

I

= |R|II . (5.4)

Thus, on average, the unitarity of the black hole S-matrix is preserved, no matter how u

and v are chosen.

We can also compute the fluctuation about this mean value. Without loss of generality,
consider pure states |ϕ〉`I , |ϕ′〉`I ∈ H` ⊗ HI . As we have just seen, the random variable
〈ϕ|V (U ′)†V (U ′)|ϕ′〉 has mean value 〈ϕ|ϕ′〉, while its variance is

∫
dU ′

∣∣∣〈ϕ|V (U ′)†V (U ′)|ϕ′〉 − 〈ϕ|ϕ′〉
∣∣∣2 =

∫
dU ′|〈ϕ|V (U ′)†V (U ′)|ϕ′〉|2 − |〈ϕ|ϕ′〉|2. (5.5)

This integral can be computed using the expression for the (2, 2) moment of Haar mea-
sure [16]:

∫
Ui1j1Ui2j2U

†
j′

1i
′
1
U †j′

2i
′
2
dU = 1

d2 − 1δi1i
′
1
δi2i′2δj1j′

1
δj2j′

2
− 1
d(d2 − 1)δi1i

′
2
δi2i′1δj1j′

2
δj2j′

1
. (5.6)

Diagrammatically, this can be expressed as

∫
dU

 U

U †

j1

i1
i′1

j′1

U

U †

j2

i2
i′2

j′2


= 1
d2 − 1

 U

U †

j1

i1
i′1

j′1

U

U †

j2

i2
i′2

j′2


− 1
d(d2 − 1)

 U

U †

i1
i′1

U

U †

i2
i′2

U

U †

j1

j′1

U

U †

j2

j′2


.

(5.7)
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Applied to our setup, we get:

∫
dU ′



u
v

U ′

` |ψ0〉f I

u†
v†
U ′†

` 〈ψ0|f I



⊗2

=
(

1− 1
(|`||I||f |)2

)−1
(I` ⊗ IR)⊗2 + ∆, (5.8)

where

∆ = − |B|
d(d2 − 1)SWAP`↔`′



u
v

43

I

u†
v†

12

I

u
v

12

I ′

u†
v†

43

I ′


; (5.9)

here d = |`||I||f | = |B||R|, `′ is a copy of ` and similarly I ′ is a copy of I. SWAP`↔`′ is the
swap operation between ` and `′ and the black dots with the same integer are contracted
with each other. Thus the expression for the variance reduces to

∫
dU ′

∣∣∣〈ϕ|V (U ′)†V (U ′)|ϕ′〉 − 〈ϕ|ϕ′〉
∣∣∣2 =

(
〈ϕ| ⊗ |〈ϕ′|

)
∆
(
|ϕ′〉 ⊗ |ϕ〉

)
− 1
d2 − 1 |〈ϕ|ϕ

′〉|2.
(5.10)

Note that the second term in eq. (5.10) is bounded above by 1/(d2−1), which is exponentially
small in the black hole entropy log |B|. Thus, to argue that the variance is small it suffices
to show that the first term is small.

To bound the first term in eq. (5.10), let us suppose at first that |ϕ〉 = |ϕI〉 ⊗ |ϕ`〉 and
|ϕ′〉 = |ϕ′I〉 ⊗ |ϕ′`〉 are product states; after bounding the variance for such product states,
we will be able to extend the computation to entangled states of I`. Using the definition of
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∆ in eq. (5.9), we get

〈ϕ| ⊗ 〈ϕ′|)∆(|ϕ′〉 ⊗ |ϕ〉 = − |B|
d(d2 − 1)



u
v

43

|ϕ′I〉

u†
v†

12

〈ϕI |

u
v

12

|ϕI〉

u†
v†

43

〈ϕ′I |


. (5.11)

This diagram can be simplified by “pushing” the unitaries enclosed in the dashed lines. For
instance, consider the unitaries v† and v in eq. (5.11). Recalling that the dots labeled by
the same integers are connected with each other, these two unitaries can be cancelled in
the following way.

2 1
v

v†
= 2 1

v

v†

= 2 1
v

v†

= 2 1

= 2 1 ,

(5.12)

Applying the same identity over the dots 3 and 4, we remove the other occurrence of v and
v† from the diagram, obtaining

(〈ϕ| ⊗ 〈ϕ′|)∆(|ϕ′〉 ⊗ |ϕ〉) = − |B|
d(d2 − 1)



u

43

|ϕ′I〉

u†

12

〈ϕI |

u

12

|ϕI〉

u†

43

〈ϕ′I |


. (5.13)
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We can also push the unitaries u† and u, obtaining

(〈ϕ| ⊗ 〈ϕ′|)∆(|ϕ′〉 ⊗ |ϕ〉) = − |B|
d(d2 − 1)


43

|ϕ′I〉

12

〈ϕI |

u
u†

12

|ϕI〉

u†
u

43

〈ϕ′I |


= − |B|
d(d2 − 1)


4

|ϕ′I〉

1

〈ϕI |

u
u†

1

|ϕI〉

u†
u

4

R

〈ϕ′I |


,

(5.14)

where the closed loop represents a partial trace over R. Now we can straighten out the legs
using the algebraic identity

〈φ|A|φ′〉 = 〈(φ′)∗|AT |(φ)∗〉, (5.15)

where AT is a transpose of A (in some basis) and |(φ)∗〉 is an entry-wise complex conjugation
of |φ〉 (in the same basis). We thus see

|(〈ϕ| ⊗ 〈ϕ′|)∆(|ϕ′〉 ⊗ |ϕ〉)| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

|B|
d(d2 − 1)

 u
u†

|(ϕI)∗〉

〈(ϕI)∗|

u†
u

R

〈(ϕ′I)∗|

|(ϕ′I)∗〉



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (5.16)

While this is a considerable simplification, this diagram contains partially transposed
unitaries.
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In fact, we can convert the diagrammatic expression in eq. (5.16) to the one which does
not contain partially transposed unitaries. Recalling the definition of the partial transpose,
we note the following identities:

u = u and u† = u† . (5.17)

We thus arrive at the following identities:

R

R

u†

u

〈(ϕ′I)∗|)

|(ϕ′I)∗〉

=

R

|(ϕ′I)∗〉

u†

R

〈(ϕ′I)∗|)

u

=

R

〈ϕ′I |

u†

R

|ϕ′I〉

u

I . (5.18)

This can be formally viewed as an operator acting on R, with a norm bounded by

‖TrI(u†(IR ⊗ |ϕ′I〉〈ϕ′I |)u)‖ ≤ |I|. (5.19)

An analogous bound can be obtained for the bottom half of in eq. (5.16). After taking a
trace over R, and recalling that d = |B||R|, we thus arrive at the following bound

|(〈ϕ| ⊗ 〈ϕ′|)∆(|ϕ′〉 ⊗ |ϕ〉)| ≤ |I|2

d2 − 1 (5.20)

for any |ϕ〉 and |ϕ′〉 which are product states over I and `.
One may ask how our conclusion changes if we allow states such that I and ` are

entangled. In this case, without loss of generality we can assume that |ϕ〉 and |ϕ′〉 admit
the Schmidt decomposition

|ϕ〉 =
∑
k

√
pk|ϕk〉, |ϕk〉 := |ϕI,k〉 ⊗ |ϕ`,k〉,

|ϕ′〉 =
∑
k

√
p′k|ϕ

′
k〉, |ϕ′k〉 := |ϕ′I,k〉 ⊗ |ϕ′`,k〉,

(5.21)

where {|ϕI,k〉}, {|ϕ′I,k〉} ⊂ HI and {|ϕ`,k〉}, {|ϕ′`,k〉} ⊂ H` are orthonormal basis sets, with
the index k ranging from 0 to |I| − 1, assuming |I| ≤ |`|. Thus, the first term can be
bounded by

|
(
〈ϕ|⊗〈ϕ′|

)
|∆(|ϕ′〉⊗|ϕ〉)≤

 ∑
k1,k2,k3,k4

√
pk1pk2pk3pk4

max
k,k′

(|〈ϕk|⊗〈ϕ′k′ |)∆(|ϕ′k′〉⊗|ϕk〉|)

≤ |I|2 max
k,k′

(|〈ϕk|⊗〈ϕ′k′ |)∆(|ϕ′k′〉⊗|ϕk〉|).

(5.22)
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We can thus bound the variance for general states |ϕ〉, |ϕ′〉 ∈ HI ⊗ H` in terms of the
worst-case variance for product states, up to an extra factor of |I|2. Accounting for this
factor, we obtain

|(〈ϕ| ⊗ 〈ϕ′|)∆(|ϕ′〉 ⊗ |ϕ〉)| ≤ |I|4

d2 − 1 . (5.23)

To summarize, the fluctuations of V (U ′)†V (U ′) about its mean value can be bounded
as∫

dU ′
∣∣∣〈ϕ|V (U ′)†V (U ′)|ϕ′〉−〈ϕ|ϕ′〉

∣∣∣2≤

|I|2−1
d2−1 if |ϕ〉, |ϕ′〉 ∈HI⊗H` are product states,
|I|4−1
d2−1 more generally,

(5.24)
where d = |BR|. In both cases, as long as the initial black hole is macroscopic and the
infaller is small in comparison, the fluctuation is small.

6 Pseudorandomness

6.1 Pseudorandom unitary transformations

The analysis in section 5 establishes that, for Haar-random unitary U ′, the black hole
S-matrix V (U ′) is very nearly unitary with high probability. However, a typical random
unitary has computational complexity which scales exponentially with the initial entropy of
the black hole, while for a realistic black hole we expect U ′ to have polynomial computational
complexity. Can we conclude as in section 5 that deviations of V (U ′) from unitarity are
very small even if U ′ has polynomial complexity? Here we answer this question in the
affirmative under reasonable assumptions.

The key underlying assumption is the pseudorandomness of the unitary U ′ [11]. In the
rest of this section, we introduce this concept and argue that this assumption is plausible for
a realistic black hole. We then show in section 6.2 that the pseudorandomness assumption
implies that V (U ′) is very close to unitary. Moreover, we show in section 6.3 that the
complexity of V (U ′) scales polynomially in the initial black hole entropy, despite the
postselection inherent in the holographic map.

Let us first define pseudorandomness in a general setup. Consider the physical process

U

|0〉 Y

Y

X

U †

〈0| Y

Y

, (6.1)
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for some unitary U : HX ⊗HY → HX ⊗HY , where |0〉 is shorthand for |0log |X|〉. In this
process, a unitary is applied to XY , where X is initialized in some fixed pure state, and
then X is discarded. This defines a quantum channel acting on Y , denoted as E(U)

Y . The
action of this channel on an input pure state |φ〉〈φ| is represented by

U

|0〉 |φ〉

Y

X

U †

〈0| 〈φ|

Y

, (6.2)

where the “ket” side of the output density operator is at the top of the diagram and the
“bra” side is at the bottom.

We ask whether there is a fixed unitary U , with complexity polynomial in log |XY |, such
that it is virtually impossible to distinguish E(U)

Y from a channel defined by a Haar-uniform
average of E(Ṽ )

Y over Ṽ . If |X| � |Y |, this can be achieved by choosing U to be an efficient
scrambling unitary [15]. On the other hand, if |X| � |Y |, then for any fixed U E(U)

Y is
distinguishable from the Haar averaged channel, at least information theoretically. (In
appendix A, we derive a quantitative bound which establishes this fact rigorously.) What
may be possible, however, is to ensure the indistinguishability of the two channels against
computationally bounded adversaries. Specifically, we propose that there is a unitary U of
complexity polynomial in log |XY |, such that the following approximate identity holds:

W

U

|0〉 φ2

φ1

X

Y

Y

Z

Z

Y ′

Z ′

Z ′
W †

U †

〈0| φ2

φ1

≈
∫
dṼ



W

Ṽ

|0〉 φ2

φ1

X

Y

Y

Z

Z

Y ′

Z ′

Z ′
W †

Ṽ †

〈0| φ2

φ1



, (6.3)
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with an approximation error superpolynomially small in log |X|. Here we assume that W ,
|φ1〉, and |φ2〉 all have complexity polynomial in log |X| but are otherwise arbitrary. In this
process, we have introduced a third subsystem Z, and |φ2〉 is an input pure state for system
Y Z. The “adversary,” after applying W to Y Z, performs a projective measurement on a
subsystem of Y Z, obtaining the outcome |φ1〉. (We denote the measured subsystem by Z ′,
and the complementary subsystem by Y ′; hence HY ′ ⊗HZ′ serves as an alternative tensor
product decompmosition of HY ⊗HZ .) The diagram in eq. (6.3) represents the probability
of obtaining this particular measurement outcome.

The existence of such a unitary U would follow from the assumption that pseudorandom
unitaries exist [10]. At a high level, this assumption means that there is a family of efficient
unitary transformations such that an average over the family cannot be distinguished by
computationally bounded observers from an average over Haar measure. More concretely,
let {UPR,x} be a family of unitaries acting on HY , indexed by a log |X|-bit string x.

Definition 1. A family {UPR,x} is pseudorandom if the following conditions are met.

1. There is a unitary UPR : HX ⊗ HY → HX ⊗ HY with complexity polynomial in
log |XY | such that

UPR|x〉X ⊗ |ψ〉Y = |x〉X ⊗ UPR,x|ψ〉Y (6.4)

for any |ψ〉.

2. Consider a circuit consisting of a polynomial number of copies of UPR,x and a polyno-
mial number (in log |X|) of additional gates, followed by a measurement of a single
qubit. If we average over x uniformly, the measurement statistics are indistinguishable
from the same circuit in which UPR,x is replaced by a Haar-random unitary acting on
Y , with an error decaying faster than any polynomial in log |X|.

Candidate constructions of pseudorandom unitaries were proposed in [10] and are
briefly reviewed in appendix D. Though the existence of pseudorandom unitaries seems
quite plausible, at present there is no proof premised on other widely accepted complexity
theory assumptions. Nevertheless, we will assume the existence of pseudorandom unitaries in
what follows. In the definition, we assume an approximation error that is superpolynomially
small in log |X|. In section 6.2 and section 6.3 we consider consequences of a stronger
assumption, that the approximation error is exponentially small instead, and draw sharper
conclusions about the unitarity and computational complexity of the black hole S-matrix
in that case. Our qualitative conclusions continue to apply, however, under the weaker
assumption of a superpolynomially small error.

Assuming a pseudorandom unitary exists, we can construct U satisfying eq. (6.3) as
follows. Suppose there is a pseudorandom unitary {UPR,x} such that the distinguishability
error (see the second condition in Definition 1) is superpolynomially small in log |X|. Choose
U as

U = UPR(UNIFORMX ⊗ IY ), (6.5)

where UPR is defined in eq. (6.4) and UNIFORMX is a unitary that maps |0 . . . 0〉X to the
uniform superposition state. Since the unitaries appearing in eq. (6.5) have complexity
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polynomial in log |XY |,5 the first condition in Definition 1 is satisfied. Moreover, the second
condition implies, upon tracing out X, the following identity

W

U

|0〉 φ2

φ1

X

Y

Y

Z

Z

Y ′

Z ′

Z ′
W †

U †

〈0| φ2

φ1

≈
∫
dṼ



W

Ṽ

|0〉 φ2

φ1

X

Y

Y

Z

Z

Y ′

Z ′

Z ′
W †

Ṽ †

〈0| φ2

φ1



, (6.6)

with an approximation error superpolynomially small in log |X|. Since conjugation by a
Haar-random unitary is a depolarizing channel, we can moreover conclude that

∫
dṼ



W

Ṽ

|0〉 φ2

φ1

X

Y

Y

Z

Z

Y ′

Z ′

Z ′
W †

Ṽ †

〈0| φ2

φ1



=
∫
dṼ



W

Ṽ

|0〉 φ2

φ1

X

Y

Y

Z

Z

Y ′

Z ′

Z ′
W †

Ṽ †

〈0| φ2

φ1



. (6.7)

Thus, assuming the existence of pseudorandom unitaries, we can conclude that there is a
unitary U of complexity polynomial in log |XY | such that eq. (6.3) holds.

5The preparation of the uniform superposition state can be realized by a tensor product of log2 |X|
Hadamard gates, and as such, uses at most log2 |X| gates.
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In eq. (6.3), the initial state |0〉 is a pure state of subsystem X, and we trace out
subsystem X after the action of the unitary transformation U or Ṽ . What we will need to
consider in our analysis of a partially evaporated black hole is a somewhat more general
situation, in which we trace out a system X ′ which does not necessarily have the same
dimension as X. In this more general setting, we wish to argue that a fixed unitary U exists
which satisfies the identity

W

U

|0〉 φ2

φ1

X ′

Y ′

Y ′

Z

Z

Y ′′

Z ′

Z ′

X Y

X Y

W †

U †

〈0| φ2

φ1

≈
∫
dṼ



W

Ṽ

|0〉 φ2

φ1

X ′

Y ′

Y ′

Z

Z

Y ′′

Z ′

Z ′

X Y

X Y

W †

Ṽ †

〈0| φ2

φ1



(6.8)

up to a small error. In the notation we are now using, U acts on HX ⊗HY , which has an
alternative tensor decomposition as HX′ ⊗HY ′ , and W acts on HY ′ ⊗HZ , which has an
alternative tensor decomposition as HY ′′ ⊗HZ′ . This more general identity is needed in the
black hole setting because in the fundamental description we decompose the Hilbert space
into the black hole system B and the radiation system R; B is inaccessible and therefore
traced out, and the dimension of B need not be the same as the dimension of the fixed
input state that appears in the definition of the holographic map.

To argue in favor of eq. (6.8), and to characterize the approximation error, we distinguish
two cases. If dim(HX′) is larger or equal to dim(HX), the existence of a unitary that satisfies
eq. (6.8) follows straightforwardly from the one that satisfies eq. (6.3). One can simply
choose the unitary in eq. (6.8) to be the one appearing in eq. (6.3), followed by a swapping
of qubits so that the bitstring x that determines UPR,x is discarded by the partial trace of
X ′. If instead dim(HX′) is smaller than dim(HX), we can choose the ensemble of unitaries
{UPR,x} labeled by a log |X ′|-bit string. These bits can be then swapped so that the partial
trace of X ′ discards the label information. Therefore, even in this generalized setup there is
a unitary that satisfies eq. (6.8). The approximation error is superpolynomially small in
min(log |X|, log |X ′|).

Will the unitary that describes the formation and evaporation of the black hole also
satisfy eq. (6.8)? Without knowing the complete theory of quantum gravity, we cannot
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provide a definitive answer to this question. However, since a black hole is one of the best
information scramblers in nature, we may expect that, if achieving eq. (6.8) is possible in
principle, a black hole will be able to do it.6 From now on, we shall assume that the unitary
U ′ that describes the formation and the evaporation of the black hole is pseudorandom in
the sense of eq. (6.8).7

We will use eq. (6.8) to investigate the black hole S-matrix, and in particular to verify
its unitarity. For this purpose it is convenient to rewrite the eq. (6.8) in the alternative but
equivalent form

W

U

|0〉 φ2

φ1

X ′ Y ′′

Y ′

Y ′

Z

Z ′

X Y

Z

Z ′

X Y

W †

U †

〈0| φ2

φ1
≈
∫
dṼ



W

Ṽ

|0〉 φ2

φ1

X ′ Y ′′

Y ′

Y ′

Z

Z ′

X Y

Z

Z ′

X Y

W †

Ṽ †

〈0| φ2

φ1



. (6.9)

In this form, the pseudorandomness of U has a different interpretation than before. Now
we consider a process in which the initial pure state is |0〉X ⊗ |φ2〉Y Z , to which is ap-
plied the unitary transformation (IX′ ⊗WY ′Z) (UXY ⊗ IZ). Then system Z ′ is projected
onto the pure state |φ1〉, the inverse unitary transformation

(
U †XY ⊗ IZ

) (
IX′ ⊗W †Y ′Z

)
is

applied, and a measurement on XY Z yields the outcome |0〉X ⊗ |φ2〉Y Z . The diagram
represents the probability that this projection succeeds and this measurement outcome is
obtained. Here pseudorandomness of U means that if W , |φ1〉, and |φ2〉 have complexity
polynomial in log |X|, then replacing U by a Haar average alters this probability by only a
superpolynomially small amount.

6A stronger justification of this assumption may be made by showing that more realistic toy models,
e.g., a typical instance of the random circuit model, satisfies the pseudorandomness condition with high
probability. However, it is currently unclear how one can prove such a statement. Existing approaches to
construct pseudorandom quantum states rely on one-way functions which are hard to invert on a quantum
computer [10], and it is not yet clear how such constructions can be used to construct pseudorandom
unitaries. Establishing such a connection is an area of ongoing research in quantum complexity theory.

7Note that we are assuming that the unitary that describes the black hole is pseudorandom, as opposed to
the state of the radiation being pseudorandom, as assumed in ref. [11]. The former is a stronger assumption
than the latter; see ref. [10] for discussion of this distinction.
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6.2 Unitarity of the black hole S-matrix

In this section we show that if U ′ is pseudorandom, the black hole S-matrix V (U ′) is
approximately unitary. In the next section, we study the computational complexity of
V (U ′). In both cases our analysis hinges on the identity

|r|

u
v

B

〈MAX|r′r

U ′

|ψ〉` |ψ0〉f I r R

r′

|MAX〉rR

= |I|

B R

U ′

|ψ〉` |ψ0〉f
|MAX〉I1I2 I

I1 I2

〈MAX|I2I

u
v

, (6.10)

where the left-hand and right-hand sides of the identity are both equivalent to the black
hole S-matrix

V (U ′) =

B R
u
v

U ′

|ψ〉` |ψ0〉f I

. (6.11)

On the right-hand side of eq. (6.10) we have introduced auxiliary subsystems HI1 and
HI2 which have the same dimension as HI . What is particularly notable is that V (U ′),
originally realized in a unitary circuit accompanied by postselection of a measurement
outcome occurring with probability 1/|r|2, can be alternatively realized in a unitary circuit
accompanied by postselection of a measurement outcome occurring with the much larger
probability 1/|I|2.

Now we would like to show that V (U ′) is very nearly unitary if U ′ is pseudorandom
and the operations u and v performed by the infaller have low complexity. To do so, we
will use the identity eq. (6.10) and the pseudorandomness property eq. (6.9). We will also
assume that the infaller’s initial state is uncorrelated with the black hole’s microstate, so
we may take the initial state of `fI in eq. (6.11) to be a product state |ψ` ⊗ |ψ0〉f ⊗ |ϕ〉I .
Furthermore, we assume that this initial state has low complexity. Using eq. (6.9), we can
verify that the diagonal matrix element

〈ψ|`〈ψ0|f 〈ϕ|I
[
V (U ′)†V (U ′)

]
|ψ〉`|ψ0〉f |ϕ〉I (6.12)

deviates from 1 by an amount that is superpolynomially small in log |B| for any choice of the
input product state. Because this holds for any product state, it follows that off-diagonal
matrix elements between product states also satisfy

〈ψ′|`〈ψ0|f 〈ϕ′|I
[
V (U ′)†V (U ′)

]
|ψ〉`|ψ0〉f |ϕ〉I ≈ 〈ψ′|ψ〉〈ϕ′|ϕ〉 (6.13)
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with a similar approximation error. We may limit our attention to product states if we
assume that the initial state of the infaller is prepared outside the black hole, and so is
uncorrelated with the left-moving system `, which is behind the black hole horizon.

We evaluate the diagonal matrix element as follows:

B R

U ′

|ψ〉` |ψ0〉f
|MAX〉I1I2 |ϕ〉I

〈MAX|I2I

u
v

U ′†

〈ψ|` 〈ψ0|f
〈MAX|I1I2 〈ϕ|I

|MAX〉I2I

u
v

≈
∫
dṼ



B R

Ṽ

|ψ〉` |ψ0〉f
|MAX〉I1I2 |ϕ〉I

〈MAX|I2I

u
v

Ṽ †

〈ψ|` 〈ψ0|f
〈MAX|I1I2 〈ϕ|I

|MAX〉I2I

u
v



= 1
|I|2

.

(6.14)
First we use eq. (6.10) to rewrite 1

|I|V (U ′), and we note that the entangled state |MAX〉 has
low complexity. Therefore, the left-hand side has the same form as eq. (6.9), where X ′ = B,
Y ′ = Y ′′ = R, and Z = I2I. Comparing to eq. (6.9), we identity W with the product
of the low-complexity unitaries u and v, |0〉 with the low-complexity state |ψ〉` ⊗ |ψ0〉f ,
|φ2〉 with the low complexity state |MAX〉I1I2 ⊗ |ϕ〉I , and |φ1〉 with the low-complexity
state |MAX〉I2I . Thus the first equality, in which we replace U ′ by an integral over Haar
measure (making an error which is superpolynomially small in log |B|), follows from the
pseudorandomness of U ′. The second equality follows from eq. (5.3), taking into account
that the diagram represents a matrix element of 1

|I|2V (U ′)†V (U ′). Thus, by straightening
out the legs on the left-hand side of eq. (6.14) and restoring the conventional normalization,
we conclude that for any low-complexity states |ψ〉` and |ϕ〉I ,∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u
v

U ′

|ψ〉` |ψ0〉f |ϕ〉I

u†
v†
U ′†

〈ψ|` 〈ψ0|f 〈ϕ|I

− 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

≤ |I|2ε(log |B|), (6.15)
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where ε(x) denotes a function that decays superpolynomially with x. Note that log |I|
quantifies the number of qubits that constitute the infaller. We conclude that, as long as
the black hole has low complexity and the right-hand side of eq. (6.15) is small, then the
deviation of V (U ′) from unitarity is small. In particular, if we assume ε(x) ≤ e−αx for some
constant α > 0, then V (U ′) is unitary up to corrections which are exponentially small in
log |B| provided that the size log |I| of the infaller is small compared to the size log |B| of
the black hole.

This argument applies if the Hilbert space of the infaller has dimension |I| = eβ log |B|

as long as β is strictly less than α/2 and the initial state of the infaller is “simple” (i.e.,
has low complexity). In fact, we can relax the low-complexity requirement for the infaller’s
initial state, and still conclude that unitarity holds to high accuracy if |I| is small enough.
First we note that I has a complete orthonormal basis of simple states {|ϕi〉 : i = 1, . . . , |I|},
which we shall choose to be the computational basis states, and we can expand an arbitrary
state |ϕ̃〉I =

∑|I|
i=1 ci|ϕi〉 in this basis. Because each of the basis states satisfies eq. (6.15),

we find∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u
v

U ′

|ψ〉` |ψ0〉f|ϕ̃〉I

u†
v†
U ′†

〈ψ|` 〈ψ0|f〈ϕ̃|I

− 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

≤ |I|2e−α log |B| +

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∑
i 6=j

cic
∗
j u

v

U ′

|ψ〉` |ψ0〉f |ϕi〉I

u†
v†
U ′†

〈ψ|` 〈ψ0|f 〈ϕj |I
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (6.16)

The second term on the right-hand side of eq. (6.16) involves off-diagonal terms in the |ϕi〉I
basis. To bound these terms, we apply eq. (6.15) to the states |ϕ〉I = 1√

2(|ϕi〉I ± |ϕj〉I)
and use the triangle inequality to show that the real part of each off-diagonal term has
absolute value bounded above by |I|e−α log |B|. This works because a superposition of two
computational basis states is simple to create. Similarly, we apply eq. (6.15) to the states
|ϕ〉I = 1√

2(|ϕi〉I ± i|ϕj〉I) to bound the imaginary part of each off-diagonal term. Since for
a normalized state vector

∑
i,j cic

∗
j ≤ |I|, we conclude that∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u
v

U ′

|ψ〉` |ψ0〉f|ϕ̃〉I

u†
v†
U ′†

〈ψ|` 〈ψ0|f〈ϕ̃|I

− 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

≤ |I|2(1 + |I|)e−α log |B|. (6.17)
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Thus we find that unitarity holds up to exponentially small corrections even if |ϕ̃〉I does not
have low complexity, but to reach that conclusion we required |I| = eβ log |B| for β strictly
less than α/3, a somewhat stronger requirement on the dimension of the infaller’s Hilbert
space than we found for the case where the initial state of the infaller has low complexity
(β strictly less than α/2).

To summarize, eq. (6.17) implies that, as long as the infaller’s Hilbert space is not
too large, and assuming the infaller performs operations on the radiation with complexity
polynomial in log |B|, then the black hole S-matrix is unitary up to corrections which
are exponentially small in log |B|. Here log |B| is essentially the entropy of the black hole
that the infaller encounters. We reached this conclusion by assuming that the black hole’s
scrambling unitary U ′ is pseudorandom. Note that here U ′ is one particular fixed unitary
transformation, in contrast to the computation in section 5 which involved a Haar average
over scrambling unitaries.

Note that eq. (6.16) and eq. (6.17) were derived under the assumption that the approx-
imation error ε(log |B|) in eq. (6.15) is exponentially small. Under the weaker assumption
that ε(log |B|) is superpolynomially small, we conclude that V (U ′) is approximately unitary
with a superpolynomially small error provided that |I| scales polynomially with log |B|.

The holographic map we are considering includes postselection, and it is known that
in some situations postselection can lead to closed time-like curves, violation of unitarity,
and other pathologies [17, 18]. In our setting, pseudorandomness apparently obviates this
problem, making postselection consistent with unitarity up to very small corrections.

To conclude that the black hole S-matrix is very nearly unitary, we assumed that the
infaller performs operations of low compexity. The conclusion may change if the infaller
can perform operations with complexity exponential in the black hole entropy, resulting in
violations of unitary that are detectable by an exterior observer who performs operations of
polynomial complexity. We will discuss this issue in section 7.

6.3 Complexity of the black hole S-matrix

Eq. (6.15) establishes that the a computationally bounded infaller cannot cause the black hole
S-matrix to deviate significantly from unitarity. However, another issue deserves attention.
The circuit eq. (2.6), which defines the linear map V (U ′), involves postselection on a
measurement outcome that occurs with probability 1/|r|2. This probability is exponentially
small in the black hole entropy, raising the troubling possibility that the resulting V (U ′)
might have exponentially large computational complexity even if U ′ does not. Indeed, it
is known that quantum circuits of polynomial size, augmented by postselection, can solve
arbitrary problems in the very large complexity class PP [7], which contains NP. Could a
crafty observer who stays outside the black hole greatly amplify the computational power
of the black hole S-matrix by sending suitably programmed robots into the black hole, thus
overturning the quantum extended Church-Turing thesis [8, 9]?

A significant enhancement of the black hole’s computational power due to the infalling
agent is conceivable. What we can say, though, is that this enhancement is governed, not
by the very large Hilbert space dimension of the black hole, but rather by the much smaller
Hilbert space dimension of the infaller. If we fix the dimension of the infaller, as well as the
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computational complexity of u and v, then if U ′ has computational complexity polynomial
in the black hole S-matrix, so will V (U ′). Furthermore, if U ′ is pseudorandom and the
infalling agent is small compared to the black hole we can make a stronger statement — the
computational complexity of the black hole S-matrix is polynomial in log |B| provided the
interactions of the infaller with the radiation also have polynomial computational complexity,
despite the postselection in the holographic map.

As in our analysis of unitarity, our analysis of the complexity V (U ′) again hinges
on the identity eq. (6.10). What is crucial is that V (U ′), originally realized in a unitary
circuit accompanied by postselection on a measurement outcome occurring with probability
1/|r|2, can be alternatively realized in a unitary circuit accompanied by postselection on a
measurement outcome occurring with the much larger probability 1/|I|2.

We now wish to show that the map

V (U ′) = |I|

B R

U ′

|ψ〉` |ψ0〉f
|MAX〉I1I2 I

〈MAX|I2I

u
v

, (6.18)

defined by a nondeterministic circuit with postselection, can be accurately approximated
deterministically. This is achieved via a technique in quantum computation known as the
quantum singular value transformation (QSVT) [19, 20]. The basic setting for QSVT is
access to a unitary U and two projectors, Π and Π′, which together encode some rectangular
matrix A:

Π′UΠ = A. (6.19)

The main goal of QSVT is to construct another unitary U ′ that, together with the same
projectors, encodes a new matrix f(A), with different singular values than A. To be more
specific, let A = UΣV† be the singular value decomposition of A, where U and V are unitary
matrices and Σ is a diagonal rectangular matrix with nonnegative entries. The QSVT
algorithm constructs U ′ such that

Π′U ′Π = f(A) := Uf(Σ)V† (6.20)

for some polynomial function f(x) where f(Σ) is an entry-wise application of f(x) to Σ.
The unitary U ′ can be constructed from U , its inverse, and a unitary process that

“checks” if a state lies in the kernel of a projector. Specifically, given a projector P , the
“check” can be realized by the map

|ψ〉|0〉 →

|ψ〉|1〉 if |ψ〉 ∈ ker(P )
|ψ〉|0〉 if |ψ〉 ∈ ker(P )⊥

(6.21)
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n
U † U

|0〉

Figure 4. The circuit to implement eq. (6.21), where P = U |0 . . . 0〉〈0 . . . 0|U †. Here U is a general
unitary matrix acting on n qubits and the gate in the middle is a multi-qubit Toffoli gate controlled
on n qubits. The NOT gates are applied to all the n qubits.

where ker(P ) is the kernel of P and ker(P )⊥ is its orthogonal complement. If furthermore
the projector P can be expressed as P = |ϕ〉〈ϕ|, where |ϕ〉 = U |0 . . . 0〉, eq. (6.21) can be
implemented by the circuit in figure 4. Thus, in this case, the complexity of implementing
eq. (6.21) is proportional to the complexity of preparing the state |ϕ〉, up to some additional
gates whose cost is negligible in comparison. The QSVT makes use of such check maps for
both the projector Π and the projector Π′.

Importantly, the complexity of U ′ can be quantified in terms of the degree of the
polynomial function f(x). Let C be the sum of the complexity of U and the complexity of
implementing eq. (6.21). Then the complexity of U ′ is bounded by O(Cd), where d is the
degree of the polynomial.

Ported to our setup, one can see that our goal of implementing V (U ′) deterministically
can be achieved using the QSVT approach. Note that V (U ′) in fact can be constructed
from a unitary process U := uvU ′, sandwiched between two projections, defined as

Π = |ψ0〉f 〈ψ0| ⊗ |MAX〉I1I2〈MAX|,
Π′ = |MAX〉I2I〈MAX|.

(6.22)

Specifically,
Π′UΠ = 1

|I|
|MAX〉I2I · V (U ′) · 〈ψ0|f 〈MAX|I1I2 . (6.23)

Because both Π and Π′ are projectors onto states of low complexity, the corresponding
check maps have correspondingly low circuit complexity.

The singular values of the matrix Π′UΠ are all ≈ 1/|I|, up to an additive correction that
decays exponentially in log |B|; see eq. (6.17). These small singular values occur because
the projection onto the state |MAX〉I2I in eq. (6.18) succeeds with probability 1/|I|2. Our
goal is to replace U by a different efficient unitary transformation U ′ such that the singular
values of Π′U ′Π are all close to one. This would mean that if U ′ is performed instead of U ,
the desired measurement outcome is obtained with probability close to one. Furthermore,
we want the resulting map acting on `I to closely approximate V (U ′).

These goals can be achieved using the QSVT where f(x) is a polynomial approximation
to the sign function:

f(x) ≈ sgn(x− c) =


−1, x < c,

0, x = c,

1, x > c.

(6.24)

To see why this works, suppose we could apply the sign function, without any approximation,
to the singular values of Π′UΠ, and that we choose the constant c to be strictly smaller
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than any of these singular values. For example, we could choose c to be 1/|I| minus a
correction that decays more slowly than exponentially in log |B|.8 In this case, the QSVT
would boost each singular value from a value close to 1/|I| to the value 1. Furthermore,
because Π′UΠ and Π′U ′Π are diagonalized by the same transformations U and V acting on
left and right, and because the singular values of ΠUΠ′ are very nearly all the same, the
effect of the QSVT, to a very good approximation, is to multiply ΠUΠ′ by the constant
factor |I|; hence,

ΠU ′Π′ ≈ |MAX〉I2I · V (U ′) · 〈ψ0|f 〈MAX|I1I2 . (6.25)

Therefore, by applying U ′ to the initial state initial state |ψ〉`|ψ0〉f |MAX〉I1I2 |ϕ〉I , we obtain

U ′ (|ψ〉`|ψ0〉f |MAX〉I1I2 |ϕ〉I) ≈ (V (U ′)|ψ`〉|ϕ〉I)|MAX〉I2I . (6.26)

Thus, we can deterministically apply the operator V (U ′) to the initial state |ψ`〉|ϕ〉I .
In the above argument, we considered the QSVT in the idealized case where the sign

function is applied exactly. However, it is impossible to represent the sign function exactly
as a finite-degree polynomial; upon truncating to a finite degree, there is an approximation
error that must be analyzed. It was shown in ref. [19] that there is a polynomial of degree
O(∆−1 log 1/ε) which approximates the sign function up to an error of ε, as long as x does
not belong to [−∆/2,∆/2]. Thus, in our setup, we can choose ∆ = O(1/|I|), leading to the
degree of O(|I|). Therefore, up to a logarithmic factor in the inverse precision ε, we can
implement V (U ′) deterministically, with the complexity O(|I|C), where C is the combined
complexity of U ′, u, v, and the state preparation for |ψ0〉f , |MAX〉I′I′′ , |MAX〉I′′I . Thus, the
overall complexity of V (U ′) remains polynomial in the initial black hole entropy, as long as
the infaller’s Hilbert space is sufficiently small.

We conclude that postselection can boost the computational complexity of uvU ′ by
at most an O(|I|) factor. That is much smaller than a factor exponential in log |B|, which
one might have naively expected due to the postselection in the holographic map, but even
O(|I|) would be a big boost in computational power. If for example we send a programmed
1000-qubit quantum computer into a black hole, can we enhance the computational power
of the black hole by a factor O(|I| = 21000)? The above argument does not rule out
this possibility.

However, our complexity analysis has not yet invoked the pseudorandomness of U ′. We
show in appendix E that if U ′ is pseudorandom, then a postselected quantum computation
enabled by an infalling robot that interacts efficiently with radiation both outside and inside
the black hole can be simulated by a conventional quantum circuit (without postselection)
of size polynomial in log |B|, where the error in the simulation is |I|2ε(|B|), and ε(|B|) is the
approximation error in the relation eq. (6.9). The simulation error is exponentially small in
log |B| if ε(|B|) = e−α log |B| and |I| = eβ log |B| where β is strictly less than α/2. Under these
assumptions, the postselection in the holographic map does not result in superpolynomial
computational power.

8Other choices of c would suffice as well, for instance, c = 1/(2|I|), assuming log |B| is sufficiently large.

– 29 –



J
H
E
P
0
2
(
2
0
2
3
)
2
3
3

7 Computationally powerful infaller

In section 5, we showed that for Haar-random U ′, and for any u and v, V (U ′) is approxi-
mately unitary with high probability. Furthermore, in section 6.2 we showed that for any
pseudorandom unitary U ′, if u, v, and the initial state are polynomially complex, then V (U ′)
is approximately unitary. In this section, we consider what happens if, for an arbitrary
fixed U ′, the interactions of the infaller with the radiation (the unitary transformations u
and v) have unrestricted complexity. We will see that, in that case, u and v can be chosen
so that V (U ′) deviates substantially from unitarity. This non-unitarity could be detected
by an exterior observer, as discussed in section 3.

To demonstrate the potential for non-unitarity, it will suffice to choose u to be the
identity — the infaller will interact nontrivally only with the radiation modes inside the
black hole. To construct the appropriate v, we use the observation that if U ′ is a scrambling
unitary, then for an old black hole such that |R| � |B| one can recover the initial state
of the infaller I by performing a decoding operation on R alone [15]. That is, there is a
unitary v′ (which might have superpolynomial computational complexity) that unscrambles
the radiation and deposits the infalling state of I in a quantum memory I ′ which has the
same Hilbert space dimension as I:

U ′

|ψ〉` |ψ0〉f I

v′

B

R

R′ I ′

=
U ′′

|ψ〉` |ψ0〉f I

B R′ I ′

. (7.1)

Now we construct v as the product of two unitary transformations: v′′ acting on Ir,
followed by v′T (the transpose of the unscrambler v′) acting on r along. Here we choose v′′

so that it couples I to the subsystem of r that is mapped to I ′ by the holographic map and
unscrambler:

v′′

B

√
|r|〈MAX|

U ′

|ψ〉` |ψ0〉f I

|MAX〉

v′T
R′ I ′r . (7.2)

We see using eq. (7.1) that I is mapped to I ′ by a process in which, in effect, I interacts
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with its future self:

v′′

I

I ′

=

I

I ′

v′′
. (7.3)

This map from I to I ′ is not necessarily unitary [13]. To be concrete, let {|i〉, i = 0, 1, . . . , |I|−
1} denote an orthonormal basis for I, and suppose the unitary transformation v′′ is the
“controlled-sum gate”

v′′ : |i〉 ⊗ |j〉 → |i〉 ⊗ |j + i (mod |I|)〉. (7.4)

Then after postselection and renormalization of the state, the map in eq. (7.3) takes an
arbitrary input state to |0〉, flagrantly violating unitarity.

If the unitary acting on Ir is v = v′T (i.e., if v′′ is the identity), then as we have already
emphasized the map from I to I ′ is the identity map. This means that we can program
a (computationally powerful) robot so that after a scrambling time (the time needed for
U ′ to be a scrambling unitary) the information encoded in the infalling robot’s memory
emerges from the black hole in unscrambled form, encoded in just O(log |I|) qubits of the
Hawking radiation.

We underscore again that the infaller induces detectable violations of unitarity, or
arranges rapid emergence of quantum information in the Hawking radiation, by applying
the unscrambling operation v′T to r behind the horizon. In fact we expect this unscrambler
to have computational complexity which is exponential in log |B| [7, 11, 14, 21]. The proper
time for the infaller to reach the black hole singularity after crossing the event horizon
scales like the square root of log |B|, far too short a time to apply so complex an operation.
A physical process occurring in such a short time is expected to have polynomial complexity,
and as we saw in section 6.2, the unitarity of the black hole S-matrix is well protected
against such computationally bounded infallers.

8 Conclusion

The “central dogma” of black hole physics [12] asserts that a black hole when viewed from
outside is a highly chaotic quantum system with finite Hilbert space dimension |B|, where
log |B| is the black hole’s Bekenstein-Hawking entropy, and that the joint evolution of the
black hole and its surroundings is exactly unitary. In the language of Akers et al. [1], this
description of a black hole when viewed from outside is the “fundamental picture.” If we
accept the central dogma, we face the challenge of reconciling this fundamental picture
with an “effective picture,” which describes the black hole as viewed by observers who fall
into the black hole. Black hole complementarity [22] posits that, away from regions of
large spacetime curvature, the effective picture is accurately characterized by local effective
quantum field theory, and that a well-defined dictionary (a “holographic map”) relates
physics in the effective picture to a corresponding description of the same physics in the
fundamental picture.
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Akers et al. [1] proposed such a holographic map in a toy model of black hole physics,
and they argued persuasively that this model captures some essential features of realistic
black holes. Our goal in this work has been to subject the holographic map of [1] to further
scrutiny. Our conclusion is that, under appropriate assumptions, the proposed holographic
map passes some nontrivial consistency tests beyond those investigated in ref. [1].

For an old black hole that has already radiated away more than half of its initial
entropy, the Hilbert space of the black hole interior in the effective picture has a much
larger dimension than the black hole Hilbert space in the fundamental picture. Therefore,
the holographic map from the effective picture to the fundamental picture is necessarily
non-isometric, annihilating many of the states in the effective picture. Ref. [1] argued
that local effective field theory can nevertheless accurately describe the interior as seen by
observers who perform operations of bounded computational complexity, thus providing a
satisfying explanation of how the two pictures can fit together.

However, the non-isometric map is realized by unitary evolution accompanied by
measurement and postselection; this raises concerns, because it is known that postselection
can result in pathological effects such as flagrant violations of unitarity [6, 13, 17, 18]. In
the proposal of ref. [1], postselection is a feature of the holographic map rather than a
process occurring in spacetime. Nevertheless, we should examine whether the consequences
of postselection might disrupt the putative compatibility of the effective and fundamental
pictures under more general conditions than those considered in [1].

In particular, we have considered the effects of infalling agents that interact with
radiation modes both outside and inside the black hole. As we have emphasized, it is
possible in principle for such an infalling agent to induce flagrant violations of unitary
that can be detected by an observer who stays outside the black hole. We have found,
though, that the violations of unitarity are extremely small with high probability if the
unitary transformation U ′ describing the black hole’s internal unitary dynamics is a typical
transformation sampled from the Haar distribution. In the more realistic case where U ′ is
an efficient but pseudorandom unitary, we found that deviations from unitarity are highly
suppressed if the infaller’s Hilbert space dimension is not too large. We also investigated
whether, in the presence of an infaller, the postselection inherent to the holographic map
results in substantial amplification of the black hole’s computational power. We concluded
that this amplification is modest if the infaller’s Hilbert space is small. For our analysis
of both the unitarity and the complexity of the black hole S-matrix V (U ′) we rely on the
same essential trick — we can replace the description of V (U ′) in ref. [1], which involves
postselection in the very large Hilbert space associated with the black hole interior, by an
equivalent description involving postselection in a much smaller Hilbert space determined
by the size of the infalling agent.

From a quantum information perspective, it is intriguing to see that there are settings
where postselection is compatible with (very small deviations from) unitarity and does
not result in excessive computational power. But what guiding principles fix the context
in which postselection is physically acceptable? Further exploration of the connections
between exhausitive search and superluminal signalling [23] may be helpful for addressing
this question.
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Of course, what we have analyzed is merely a toy model of black hole physics; we have
not attempted to fold in essential features such as diffeomorphism invariance, weakly-coupled
propagating gravitons, etc. Finding that well-motivated assumptions imply very small
violations of unitarity in the toy model boosts our confidence that a more complete model
can reconcile a semiclassical treatment in the effective picture with exact unitarity in the
fundamental picture, in accord with the standard dogma. But that remains to be seen.
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A Distinguishing a low-rank channel from a depolarizing channel

Here we show that any quantum channel that can be purified using a small Hilbert space is
information-theoretically distinguishable from the depolarizing channel. Consider a physical
process acting on HY , in which one (i) prepares a fixed pure state on X, (ii) applies a
unitary U acting on HX ⊗HY , and (iii) traces out X. This defines a quantum channel on
Y , denoted as EY .

We claim that, assuming |X| � |Y |, EY is statistically distinguishable from the
depolarizing channel DY , defined as follows:

DY (ρ) = IY
|Y |

(A.1)

for any density matrix ρ, where IY is the identity operator on HY . Two quantum states can
be distinguished by some measurement with O(1) success probability if the two states are
distance O(1) apart in the 1-norm. Therefore, two channels are information-theoretically
distinguishable if there is an input state such that the two corresponding outputs are
distance O(1) apart in the 1-norm.

If the channel EY acts on the input pure state |ψ〉〈ψ|, then the entropy of the output
state is upper bounded by log |X|. On the other hand, if we apply DY to |ψ〉〈ψ|, we get a
state with an entropy of log |Y |. At this point we can invoke the continuity of entropy due
to Fannes and Audenaert [24, 25]:

|S(ρ)− S(σ)| ≤ T log(d− 1) +H({T, 1− T}); (A.2)

here T = 1
2‖ρ − σ‖1, d is the Hilbert space dimension, and H({p, 1 − p}) = −p log p −

(1− p) log(1− p) is the binary entropy. Choosing ρ = EY (|ψ〉〈ψ|) and σ = DY (|ψ〉〈ψ|), we
obtain the following bound:

| log |Y | − log |X|| ≤ T log(|Y | − 1) +H({T, 1− T}). (A.3)
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The binary entropy is no larger than 1; therefore, if |X| � |Y | we conclude that T must be
close to 1 if log |Y | is large. Thus, with high probability one can distinguish EY from DY ,
by applying both channels to the same pure state.

This argument shows that a measurement exists that distinguishes the two channels,
but provides no guarantee concerning the computational complexity of that measurement.
As discussed in section 6, under plausible assumptions, one can choose the unitary U

acting on XY such that no efficient measurement on Y can distinguish EY from DY with
nonnegligible success probability.

B Partially transposed unitary

Here we bound the operator norm of a partially transposed unitary transformation. Consider
a unitary U acting on a bipartite Hilbert space HA ⊗HB, and let UTB denotes its partial
transpose. Below we provide a tight bound on

∥∥∥UTB

∥∥∥, which will be useful in appendix C.
Recall that the operator norm of an operator O acting on HA ⊗HB is defined as

‖O‖ = sup
|ψ〉

√
〈ψ|O†O|ψ〉, (B.1)

where the supremum is taken over normalized vectors in HA⊗HB . The partially transposed
unitary UTB can be diagrammatically expressed as

UTB = U

A

A

B

B

, (B.2)

with the input to UTB on the bottom and the output on the top. The norm of this operator
is equal to the norm of the operator

U
TB = dB〈Φ|BB1U |Φ〉BB2 , (B.3)

which maps AB1 to AB2 and can be expressed diagrammatically as

U
TB = dB U

A

A

B1

B2

|Φ〉BB2

〈Φ|BB1

(B.4)

HereHB1 andHB2 are auxiliary Hilbert spaces such that dim(HB1) = dim(HB2) = dim(HB),
and |Φ〉BB1 = 1√

dB

∑dB
k=0 |k〉B|k〉B1 and |Φ〉BB2 = 1√

dB

∑dB
k=0 |k〉B|k〉B2 are maximally en-
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tangled states. The norm squared of UTB is

‖UTB‖2 = sup
|ψ〉
〈ψ|AB1U

TB†U
TB |ψ〉AB1

= d2
B sup
|ψ〉
〈ψ|AB1

(
〈Φ|BB2U

†|Φ〉BB1

)
(〈Φ|BB1U |Φ〉BB2) |ψ〉AB1

= d2
B sup
|ψ〉

(〈ψ|AB1〈ΦBB2 |)
(
U †|Φ〉BB1〈Φ|U

)
(|ψ〉AB1 |Φ〉BB2)

≤ d2
B‖
(
U †|Φ〉BB1〈Φ|U

)
‖

= d2
B.

(B.5)

Since the operator norm of UTB is equal to that of UTB , we thus conclude

‖UTB‖ ≤ dB. (B.6)

Eq. (B.6) is in fact tight. Setting the dimensions of HA and HB to be equal, consider
a swap operator between A and B, denoted as SWAPA↔B. Its partial transpose becomes

SWAPTB
A↔B = dB|Φ〉AB〈Φ|, (B.7)

where |Φ〉AB is a maximally entangled state of AB. Thus, the operator norm of the partially
transposed swap is dB, saturating the bound in eq. (B.6).

C Reversed time ordering

In section 5 we assumed that the infaller I interacts first with the radiation system R

outside the black hole, and then with the system r inside the black hole. This is the natural
order of operations enforced by the black hole’s causal structure. Nevertheless, it is of
interest to see whether the conclusion would be different if this ordering were reversed.

In this appendix, we consider the hypothetical setup in which the infaller interacts with
the interior mode prior to interacting with the exterior mode. In this scenario, the black
hole S-matrix becomes

u
v

B

√
|r|〈MAX|

U ′

` |ψ0〉f I r R

|MAX〉

=

u

v

RB

U ′

` |ψ0〉f I

. (C.1)
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When we compute V (U ′)†V (U ′) averaged over U ′, we get

∫
dU ′



u
v

U ′

` |ψ0〉f I

u†
v†
U ′†

` |ψ0〉f I



= 1
|`||I||f | u

v

` |ψ0〉f I

u†
v†

` |ψ0〉f I

= |B|
|`||I||f | u

v

` I

u†
v†

` I

= I` ⊗ II ,

(C.2)

We can also compute the fluctuation:

∫
dU ′



u
v

U ′

` |ψ0〉f I

u†
v†
U ′†

` |ψ0〉f I



⊗2

=
(

1− 1
(|`||I||f |)2

)−1
(I` ⊗ IR)⊗2 + ∆′, (C.3)
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where

∆′ = − |B|
d(d2 − 1)SWAP`↔`′



u
v

43

I

u†
v†

12

I

u
v

12

I ′

u†
v†

43

I ′


. (C.4)

Similar to the discussion in section 5, we can first consider product states |ϕ〉 =
|ϕI〉 ⊗ |ϕ`〉 and |ϕ′〉 = |ϕ′I〉 ⊗ |ϕ′`〉 over ` and I and later extend the bound to general
entangled states of I`. Using the definition of ∆′ in eq. (C.4), we get

(〈ϕ| ⊗ 〈ϕ′|)∆′(|ϕ′〉 ⊗ |ϕ〉) = − |B|
d(d2 − 1)



u
v

43

|ϕ′I〉

u†
v†

12

〈ϕI |

u
v

12

|ϕI〉

u†
v†

43

〈ϕ′I |


= − |B|
d(d2 − 1)

 u
v

43

〈(ϕ′I)∗|

u†
v†

12

|ϕ∗I〉

u
v

12

〈ϕ∗I |

u†
v†

43

|(ϕ′I)∗〉



= − |B|
d(d2 − 1)

 u
v

43 |ϕ′I〉

u†
v†

12 〈ϕI |

u
v

12 |ϕI〉

u†
v†

43 〈ϕ′I |


(C.5)
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where the second line is obtained by straightening the legs connecting the triangles and the
third line is obtained by bending the black legs.

We can now reinterpret the diagram as

(〈ϕ| ⊗ 〈ϕ′|)∆′(|ϕ′〉 ⊗ |ϕ〉) = − |B|
d(d2 − 1)TrR(MϕIMϕ′

I
), (C.6)

where Mϕi is defined as

MϕI =

u†
v†

12

R

〈ϕI |

u
v

|ϕI〉

R

= TrI
(
uvTI (IR ⊗ |ϕI〉〈ϕI |)

(
vTI

)†
u†
)
. (C.7)

Recalling that ‖vTI‖ ≤ |I| (see eq. (B.6)), we obtain the following bound:

‖MϕI‖ ≤ |I|
3. (C.8)

A similar expression for Mϕ′
I
and its bound can be derived in the same way. We can thus

obtain the following bound

|(〈ϕ| ⊗ 〈ϕ′|)∆′(|ϕ′〉 ⊗ |ϕ〉)| ≤ |I|6

d2 − 1 , (C.9)

assuming |ϕ〉 and |ϕ′〉 are product states over I and `, using the fact that the partial trace
on R incurs a factor of |R| and the fact that d = |B||R|. Following the argument in section 5,
we see that for general entangled states between I and `, we get

|(〈ϕ| ⊗ 〈ϕ′|)∆′(|ϕ′〉 ⊗ |ϕ〉)| ≤ |I|8

d2 − 1 . (C.10)

Therefore, even with the reverse ordering we conclude that the fluctuation remains small in
the limit that |I| � d.
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C.1 Complexity

Here we study the complexity of the circuit eq. (C.1) after making it deterministic. Note
that the map V (U ′) can is equivalent to a unitary circuit followed by postselection on some
auxiliary systems I1, I2, I3, I4 and the infaller I:

|r|
u

v

B
〈MAX|

U ′

|ψ〉` |ψ0〉f I r R
|MAX〉

= |I|2

B R

U ′

|ψ〉` |ψ0〉f I
|MAX〉I1I2 |MAX〉I3I4

〈MAX|I2I3 〈MAX|I4I

u
v

.

(C.11)
Here the dimensions of I1, I2, I3, and I4 are all chosen to be equal to that of I. Thus, we
see that the postselection success probability is |I|−2. Thus, using the QSVT approach
in section 6.3, we an bound the overall complexity of V (U ′) as O(|I|2C), where C is the
complexity of v, u, U ′, and the state preparation for |ψ〉`, |ψ0〉f , |MAX〉 combined.

D Pseudorandom unitary: Candidate construction

In this appendix, we review a candidate construction for pseudorandom unitary discussed
in ref. [10]. The basic idea is to apply a “random phase” over two complementary basis
sets. Consider the unitary transformation

UPR(|x〉|y〉) = ω
Fx(y)
N |x〉|y〉, (D.1)

where ωN = e2πi/N and each Fx(y) : X × Y → Y is an efficiently computable function, and
suppose that if x is chosen uniformly over X, the resulting ensemble of functions cannot
be distinguished from a uniformly random function by any adversary who is limited to
computations with complexity polynomial in log |X|. It was shown in ref. [10] that eq. (D.1)
can be used to generate an ensemble of states which is computationally indistinguishable
from a Haar-random ensemble. This ensemble of states can be realized by preparing a
uniform superposition state in the Y register, applying UPR, and then tracing out the
Y register.

However, the corresponding ensemble of unitary transformations {UPR,x : x ∈ X},
where UPR,x|y〉 = ω

Fx(y)
N |y〉, does not provide a pseudorandom unitary as prescribed in

Definition 1, because its action on some states is easy to distinguish from the action of a
Haar-random ensemble. In particular, for each x, the unitary UPR,x maps computational
basis states in the Y register to computational basis states, while in contrast a typical
unitary transformation sampled from the Haar-random ensemble maps such states to highly
entangled states.

Ref. [10] suggested a way to construct psuedorandom unitary transformations using
{UPR,x} combined with other quantum gates. The idea is to apply {UPR,xH

⊗n : x ∈ X}
several times in succession, where H⊗n denotes a tensor product of Hadamard gates acting
on all qubits, and x is randomly sampled each time UPR,x is applied. Appending the extra
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Hadamard gates has the effect of rotating the basis set in which the pseudorandom phases
are applied. However, it has not been proven that the pseudorandomness of this modified
ensemble follows from widely accepted computational assumptions.

E Black-hole-assisted quantum computation

In this appendix, we investigate the possibility of using a black hole to speed up a quantum
computation. An observer, who stays outside the black hole, sends a robot into the black
hole; this robot applies the unitaries v and u. From the perspective of the observer, the
resulting physical process is shown here:

u

v

RB

U ′

|ψ〉` |ψ0〉f I

(E.1)

The observer can set the initial state of the robot (I) and later measure the radiation R in
a simple basis. The key question is: what computational problems can be solved efficiently
by (i) initializing the state of I and (ii) later measuring R? The dynamics of U ′ is assumed
to be pseudorandom, as in the main text.

Let |ϕ〉I be the initial state of I and |Ψ〉R be the outcome when R is measured, both
assumed to have complexity at most polynomial in the black hole entropy. We also assume
that the unitaries u and v — the unitaries that describe the interaction between the robot
and the radiation — have polynomial complexity. Then the probability of obtaining this
measurement outcome can be represented by the following diagram:

u
v

〈Ψ|R

U ′

|ψ〉` |ψ0〉f |ϕ〉I

|Ψ〉R

u†
v†
U ′†

〈ψ|` 〈ψ0|f 〈ϕ|I

= |I|2



B
〈Ψ|R

U ′

|ψ〉` |ψ0〉f
|MAX〉I1I2 |ϕ〉I

〈MAX|I2I

u
v

|Ψ〉R

U ′†

〈ψ|` 〈ψ0|f
〈MAX|I1I2 〈ϕ|I

|MAX〉I2I

u†
v†



, (E.2)
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where the right-hand side of the equation is obtained by straightening out the blue and red
legs. One can view the right-hand side as a process in which one begins with a simple state
(|ψ〉`|ψ0〉f |MAX〉I1I2 |ϕ〉I), applies a pseudorandom unitary U ′, then applies a polynomially
complex unitary (u and v) followed by a simple measurement. From the definition of the
pseudorandom unitary, we can conclude the following:

B
〈Ψ|R

U ′

|ψ〉` |ψ0〉f
|MAX〉I1I2 |ϕ〉I

〈MAX|I2I

u
v

|Ψ〉R

U ′†

〈ψ|` 〈ψ0|f
〈MAX|I1I2 〈ϕ|I

|MAX〉I2I

u†
v†

≈
∫
dṼ



B
〈Ψ|R

Ṽ

|ψ〉` |ψ0〉f
|MAX〉I1I2 |ϕ〉I

〈MAX|I2I

u
v

|Ψ〉R

Ṽ †

〈ψ|` 〈ψ0|f
〈MAX|I1I2 〈ϕ|I

|MAX〉I2I

u†
v†



, (E.3)

with an approximation error superpolynomially small in log |B|, which we denote as ε(|B|).
The right-hand side of eq. (E.3) can be calculated using eq. (5.2):

∫
dṼ



B
〈Ψ|R

Ṽ

|ψ〉` |ψ0〉f
|MAX〉I1I2 |ϕ〉I

〈MAX|I2I

u
v

|Ψ〉R

Ṽ †

〈ψ|` 〈ψ0|f
〈MAX|I1I2 〈ϕ|I

|MAX〉I2I

u†
v†



= 1
|I|2

∫
dṼ



u
v

〈Ψ|R

Ṽ

|ψ〉` |ψ0〉f|ϕ〉I

|Ψ〉R

u†
v†
Ṽ †

〈ψ|` 〈ψ0|f〈ϕ|I
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= |B|
|`||I|3|f | 〈Ψ|R

|Ψ〉R

u
v

|ϕ〉I

u†
v†

〈ϕ|I

. (E.4)

Straightening the blue and red legs, we get

∫
dṼ



B
〈Ψ|R

Ṽ

|ψ〉` |ψ0〉f
|MAX〉I1I2 |ϕ〉I

〈MAX|I2I

u
v

|Ψ〉R

Ṽ †

〈ψ|` 〈ψ0|f
〈MAX|I1I2 〈ϕ|I

|MAX〉I2I

u†
v†



= 1
|R||I|2 〈Ψ|R

|Ψ〉R

u
v

|ϕ〉I

u†

v†

〈ϕ|I

= 1
|I|2 〈Ψ|R

|Ψ〉R

|MAX〉R′R

〈MAX|R′R

u
v

|ϕ〉I

u†

v†

〈ϕ|I

,

(E.5)
where R′ is an auxiliary subsystem whose dimension is equal to the dimension of R.

– 42 –



J
H
E
P
0
2
(
2
0
2
3
)
2
3
3

Therefore, we conclude

u
v

〈Ψ|R

U ′

|ψ〉` |ψ0〉f |ϕ〉I

|Ψ〉R

u†
v†
U ′†

〈ψ|` 〈ψ0|f 〈ϕ|I

≈
〈Ψ|R
|Ψ〉R

|MAX〉R′R

〈MAX|R′R

u
v

|ϕ〉I

u†

v†

〈ϕ|I

, (E.6)

with an approximation error bounded by |I|2ε(|B|). Eq. (E.6) is the key result of this
appendix. If U ′ is pseudorandom, then the expression on the left-hand side is equal to
expression on the right-hand side, up to an error bounded above by |I|2ε(|B|).

Recall now the interpretation of these two diagrams. In the case of the diagram on
the left, we envision a black-hole-assisted quantum computation which is initialized by
preparing the state |ϕ〉I of the infalling robot I. The robot interacts with radiation both
outside and inside the black hole, where both interactions have a computational complexity
which is polynomial in log |B|, the size of the black hole. Then the radiation system R

is measured and the outcome |Ψ〉R is obtained; this measurement also has complexity
polynomial in log |B|. The diagram represents the probability for this particular outcome
of the measurement of R. Because of the postselection inherent in the holographic map,
the computational complexity of the overall process is not immediately apparent.

Now consider the diagram on the right. Again a quantum computation is initialized by
preparing |ϕ〉I . In addition, the maximally entangled state |MAX〉R′R is prepared. Then I
interacts with R′R, where these interactions have a computational complexity polynomial
in log |B|. Finally, system R′ is discarded, and a low-complexity measurement is performed
on R, yielding the outcome |Ψ〉R. The diagram represents the probability for this particular
measurement outcome. In this case, it is manifest that the entire process has computational
complexity which is polynomial in log |B|.

We conclude that if U ′ is pseudorandom, and the error |I|2ε(|B|) is small, then the
nonunitary postselected quantum computation on the left can be accurately simulated by
the efficient unitary quantum computation on the right. The error is exponentially small in
log |B| if ε(|B|) = e−α log |B| and |I| = eβ log |B| where β is strictly less than α/2. Under these
assumptions, the postselection in the holographic map does not result in superpolynomial
computational power.
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