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Abstract

Programmable quantum simulators and quantum computers are 
opening unprecedented opportunities for exploring and exploiting 
the properties of highly entangled complex quantum systems. The 
complexity of large quantum systems is the source of computational 
power but also makes them difficult to control precisely or characterize 
accurately using measured classical data. We review protocols for probing 
the properties of complex many-qubit systems using measurement 
schemes that are practical using today’s quantum platforms. In these 
protocols, a quantum state is repeatedly prepared and measured  
in a randomly chosen basis; then a classical computer processes 
the measurement outcomes to estimate the desired property. The 
randomization of the measurement procedure has distinct advantages. 
For example, a single data set can be used multiple times to pursue a 
variety of applications, and imperfections in the measurements are 
mapped to a simplified noise model that can more easily be mitigated. 
We discuss a range of cases that have already been realized in quantum 
devices, including Hamiltonian simulation tasks, probes of quantum 
chaos, measurements of non-local order parameters, and comparison 
of quantum states produced in distantly separated laboratories. 
By providing a workable method for translating a complex quantum 
state into a succinct classical representation that preserves a rich 
variety of relevant physical properties, the randomized measurement 
toolbox strengthens our ability to grasp and control the quantum 
world. 
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Fortunately, a far less complete description of the state is adequate 
for many purposes18–20, so that the number of experiments and the 
amount of classical processing needed can be greatly reduced. Here, we 
review recent theoretical ideas about how to improve the efficiency of 
characterizing complex quantum states, and some of the experimental 
results that flow from these ideas.

The concepts and examples that we discuss in this Review share a 
common theme. Rather than tailoring the measurements performed in 
the laboratory to the particular properties one wishes to study, one can 
instead repeatedly perform measurements that are randomly sampled 
from a fixed ensemble, and then adapt the classical post-processing 
of the measurement outcomes to the particular task at hand21–28. This 
randomized measurement (RM) strategy can be surprisingly powerful 
even when the measurements are simple enough to be performed with 
adequate precision using today’s noisy quantum platforms. A particu-
larly simple procedure is to measure each qubit in a randomly chosen 
basis. By repeating this procedure of order log(L) times, and using only 
efficient classical post-processing, one can accurately estimate the 
expectation values of any L local operators — the number of experi-
ments needed does not depend at all on the total number of qubits24. 
Randomized single-qubit measurements also enable one to estimate 
the properties of larger subsystems22; in this case, the cost rises expo-
nentially with the size of the subsystem but is still far lower than the 
cost of complete tomography of the subsystem22–24. Alternatively, 
the global properties of the quantum state can be estimated by using 
a modest number of measurement repetitions if the measurements 
are preceded by relatively efficient information scrambling unitary 
operations executed with a quantum computer or programmable 
quantum simulator24,26. A further advantage of the RM approach is that 
randomization simplifies the effects of noise, so that imperfections 
in measurement outcomes can be more easily mitigated by suitably 
modifying the classical post-processing of the outcomes29,30.

Many applications of this RM toolbox have already been conceived 
and executed in experiments using quantum devices. For example, one 
can estimate the overlap of two quantum states produced in separate 
laboratories far apart from one another31,32. It is possible to probe 
chaotic quantum dynamics by measuring out-of-time-order correla-
tion functions33,34, without reversing time evolution or introducing 
ancilla systems. One can quantify quantum entanglement by measuring 
entropy35 and other entanglement measures36. It is possible to compute 
order parameters that characterize topological order or symmetry-
protected topological order37 and estimate the expectation value and 
variance of a local Hamiltonian24.

These and other applications have a notable feature. First, 
repeated RMs map a multiqubit quantum state to succinct classical 
data. Later, these classical data are processed to investigate properties 
of interest. Conveniently, the properties to be investigated need not 
be known when the measurements are performed using the quantum 
device; rather, one can:

Measure first, ask questions later.

Indeed, some of the applications reviewed here were carried out 
by reanalysing data that had originally been taken with a different 
purpose in mind.

An RM protocol may be viewed as a feasible scheme for translating 
the extravagant quantum information residing in a many-qubit state 
into a succinct classical representation of the state. This quantum-to-
classical conversion process unavoidably discards a vast amount of 

Key points

 • Increasingly sophisticated quantum simulators and quantum 
computers are becoming available, but they are difficult to 
characterize accurately using classically measured data.

 • Randomized measurements provide a feasible procedure for 
converting a many-qubit quantum state to succinct classical data that 
can later be processed to estimate many properties of interest with 
rigorous guarantees.

 • Randomized measurements are readily implemented in noisy 
intermediate-scale quantum devices by repeatedly preparing and 
measuring a quantum state in a randomly selected basis.

 • Many applications of randomized measurements have been 
conceived and experimentally demonstrated, including Hamiltonian 
simulation tasks, probes of quantum chaos, measurements of non-
local order parameters, and comparison of quantum states produced 
in distantly separated laboratories.

 • Experimental imperfections in performing randomized 
measurements can often be easily mitigated; a wide range of different 
physical platforms realizing qubits, bosonic and fermionic quantum 
many-body systems is accessible.

 • Viewed as a powerful quantum-to-classical converter, randomized 
measurements enable the use of classical algorithms to learn and 
predict properties of quantum systems that may never have been 
realized before.

Introduction
As far as we know, it is not possible to use classical data to fully and 
succinctly characterize generic quantum systems of many strongly 
interacting particles. This observation is both a curse and a blessing. On 
the one hand, it limits the ability of classical beings like us to grasp the 
behaviour of complex highly entangled quantum systems. On the other 
hand, it invites us to build and operate large-scale quantum devices.

The emergence of increasingly powerful quantum technologies 
has transformed the challenge of characterizing complex quantum 
systems from a theoretical conundrum to a laboratory imperative. 
Someday there will be large-scale error-corrected quantum computers 
to advance the frontiers of science and run useful practical applica-
tions. Although such machines may lie far in the future, even today 
programmable quantum platforms1,2 can create and control complex 
states comprising many atoms3–8, spins9,10, photons11,12 or supercon-
ducting circuit elements13, opening unprecedented opportunities for 
scientific discovery14.

Experimentalists and theorists working together must develop, 
perfect and use suitable tools to investigate and exploit the features 
of many-qubit quantum states that are created in the laboratory. This 
typically involves preparing and measuring the same quantum state 
over and over again. With enough repetitions, it is possible to com-
pletely characterize an N-qubit state by means of full-state tomog-
raphy, but this task is hopelessly inefficient, requiring a number of 
experiments exponential in N (refs.15–17) and an amount of classical post-
processing of the experimental results that is also exponentially large. 
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information about the state, but the applications mentioned above 
illustrate that many physically relevant features of the state can survive. 
Thus, scientists assisted by their powerful classical computers, by pon-
dering and manipulating classical data, can grasp crucial properties of 
the quantum world that might otherwise remain concealed.

Experimental recipe and post-processing of the 
measurements
We start by reviewing a particular RM scheme using repeated single-
qubit measurements to construct a ‘classical shadow’ of a quantum 
state, state a rigorous guarantee on the accuracy of estimated opera-
tor expectation values based on classical shadows, and describe an 
application of randomized single-qubit measurements to estimating 
the purity of a many-qubit state.

Data acquisition protocol
Consider a quantum system consisting of N qubits with associated Hil-
bert space C( ) N2 ⊗ . An RM (see Fig. 1) consists of the following steps. 
First, the quantum many-body state ρ of interest is prepared in the 
device. Second, a unitary operation U, selected at random from a suit-
able ensemble of unitary operations, is applied to ρ. For concreteness, 
we consider here local random operations ⨂U U= n

N
n=1 , applied to each 

qubit independently. The individual single-qubit rotations  
Un (n = 1,…, N) are sampled from ensembles of single-qubit unitary 
operations that evenly cover the Bloch sphere of each qubit. Examples 
of such unitary designs38,39 include the single-qubit Clifford group and 
the full unitary group U(2) encompassing all single-qubit transforma-
tions. We note that more general choices of multiqubit random 
operations are possible and are discussed in the final section. Third, a 
projective measurement in the computational basis ss{ } is performed, 
with outcome bit string s = (s1,…, sN) and sn ∈ {0, 1} for n = 1,…, N. These 
three steps are then repeated K times with a fixed unitary U. Subsequently, 
the entire procedure is repeated with M independently sampled unitaries 
U such that in total MK experimental runs are performed.

In summary, MK experimental runs are executed, each of which is 
characterized by N single-qubit unitaries U U, …,m

N
m

1
( ) ( ) that only depend 

on m, and an N-bit outcome s sss = ( , …, )m k m k
N

m k( , )
1
( , ) ( , )  that depends on 

both m = 1,…, M and k = 1,…, K. Storing both up to floating point accu-
racy is comparatively cheap, requiring storage of MKN( )O  floating point 
numbers in total.

Post-processing protocol
After completing a full experiment, one can use the obtained data to 
extract information about the underlying many-body system. It is 
instructive to consider two extreme examples. For the sake of simplic-
ity, we also assume that the single-qubit rotations Ui are sampled from 
the single-qubit Clifford group, the discrete ensemble that randomly 

permutes Pauli matrices X Y Z{ , , } . That is, U ZU W X Y Z= ∈ { , , }n n n
†  for 

1 ≤ n ≤ N.
Setting M = 1 means that one repeats the same RM over and over 

(K > 1 times). This is equivalent to measuring a random string of Pauli 
observables, namely ⋯ ⋯U ZU U ZU W W⊗ ⊗ = ⊗ ⊗n N N1

†
1

†
1 , a total of  

K times. This, in turn, allows one to approximate the expectation value 
W W ρtr( ⊗ ⊗ )N1 ⋯  and compatible subsystem marginals, for example, 

⋯ IW W ρtr( ⊗ ⊗ ⊗ )l
N l

1
⊗( − )  for 1 ≤ l ≤ N (see Fig. 2). Expectation values 

of other Pauli observables that do not commute with W1 ⊗ ⋯ ⊗ WN are 
off limits, though.

The other extreme case drives us into more interesting territory. 
One samples a total of M random Pauli strings  W W⊗ ⊗m

N
m

1
( ) ( )⋯ , 1 ≤ m ≤ M  

and measures each of them exactly once, K = 1. A single measurement 
outcome does not enable the reliable approximation of any of the origi-
nal Pauli expectation values. But one can combine samples across dif-
ferent measurements to predict many (subsystem) expectation values. 
Take IX Y Z⊗ ⊗ ⊗ N⊗( −3)  as a concrete example. The outcome from 
measuring ⋯W W⊗ ⊗m

N
m

1
( ) ( ) provides useful statistical information if 

and only if W X=m
1
( ) , W Y=m

2
( )  and W Z=m

3
( ) . If one assigns all single-qubit 

unitaries Un uniformly at random, these accordances occur with prob-
ability (1/3)3. In turn, one can expect that a total of M ≥ 33/ε2 randomly 
selected N-qubit Pauli measurements provides enough statistical data 
to approximate IX Y Z ρtr( ⊗ ⊗ ⊗ )n⊗( −3)  up to an error ε. Interestingly, 
this argument only depends on the size w of the subsystem where the 
Pauli strings of interest act non-trivially (w = 3 for our example). The 
actual qubit locations and Pauli strings of interest (X Y Z⊗ ⊗ ⊗ N⊗( −3)I  
in our example) do not matter at all. Note that because the Pauli opera-
tors form a basis (unnormalized) for the w-qubit subsystem, one can 
estimate any observable on the w-qubit marginal in this fashion. In fact, 
as summarized in Theorem 1 below, one can extend this argument to 
cover (very) many size-w expectation values in one go.

The actual prediction step is also relatively straightforward. We 
restrict our attention to measurement settings that are compatible 
with the Pauli expectation value o Oρ= tr( ) in question and use empiri-
cal averaging of compatible outcomes to obtain an approximation ̂o 
of o. The following formula succinctly summarizes such an estimation 
process:

∑o
M

Oρ=
1

tr( ) where (1)
m

M
m

=1

( )̂ ̂

̂ ⨂∑ρ
K

U s s U=
1

(3( ) − ) (2)m

k

K

n

N

n
m

n
m k

n
m k

n
m( )

=1 =1

( ) † ( , ) ( , ) ( ) I

combines the mth measurement settings (U U, …,m
N

m
1
( ) ( ) ) with the K 

associated outcomes (s s, …,m k
N

m k
1
( , ) ( , )) to produce an approximation 

of the underlying N-qubit quantum state ρ. The collection ̂ρ{ }m
m M

( )
=1,…,  

Randomized measurement Estimation of quantum state properties

tr(Oρ), tr(ρ2),…

U1
Z

U2
Z

U3
Z

UN
Z

Quantum
state

N qubits … …

Fig. 1 | Randomized measurements. Randomized measurements 
are made on a N-qubit quantum state ρ via the application of 
local random unitaries U U= n

N
n=1⨂  and subsequent projective 

measurements performed in the computational Z-basis. Through 
classical post-processing of the outcomes, many properties of ρ, 
such as observable expectation values Oρtr( ) and the purity ρtr( )2 , 
can be estimated. Remarkably, this estimation is provably efficient 
if we restrict attention to properties of (arbitrary) subsystems of 
constant size.
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is called a classical shadow of ρ (refs.24,25). This procedure works for 
arbitrary target observables O (not just Pauli expectation values) and 
ensembles of single-qubit random unitaries that cover the Bloch sphere 
evenly (not just Clifford unitaries).

Remarkably, RMs give access not only to observables but also to 
polynomial functionals of the density matrix. In fact, RMs were first 
envisioned to estimate the purity P ρ= tr( )2

2  by means of the following 
formula21–23,35

∑ ∑P
MK K

=
2
( − 1)

(−2) . (3)

N

m

M

k k

k k

K
D ss ss

2
=1 , ′=1

≠ ′

− [ , ]m k m k( , ) ( , ′)̂

One first calculates a weighted average of Hamming distances 
D ss ss[ , ]m k m k( , ) ( , ′)  of two distinct outcomes s(m,k) and s m k( , ′) that belong to 
the same measurement setting m. Subsequently, one averages over 
different measurement settings. Although the precise form of equation 
(3) follows from derivations elsewhere23,35, some intuition might be 
gained as follows: one observes bitstrings s(m,k) according to their Born 
probabilities P U ρUss ss ss( ) = ( )U

m k m k m m m k( , ) ( , ) ( ) † ( ) ( , ) 2. In equation (3), 
the second-order correlations of (estimations of) these Born probabili-
ties are averaged over local random unitaries. Such an average must 
correspond to a second-order functional of ρ which is invariant under 
local random unitary transformations, that is, in this case, the purity.

Alternatively, one can estimate the purity by replacing distinct 
copies of ρ by distinct classical shadows (equation (2)) and average 
over all possible choices24,36:

∑P
M M

ρ ρ=
1

( − 1)
tr( ). (4)

m m

m m
2

≠ ′

( ) ( ′)̂ ̂ ̂

This estimation procedure also extends to arbitrary polynomials 
of the density matrix24,36,40,41.

With both estimators, one can access purities ρtr( )A
2  of reduced 

density matrices ρ ρ= tr ( )A Ac  of arbitrary subsystems A (with comple-
ment Ac) by restriction during the post-processing. For a fixed total 
number of experimental runs MK, equation (3) achieves a more accurate 
estimate for many repetitions K of a few measurement settings M, whereas 

equation (4) performs better for many different measurement settings 
with few repetitions each. In addition, the estimator in equation (3) is 
expected to be more robust against miscalibration of the random unitaries 
(gate-independent unitary errors) than equation (4) because the estima-
tor in equation (3) depends solely on the measured bitstrings, and matrix 
elements of the applied random unitaries do not appear explicitly.

Rigorous theory and history
The post-processing rules introduced in equations (1) and (2) can be 
equipped with rigorous error bounds. Here, we present an exemplary 
performance guarantee that is valid for evenly distributed ensem-
bles of single-qubit unitaries, such as the full unitary group U(2) or 
the Clifford group.

Theorem 1. M L ε∝ log( )4 /w 2 independent randomized measurements 
suffice to ε-approximate an entire collection of L subsystem-size-w 
expectation values with high success probability.

For the special case of Pauli expectation values, an improved scal-
ing of M L ε∝ log( )3 /w 2 RMs readily follows from the arguments pro-
vided above. Historically, this result for Pauli operators pre-dates 
Theorem 1 and was first proven (Appendix D of ref.42) by a slightly dif-
ferent, yet equally simple, argument to the one presented here. This 
result in turn was influenced by the earlier but quadratically weaker 
bound in ref.43. The general case displayed in Theorem 1 is based on the 
arguments presented in ref.24. The actual error bound implicitly works 
in the single-shot limit (K = 1). But multiple repetitions for each 
measurement setting (K > 1) can only further improve performance.

Theorem 1 contains an interesting tradeoff between subsystem  
size (which enters exponentially) and the number of observables (which 
enters logarithmically). For instance, M N ε∝ log( )/ 2 randomized N-qubit 
Pauli measurements already suffice to ε-approximate all two-body Pauli 
expectation values in a system with N qubits. And, remarkably, the state-
ment is completely independent of the underlying quantum state ρ. 
Similarly, for the measurement of the purity of (reduced) density matri-
ces of (sub)systems with size w ≤ N, for estimators in both equations (3) 
and (4), the required number of experimental runs MK to obtain a given 
accuracy ε scales only (exponentially) with subsystem size w (refs.24,36,44). 
Asymptotic scalings M ∝ 2w/ε2 have been rigorously shown for 
equation (4)24,36 and also observed for equation (3)23,35,44.

Theorem 1 showcases that it can be much easier (and more reliable) 
to accurately approximate certain properties of an unknown state 
than to estimate the full state ρ. This related problem, called quantum 
state tomography, has a long and prominent history45. Fundamental 
lower bounds assert that ε-accurate quantum state tomography of an 
N-qubit system must require exponentially many samples in general 
(MK ≥ 4N/ε2; see refs.17,46–48). Substantial improvements are only possible 
if the state in question is known to have (very) advantageous structure, 
for example matrix product states with polynomial bond dimension49 
or neural network states50.

The idea of bypassing quantum state tomography, that is the full 
reconstruction of the quantum state ρ, and directly predicting (subsystem) 
expectation values Oρtr( ) is also known as shadow estimation18–20. In its 
original form, shadow estimation does not have an exponential depend-
ence on subsystem size w, but does require loading multiple state copies 
into a quantum memory and performing entangling quantum computa-
tions on them. The procedure discussed here can be viewed as a more 
near-term variant of this idea. But it also draws inspiration from refs.21,51 
and resource-efficient approaches to quantum state tomography52–54.

X X X XZ ZY Y Y

Pauli basis 1

Pauli basis 2

Basis 1
Basis 2

Pauli observables

Z Y X X X

XY

Y

YX

Z

X

Y Y Z Z

Basis 1
Basis 2

Basis 1
Basis 2

Fig. 2 | Pauli observables. A Pauli string denotes the basis one measures in for 
each qubit. A Pauli observable O given by a tensor product of X Y Z{ , , , }I , where I  
is the identity and X,Y,Z are the Pauli matrices is compatible with the string if the 
non-identity part of O matches the string.
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Purity measurements in a trapped-ion quantum simulator
To give an example of application, let us take ref.35 as an illustrative 
example of RMs. In this study, the goal was to measure the purity in a  
trapped-ion quantum simulator, which is relevant for checking that  
a quantum device works as intended, meaning that the realized quan-
tum state is pure. Subsystem purities can be used to quantify entangle-
ment within quantum many-body systems in terms of the second Rényi 
entropy55 S ρ P( ) = −log ( )A2 2 2 , where A denotes the subsystem. Trapped-
ion quantum simulators contain an array of ions, N = 10 or N = 20 in this 
case, and each encodes a qubit using two long-lived electronic states. 
These can then be manipulated using focused laser beams. The system 
was propagated from an initial Néel state ψ⟩ = 01⟩ N⊗( /2)∣   to an entangled 
state ψ t ψ( )⟩ = e ⟩H t−i XY∣ ∣  using a Hamiltonian H J σ σ= ∑ ( + h.c.),XY i j ij i j<

+ −   
with  Jij ≈ J/∣i − j∣α, 0 < α < 3, and σi

+ (σi
−) spin-1/2 raising (lowering) oper-

ators. Owing to preparation errors, dephasing, spontaneous emission 
and others, the system after the evolution time t is described by a den-
sity matrix ρ(t). RMs were implemented by sampling individual single-
qubit rotations from the circular unitary ensemble and decomposing 
them into rotations along the z and x axes. This process is illustrated 
in Fig. 3a. Importantly, it only requires local Z-rotations, while the ions 
were rotated along the X-axis via a global beam. The total data acquisi-
tion involved M = 500 RM settings with K = 150 single-shot repetitions 
each. Post-processing was based on the averaged purity formula in 
equation (3) which is designed to process many repetitions per 
measurement setting (K ≫ 1).

The plot in Fig. 3b highlights that this RM protocol faithfully 
estimates second Rényi entropies for various different subsystems A 
and evolution times t. In particular, we observe that the second Rényi 
entropy of the total system (i = 10) remains almost constant over time 
at a small value ~0.4 (corresponding to a large purity P2 ≈ 0.8). This 
shows that the state is slightly affected by preparation and measure-
ment errors, but the dynamics is almost perfectly unitary. Considering 
subsystems, the second Rényi entropy increases as a function of time 
and becomes larger than the entropy of the total system, a conclusive 
signature of quantum entanglement. Such entanglement growth has 
also been measured recently with superconducting qubits using RMs56.

The experimental data of ref.35 have been recently reana-
lysed31,36,40,57 to access other entanglement properties, in particular 
using the classical shadow framework36.

Applications of randomized measurements
We now turn to the numerous applications of RMs. As described in the 
introduction, these applications span many areas, including probing 
quantum many-body physics, quantum simulation, noise diagnostics 
of quantum systems, machine learning (ML) of properties of quantum 
systems, variational quantum algorithms and quantum computation 
with noisy intermediate-scale quantum (NISQ) devices, and more. Note 
that many noise diagnostics models also use randomness to reliably 
extract figures of merit that capture the execution error of a quantum 
evolution. Techniques such as randomized benchmarking actually pre-
date the RM toolbox, but are different in scope and purpose. We discuss 
them in the Supplementary Information.

Characterization of topological order
Topological quantum phases of matter are exotic phases of matter char-
acterized by global correlations58. There is increasing interest in realizing 
topological quantum phases in synthetic quantum devices in the con-
text of quantum simulation, and in topological quantum computing. 
However, by their very definition, topological phases cannot be detected 

by local measurements. Thus, their identification and characterization 
in quantum simulation experiments pose a substantial challenge. RM 
protocols have been proposed as an experimental tool to address this 
question, to detect and classify topological quantum phases.

First, RM protocols have been designed to measure many-body 
topological invariants of symmetry-protected topological (SPT) 
phases37. These invariants are highly non-local and/or nonlinear cor-
relators of the many-body wavefunction that unambiguously identify 
SPT phases59. In the following, we discuss the example of the reflection 
invariant ZR which detects topological phases that emerge from the 
existence of a spatial reflection symmetry. As depicted schematically 
in Fig. 4a, RZ  is given as ρ= tr( )R I IZ R  where RI  is the ‘partial’ reflection 
operator acting as s s s s s s ss, …, ⟩ = , , …, , ⟩ ≡ ( )⟩I n n n I1 2 2 2 −1 2 1R R∣ ∣ ∣  on the 
subsystem I containing 2n spins symmetrically distributed across 
the central bond. If n is large compared with the correlation length 
of the system, the quantity Z Z P ρ P ρ= / [ ( ) + ( )]/2R R I I2 21 2

͠  acts as a topo-
logical order parameter, taking a quantized value ±1 depending on 
whether the phase is trivial or topological. (Here I = I1 ∪ I2, where I1 
denotes the n spins just to the left of the central bond, and I2 denotes 
the n spins just to the right, and P ρ ρ( ) = tr( )I I2

2
1,2 1,2

 are the purities of the 
corresponding reduced density matrices).

a

b

U1 U2 U3

S 2(ρ
[1
→

i])

0

1

2

3

i
2 4 6 8 10

0 ms
1 ms

2 ms
3 ms

4 ms
5 ms

Fig. 3 | Estimation of the second Rényi entropy with randomized 
measurements. a, Randomized measurements (RMs) were implemented35  
in a 10-qubit trapped-ion system using single-qubit random unitaries sampled 
uniformly from the full unitary group U(2) followed by a computational basis 
measurement. In this case, the unitaries U R R α R R β= (−π/2) ( ) (π/2) ( )n n

X
n
Z

n n
X

n
Z

n   
can be decomposed into uniform X-rotations R X(±π/2) = exp( i π/4)n

X
n∓  and local 

Z-rotations R α Z α( ) = exp(−i /2)n
Z

n n n  with rotation angles αn,βn (illustrated in  
the figure for n = 1,2,3). b, Experimental results35 for the second Rényi entropy 
S ρ P( ) = −log ( )A2 2 2  of partitions A = [1,2,…, i] (i = 1,…, 10) in a system with N = 10 ions  
in total. Coloured dots correspond to different evolution times t = 0,…, 5 ms, with 
error bars denoting the standard error of the mean. Dotted lines display results  
of numerical simulations including decoherence effects. Maximally mixed states 
with maximal Rényi entropy lie on the boundary of the shaded area.  Panels a,b 
are adapted with permission from ref.35, AAAS.
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Figure 4b illustrates the RM protocol to access Z͠R using random 
unitaries whose spatial distribution is reflection-symmetric across the 
centre bond. As shown in ref.37, the statistics of the bitstrings collected 
in I map to ZR, where
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is an unbiased estimator of RZ .
Figure 4c illustrates the protocol in the context of the bond-
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spin-exchange coefficients Ji = J for odd i = 1,3,… and J J= ′i  for even 
i = 2,4,… and spin-exchange anisotropy coefficient δ (ref.37). This model 
hosts SPT phases that are protected by spatial reflection and also time-
reversal and internal symmetries. Dots in Fig. 4c denote simulated RMs, 

from which ZR and P ρ( )I2 1,2
 have been estimated using equations (5) 

and (3), respectively. Symmetry-protected topologically trivial  
( ≪J J′/ 1) and non-trivial phases ( J J′/ 1≫ ) are clearly identified by esti-
mated Z͠ ≈ 1R  and ͠ ≈ −1RZ , respectively. In contrast, a large spin-exchange  
anisotropy δ ≫ 1 leads to spontaneous symmetry breaking with ≈ 0RZ͠ .

RM protocols for other topological invariants associated 
with time-reversal and internal symmetries have also been devel-
oped37, providing a versatile toolbox to identify SPT phases. RM 
protocols have also been developed to access the many-body Chern 
number revealing topological order in certain fractional quantum 
Hall states60.

RMs were also used to identify topological order in a 31-qubit 
quantum computer implementing the toric code model61. In this case, 
RM gave access, via the measurement of the purity in connected parti-
tions A, B and C (see Fig. 4d), to the topological entanglement entropy 
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Fig. 4 | Detecting topological order with randomized measurements. a,b, The 
many-body topological invariant ZR associated with spatial reflection symmetry 
can be inferred from statistical correlations of randomized measurements 
(RMs), implemented with local random unitaries U1,U2,…, Un (here n = 2) applied 
symmetrically around the central bond37. c, Quantized values of the normalized 
invariant RZ͠  reveal two symmetry-protected topological phases and a symmetry-
broken phase in a bond-alternating XXZ model with spin-exchange coefficients 
J and J ′ and spin-exchange anisotropy coefficient δ (ref.37). Dots represent 
estimations from a finite number of simulated RMs with error bars indicating 
statistical errors, lines are obtained numerically in a system with N = 48 spins and  
a subsystem I consisting of n = 6 pairs of spins. d, The topological entanglement 
entropy Stop is defined from second Rényi entropies of various combinations of 
three connected partitions A,B,C. The graph shows a histogram of the measured 

topological entanglement entropies Stop for different choices of subsystems A,B,C 
(consisting of a total of 9 qubits) in a system of 31 superconducting qubits 
implementing the ground state of the toric code61. Left and right dashed lines 
correspond to the ideal and mean measured value of the topological entanglement 
entropy, respectively. e, Two-dimensional feature space uncovered by an 
unsupervised machine learning model based on classical shadows65. Each coloured 
diamond corresponds to a different quantum state in one of the three phases 
(trivial, symmetry-broken, topological) of the bond-alternating XXZ model, with 
colours corresponding to different values of J J/ ′. The 2D feature space clusters 
the three phases perfectly. With a standard clustering algorithm66, the machine 
learning model would uncover the three phases with high accuracy. Panels a,b,c 
are adapted with permission from ref.37, AAAS; panel d is adapted with permission 
from ref.61, AAAS; and panel e is adapted with permission from ref.65, AAAS.
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Stop (refs.62–64). The topological entanglement entropy takes a quantized 
value Stop = −1 in a topologically ordered phase and thus serves as an 
order parameter to detect the topological character of the toric code. 
Figure 4d shows results of RMs for a partition of nine qubits whose 
average corresponds to the topological entanglement entropy.

Machine learning for quantum many-body problems
Classical data obtained from RMs can be used to construct a succinct 
classical representation of any quantum system. This succinct repre-
sentation encodes a wide range of properties of the quantum system, 
opening new opportunities for addressing quantum many-body prob-
lems using classical methods such as ML. Here, we focus on the task 
of classifying quantum phases of matter. Results on provably efficient 
classical ML algorithms for predicting properties of quantum ground 
states are discussed in a recent paper65.

Suppose that one is presented with a collection of quantum states 
drawn from various quantum phases of matter, where appropriate 
order parameters for classifying the phases are not known in advance. 
The goal is to discover the underlying phase structure, and to assign 
each state to the appropriate phase with high accuracy. One way to 
proceed is to perform an RM on each state, converting it to a succinct 
classical shadow, and then to attempt to classify the shadows using a 
suitably designed classical ML algorithm.

Numerical experiments have confirmed that classical ML 
algorithms can classify quantum phases successfully. In one such 
experiment65, the states to be classified were ground states of the 
bond-alternating XXZ model with N = 300 spins, for various values of 
the Hamiltonian parameters. As discussed in the previous subsection, 
this model has three gapped phases: a trivial phase, a broken-symmetry 
phase, and a symmetry-protected topological phase. For each quan-
tum state, 500 RMs were simulated to construct a classical shadow. 
An unsupervised classical ML model mapped the classical shadows to 
a high-dimensional feature space; a projection of this feature space 
onto its 2D principal subspace is illustrated in Fig. 4e. As the figure 
indicates, states belonging to the same phase cluster tightly in the fea-
ture space found by the classical ML model; hence standard clustering 
algorithms such as k-means clustering66 can group the states into 
distinct phases with near-perfect accuracy. Similar results were found 
for other models with multiple phases.

Recent work65 also provides rigorous theoretical support for 
these empirical studies. Consider a supervised learning scenario, 
where the training data consist of classical shadows of quantum states, 
each accompanied by a label indicating the phase to which that state 
belongs. The ML algorithm then predicts the phase label for new classi-
cal shadows different from those encountered during training. Under 
a plausible physically motivated assumption, one may prove that the 
classical ML model can learn to classify phases accurately with amounts 
of training data and classical processing that scale polynomially with 
the total system size. The key assumption is that the phases can be 
distinguished accurately by a nonlinear function of marginal density 
operators of subsystems of constant size. For phases with an energy 
gap, this assumption is reasonable because one expects the phase to 
be revealed in subsystems that are larger than the correlation length 
but independent of the total system size. Under this assumption, the 
classical ML model, receiving classical shadows of quantum states as 
input, not only learns to classify phases accurately, but also constructs 
an explicit classification function. The numerical results indicate that 
the ML model classifies phases accurately even in an unsupervised 
scenario, where the training data are unlabelled.

Quantum chaos diagnostics
Prominent diagnostics of many-body quantum chaos are out-of-time-
ordered correlators (OTOCs), which detect the scrambling of quantum 
information by revealing how local perturbations spread as a function 
of time67–69. In their simplest form, OTOCs at infinite temperature can 
be written as O t ρ W t VW t V( ) = tr( ( ) ( ) )∞ , where W,V are local operators 
that act on small subsystems, W(t) = e−iHtWeiHt is a time-evolved operator 
in the Heisenberg picture, determined by the Hamiltonian H, and ρ ∝∞ � 
denote the maximally mixed ‘infinite temperature’ state.

RMs allow one to extract OTOCs of unitary operators V,W at infinite 
temperature from statistical correlations of two separate experi-
ments33. Importantly, no ancilla degrees of freedom and only forward 
time evolution are required. The idea is to generate in both experiments 
the same randomized initial state via the application of local random 
unitaries U to a simple computational basis state ψ ⟩0∣ . In the first experi-
ment, this quantum state evolves for time t, and we measure an expecta-
tion value W t ψ U W t U ψ⟨ ( )⟩ = ⟨ ( ) ⟩1 0

†
0∣ ∣ ; for example, a Pauli operator on 

site i is measured. The second experiment is similar, except that the 
operator V (for example, a Pauli operator at a different site j) is applied 
before the time evolution. One then obtains a different expecta-
tion value ∣ ∣W t ψ U V W t VU ψ⟨ ( )⟩ = ⟨ ( ) ⟩2 0

† †
0 . This is repeated for many 

randomized initial states, and the statistical correlations between the 
two measurements 〈W(t)〉1 and 〈W(t)〉2 can be directly mapped  
to OTOCs.

At initial times, the measurement of W at site i yields the same 
outcome in both experiments regardless of the application of V at a 
different site j: that is, 〈W(t)〉2 = 〈W(t)〉1. These maximal statistical corre-
lations correspond to the maximal initial value of the OTOC. With time, 
the information about the application of V on site j spreads (‘scrambles’) 
through the entire system, and the measurement 〈W(t)〉2 in the second 
experiment differs in general from the first measurement 〈W(t)〉1. This 
decay of correlation between the measurement outcomes directly 
corresponds to the decay of OTOCs in scrambling quantum systems. 
Here, what governs the scalings of statistical errors is not directly the 
system size N, as in other protocols mentioned above, but the details 
of the dynamics: at early times, 〈W(t)〉1 ≈ 〈W(t)〉2 is of order 1, and thus 
the OTOC can be estimated accurately with a small number of measure-
ments. However, for chaotic systems at long times, 〈W(t)〉1,2 ≈ (1/2)N/2, 
so that the estimation of the OTOC with a small relative error requires 
approximately 2N measurements. We note that the protocol can also be 
extended to access finite-temperature OTOCs. In this case, one needs 
to sample global random states, which are distributed according to 
their overlaps with the thermal state of interest33.

Using the described protocol, infinite temperature OTOCs have 
been measured experimentally in a trapped-ion quantum simulator34 to 
study the scrambling of quantum information in quantum spin models 
with tunable long-range interactions, and also in an nuclear magnetic 
resonance experiment70.

Recently, such families of RM protocols based on propagating 
random initial states have been extended to access other quantum 
chaos diagnostics71–73. In particular, an RM protocol has been pro-
posed73 to access the spectral form factor K t Ht( ) = tr(exp(−i )) 2 — a 
quantum chaos diagnostic that is directly connected to the statistics 
of eigenlevels of the Hamiltonian H. It can be used to test predictions of 
random matrix theory and universal aspects of thermalization in many-
body quantum systems. The key idea of this protocol is to apply, within 
a single experimental run, the same local random unitaries before and 
after the time evolution described by the evolution operator Htexp(−i ).  
From the statistics of final computational basis measurements one can 
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infer73 K(t), that is, (the product of) the traces of Htexp(−i ) and its 
adjoint. This extends the RM toolbox to access genuine properties of 
dynamical quantum processes, without reference to an initial state or 
measured observable (see also ref.74 for an extension of the classical 
shadows framework to quantum processes).

Fidelity estimation
Suppose one wishes to prepare a target state ψ, which we assume is 
pure for simplicity. If instead, owing to experimental limitations, one 
can only prepare the state ρ, how can one tell how close ρ is to ψ? 
As discussed above, full tomography could achieve this but is very 
expensive. The RM toolbox provides another answer using the proto-
col of direct fidelity estimation (DFE)75,76. In DFE, one first chooses an 
operator basis of convenient observables, for example the N-qubit 
Pauli operators. The fidelity between ψ and ρ when ψ is pure reduces 
to F ψ ρ ψρ( , ) = tr( ) . Next, one expands ρ and ψ in the Pauli basis as 
ρ = ∑jajWj/2N/2 and ψ = ∑jbjWj/2N/2 for Wj, the jth N-qubit Pauli operator. 
Expanding the fidelity, one finds that

∑ ∑F ψ ρ ψρ a b
a

b
b( , ) = tr( ) = = ,

j
j j

j

j

j
j
2









where the latter sum is over the support of bj. The purpose of rewriting 
in this latter form is that b∑ = 1j j

2  for a pure state ψ, so the fidelity has 
been reinterpreted as an ‘expected value’ over a known distribu-
tion. Furthermore, the ratio a b W ρ W ψ/ = tr( )/tr( )j j j j  is an observable  
quantity since aj can be estimated empirically and bj is known from the 
known target state. By doing Monte Carlo importance sampling of  
the distribution bj

2 for about ε(1/ )2O  samples, one obtains a random 
collection of observables {Wk} that one can then estimate using, for 
example, shadow estimation, and it yields a randomized estimate of 
the fidelity F that is accurate to within F ± ε with high probability.

Although DFE requires sampling only O ε(1/ )2  Pauli observables, 
independent of N, there is still some important scaling with N in this 
protocol. First, for generic states, the choice of Pauli operators will 
include samples of very high-weight Pauli strings that must be esti-
mated, and these are generally more difficult to estimate as a single 
two-outcome measurement or as an inferred observable from many 
single-qubit measurements. Second, to estimate the fidelity of a 
generic state requires the ability to resolve a Pauli observable to a preci-
sion ±(1/2)N/2. Thus, the worst-case complexity for the total number of 
measurements (not just observables) is ε(2 / )N 2O  which is still expo-
nential in N, albeit better than full quantum tomography by another 
factor of 2N. In addition, in the most general case, just describing the 
distribution bj

2 from the target state requires listing all 4N probabilities, 
which quickly becomes expensive with increasing N. However, this 
worst-case behaviour can significantly overestimate the scaling for 
many important cases where most of the probability mass bj

2 in the 
target state is concentrated on a relatively small number of low-weight 
Pauli operators, and where one can easily compute (or estimate) this 
distribution. Important examples of such clustering behaviour are 
stabilizer states with local stabilizer generators and high-temperature 
Gibbs states of local Hamiltonians.

The above method generalizes naturally to quantum processes 
(see refs.75,76 for details) and was first used to efficiently estimate 
the process fidelity of a Toffoli gate in a superconducting transmon 
architecture77. Another notable use of the method was to validate 
the fidelity of a 14-qubit state preparation78 in an ion trap, as shown 
in Fig. 5a. A variant of DFE that uses a simpler Pauli measurement 

scheme and achieves nearly optimal sample complexity was pro-
posed and tested on four-qubit entangled states in a trapped-ion  
device79,80.

Although DFE allows the comparison between an ideal state or 
process and an imperfect experimental implementation, RM also ena-
bles direct comparison between two experiments31. Here, the goal is to 
measure a fidelity between two mixed states ρ1,ρ2, defined as

F
ρ ρ

ρ ρ
=

tr( )

max[tr( ), tr( )]
. (6)max

1 2

1
2

2
2

The density matrices ρ1 and ρ2 represent quantum states realized 
in different experimental devices, which may be separated by a large 
distance, not operating at the same time, and not using the same physi-
cal systems. Both density matrices can refer to subsystems of constant 
size of large quantum many-body systems.

Such a comparison between different devices is relevant in the 
context of verifying and benchmarking quantum computers and simu-
lators81,82: one might gain confidence in the result of a quantum com-
putation or simulation by running the computation or simulation on 
various devices and comparing, through quantitative measures such 
as Fmax, the outcome of one with the other31,82.

The key to determining Fmax is the measurement of the overlap 
ρ ρtr( )1 2 . With RM, this can be achieved as follows: first, generate a set 

of random unitaries U, for instance made of random single-qubit rota-
tions and send them via classical communication to the two devices; 
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Fig. 5 | Fidelity estimation with randomized measurements. a, Direct fidelity 
estimation allows to extract the fidelity between an experimentally prepared 
quantum state ρ and and a pure theoretical target states ψ as the mean of the 
distribution of the random variable (aj/bj) (see main text). The histogram shows 
the experimental data for a 14-qubit quantum state prepared in trapped-ion 
quantum simulator with estimated mean (fidelity) of 0.75 ± 0.05 (ref.78). The red 
dashed line indicates the ideal case of unit fidelity. b, Cross-device fidelities of 
seven-qubit quantum volume states prepared in various quantum devices based 
on superconducting qubits (IBM_3) and trapped ions (UMD_1, IonQ_2). Data  
from ref.32. Panel a is adapted with permission from ref.78, Springer Nature Ltd.
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second, apply these same unitaries to both ρ1 and ρ2, followed by com-
putational basis measurements. The overlap ρ ρtr( )1 2  can be then 
extracted from the statistical correlations between the outcomes 
obtained in both devices31. One can understand this result as follows: 
if the two states are identical, ρ1 = ρ2 = ρ, the bitstrings measured in both 
devices will be picked from the same distribution ∣ ∣UρUss ss⟨ ⟩† : that is, 
one will observe perfect correlations between the two experiments. 
If, instead, the two states are different, the outcomes will be typically 
uncorrelated. Importantly, whereas the required number of measure-
ments is exponential in the (sub)system size, the cost is strongly 
reduced compared with performing full quantum state tomography 
in both devices. This allows one to access (sub)system sizes beyond 
the regime of full quantum state tomography.

A proof-of-principle demonstration of this protocol was pre-
sented31 by reanalysing the data of ref.35 to compare the experimentally 
prepared quantum states of up to 10 qubits with a theoretical simula-
tion, or with a different quantum state prepared in the same experiment. 
Comparison of quantum devices across different qubit technology has 
been achieved32 by comparing entangled quantum states consisting 
of up to 13 qubits prepared on six different quantum devices based on 
trapped ions or superconducting qubits (see Fig. 5b).

There are also approaches to specifically estimate fidelities of 
random quantum states generated by random quantum circuits. In this 
case, one can define and extract the fidelity between prepared quantum 
states and their theoretical target without needing to add another 
layer of randomness in the measurement stage. Variations of this idea 
are known as cross-entropy benchmarking83–85 and random circuit 
sampling86,87. This approach can be generalized to quantum states 
generated via ergodic Hamiltonian dynamics using the concept of 
projected state ensembles88,89.

Hamiltonian and Liouvillian learning
RM can be used to learn dynamical variables that govern quantum 
evolution such as Hamiltonians and more generally Lindbladians. There 
are many approaches to Hamiltonian and Lindbladian learning in the 
literature, but the quantum part of nearly all of them boils down to 
estimating the expectation values of low-weight Pauli observables, so 
each of these algorithms can benefit from the RM toolbox.

Let H be an unknown Hamiltonian, and suppose one is given the 
ability to prepare the ground state ψ0. Perhaps surprisingly, when H is 
sufficiently generic, low-weight Pauli observables with respect to ψ0 
contain enough information to reconstruct H up to an overall scale fac-
tor (and an unobservable energy shift)90–92. The argument is remarkably 
simple and works even for a steady state ρ, not just the ground state ψ0.

Expand H in the Pauli basis as H = ∑jcjWj, and suppose that cj = 0 
whenever the support of Wj exceeds w qubits for some w = (1)O . Define 
the matrix K ρ W W= i tr( [ , ])lm l m . If ρ is a steady state then [H, ρ] = 0, and 
furthermore for any observable O we have ρ O H H ρ Otr( [ , ]) = tr([ , ] ) = 0.  
Now consider the action of K on the vector of Hamiltonian couplings c. 
By linearity,

∑Kc ρ W W c

ρ W H

H ρ W

( ) = i tr( [ , ])

= i tr( [ , ])

= i tr([ , ] ) = 0.

(7)

l
m

l m m

l

l

Thus, c is in the kernel of K.
This suggests a procedure for estimating c. First, estimate the matrix 

elements of K by preparing the steady state ρ and measuring the Pauli 

observables i[Wl,Wm] where each Wl or Wm is at most w-body. This gives 
us an estimate K K≈̂ , from which we can return an estimate ̂c c≈  by finding 
a right singular vector of ̂K  with the least singular value as a proxy for 
estimating the kernel of K. (Since this vector is only specified up to a scalar 
multiple, one must in general do a Rabi-type experiment to pin down the 
overall scale factor that completely determines an estimate ̂c).

The precision of this estimate will depend on several factors. First, 
one must be able to prepare a steady state ρ. This can be done by time-
averaging the results of the experiment42,92. Previous work42 describes 
a protocol based on Gaussian quadratures that achieves super-
exponential convergence to a steady state in the number s of time 
averages, meaning that the trace distance to a steady state scales 

s s∝ exp(− ( log( )))O , so this step is very efficient. Second, the matrix ele-
ments of K must be estimated to sufficient precision. Notice, however, 
that all of the matrix elements Klm are specified by Pauli observables of 
weight at most 2w − 1 (since disjoint Paulis commute) when H has 
w-body couplings. Therefore, the Klm can be estimated using classical 
shadows specialized to Pauli observables, and it is here that RMs come 
in. Finally, there must be sufficient signal in the observables so that the 
‘approximate kernel’ (the space spanned by the least singular value) of 

̂K  is 1D. If the approximate kernel is degenerate, or if the gap between 
the two least singular values is very small, then the problem is  
ill-conditioned and cannot be solved to useful precision.

This technique has been generalized in several directions. It has 
been shown42 that Bayesian priors on the Hamiltonians can be incorpo-
rated to speed up convergence, and that well-characterized auxiliary 
control fields can be used to enhance the precision as well. A further 
generalization is to replace the steady state ρ by a fixed point of a Lind-
bladian. It was shown93 that this generalization admits similar guaran-
tees as in the Hamiltonian case. Hamiltonian learning with this approach 
can also be done using the dynamics of a quenched quantum system94.

Another avenue for generalization is provided by learning the 
‘entanglement Hamiltonian’95. An entanglement Hamiltonian is a Ham-
iltonian that describes the mixed state Hρ Z= e /A

− A  obtained when trac-
ing out half of a bipartite pure state ψAB. Knowing the entanglement 
Hamiltonian for subsystems A and B and their spectrum is equivalent 
to knowing the Schmidt decomposition of ψAB, and thus contains the 
complete information about the bipartite entanglement across this 
cut. One study95 uses RM data from ref.35 to estimate the parameters of 
physically motivated ansätze for the entanglement Hamiltonian. Up 
to 7-qubit subsystems of a 20-qubit trapped-ion quantum simulator 
are considered in various states following a quantum quench. For each 
state, the learned entanglement Hamiltonian is then experimentally 
verified by independently estimating the fidelity of the Gibbs state 
defined by learned entanglement Hamiltonian and the quantum  
state realized in the laboratory. Figure 6 shows the estimated fideli-
ties as a function of time after the quantum quench for various 
ansätze for AH . At early and late times, AH  is well approximated by a 
deformation H J σ σ= ∑ ( + h.c.)A i j A ij i j, ∈

+ −͠ ͠  of the system Hamiltonian 
H J σ σ= ∑ ( + h.c.)A i j A ij i j, ∈

+ −  with  Jij = J/∣i − j∣α and α ≈ 1.24 (dark blue points). 
At intermediate times, multibody corrections KA

i( )͠  of increasing com-
plexity (i = 1,2, light blue, red points) are important. Here, K͠A

(1)
 contains 

lattice momentum terms of the form σ σ~ i
x

j
y  (i,j ∈ A) and σ σ σ~ i

x
j
y

k
z  

(i,j,k ∈ A) which are suggested by predictions of conformal field the-
ory96. K͠A

(2)
 includes all further two-body and three-body terms 

compatible with global magnetization conservation.
A completely different approach to Hamiltonian learning has also 

been developed that works in a different regime. Several papers97–99 have 
considered learning a quantum Hamiltonian H from the Gibbs state ρβH 
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at a small inverse-temperature β. They showed that estimating expecta-
tions Wρtr( )βH

 of few-qubit Pauli operators W enables accurate recon-
struction of the Hamiltonian H when H couples only Ok = (1) qubits at a 
time and each qubit partakes in at most O= (1)ℓ  interactions. However, 
it is assumed that the support of the non-zero interactions is known in 
advance. This family is a large and natural class, but some familiar sys-
tems such as two-body Hamiltonians with power-law interactions lie 
outside it. Their algorithms are unconditional in the sense that they work 
for any Hamiltonian in the family as long as one can prepare the Gibbs 
state. Assuming this state preparation, the estimation of Wρtr( )βH

 can 
be accomplished by performing randomized local measurements.

Aside from learning Hamiltonians from steady states or Gibbs 
states, one can also use short-time dynamics of the time evolution to 
learn a Hamiltonian. There are many approaches for this, but one that 
is notable for its use of RM is the sparse Hamiltonian learning method 
of ref.100. The authors of this study apply random Pauli gates to the state 
after some short-time dynamics, so that the time-evolved state is effec-
tively linear in the Hamiltonian. From measurements of these states, 
they obtain estimates of the Hamiltonian coefficients. They prove a 
guarantee that their method converges to the true Hamiltonian when-
ever it is sparse in the Pauli basis, regardless of the weight of the 
unknown Pauli operators in the support. Although this approach is 
technically efficient, the randomized Pauli operators and the short-
time requirement mean that the sampling overhead is around  

ε(1/ )8O  to achieve precision ε, so further improvements will be needed 
to make this practical. It is known that a related approach101 can improve 
these guarantees when the unknown Hamiltonian terms are assumed 
to be of the form ωijZiZj between arbitrary pairs of qubits.

Although most studies listed above focus on qubit Hamiltonians, 
learning Hamiltonians of infinite-dimensional quantum systems is 
equally relevant. One study102 performed Hamiltonian tomography 
in a nearest-neighbour transmon qubit architecture by estimating 
couplings among up to six qubits. The authors of this study were 
able to synthesize these estimates across 27 total qubits to provide a 
comprehensive picture of the couplings in the device.

Perhaps the most general approach to learning Hamiltonians 
and Lindbladians is given by notions related to gate set tomography 
(GST)103,104. GST grew out of the need for self-consistent estimates of 

a quantum process together with the noisy measurements and state 
preparations used as probes105. It works by modelling the noise on an 
entire collection of gates, measurements and preparations, and then 
fitting all of these models to the measurements done on a large number 
of circuits of varying length. Smart choices of subcircuits known as 
‘germs’ attempt to amplify small errors to make them easier to estimate. 
This basic idea has been used in dozens of experiments on one and 
two qubits104, and recently it was used to characterize the one- and two-
qubit gates in a three-qubit experiment with two donor nuclear spins in 
silicon and their shared electron spin106. Although GST initially focused 
on estimating gate sets in the form of completely positive maps, this 
focus broadened in experiments106,107 to estimating Lindbladian 
generators using the same or similar data fitting techniques.

Several attempts to improve on these ideas are now being explored 
both theoretically and experimentally. On the theory side, compressive 
GST108 is a formulation of GST as a tensor completion problem in an 
effort to bring down the (substantial) computational complexity of the 
method and provide rigorous convergence guarantees. Fast Bayesian 
tomography (FBT)109 is a variant that allows the use of prior information 
or side information (from randomized benchmarking experiments for 
example) to speed up GST. In one experiment109, FBT was performed on 
two spin qubits in silicon so quickly that the post-processing was faster 
than the data acquisition, demonstrating that FBT can in principle be 
used as an online algorithm. Lastly, a special case of a Lindbladian, 
called a Pauli–Lindbladian, was learnt in a study110 using techniques sim-
ilar to the averaged circuit eigenvalue sampling  framework111 discussed 
in the Supplemental Information and elsewhere112. Although this class 
of Lindbladians is substantially narrower than a general Lindbladian 
in a qubit system, it has the advantage that the learned noise can be 
error-mitigated very efficiently. This allows the authors110 to perform 
probabilistic error cancellation on a superconducting quantum device 
despite the presence of crosstalk errors.

Variational quantum-classical algorithms
Variational quantum-classical algorithms use NISQ devices as special-
purpose quantum co-processors in tandem with a classical computer 
to solve complicated optimization problems, for instance finding 
the ground-state energy of a many-body Hamiltonian or variationally 
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Fig. 6 | Hamiltonian learning with randomized measurements.  
Entanglement Hamiltonian tomography95 serves to efficiently  
learn and independently verify the entanglement Hamiltonian HA,  
parameterizing the reduced density matrix ρ ∝ exp(− )A AH  of a 
subsystem A (here five qubits, indicated by the shaded area). This  
has been experimentally demonstrated95 using RM data collected35  
in a trapped-ion quantum simulator with a total number of N = 20 
qubits (shown as blue circles at the top of the panel). Shown is the 
experimentally estimated fidelity Fmax of the learned ρ ∝ exp(− )A AH   
at various times t after a quantum quench and for different physically  
motivated ansätze for AH  constructed as deformation of the system  
Hamiltonian H͠A and including further multibody corrections K A

i( )͠   
(i = 1,2) (different colours; see main text for details). Figure is adapted  
with permission from ref.95, Springer Nature Ltd.
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compressing quantum circuits113. Such variational hybrid approaches 
typically require many evaluations of complicated cost-functions 
through measurements on a variational quantum state. In particular, 
for quantum chemistry114–116 and quantum field theory applications117, 
where the cost function is represented by the energy of a complicated 
many-body Hamiltonian, this poses an important practical obstacle, 
as each cost-function evaluation requires many measurements in 
multiple settings.

RMs can provide a big advantage here, since they allow for jointly 
estimating many observables (for example, Hamiltonian terms) based 
on the same RM data via classical shadows. According to Theorem 1, 
the required number of measurements only scales logarithmically 
in the number of observables of interest — an exponential improvement 
over direct estimation protocols that estimate observables one by one. 
An example24 is illustrated in Fig. 7 where the number of RMs L∝ log( ) 
required to estimate the variance H ρ Hρtr( ) − tr( )2 2  of a many-body 
Hamiltonian H in a given state ρ, where H contains ∝L2 terms, 
outperforms an optimized ‘hand-crafted’ scheme117 for large system 
sizes L.

However, the required number of measurements scales 
exponentially with the size w of the observables of interest, for exam-
ple the locality of the quantum many-body Hamiltonian. This can 
quickly become an issue for applications to fermionic systems such 
as those encountered in quantum chemistry, where Jordan–Wigner 
encodings produce Hamiltonian terms with high weight. Several 
improvements of the elementary RM protocol are known that address 
this issue:
•	 Importance sampling of measurement settings uses knowledge 

of the observables of interest118,119 or of the underlying quantum 
many-body state44.

•	 Derandomization120 replaces the randomized measurements by 
fixed measurements which, for a specified set of target observ-
ables, are guaranteed to predict these observables at least as 
well as the randomized protocol, and perform much better in 
some cases; see Fig. 7 and also recent work121 for an experimental 
demonstration.

•	 Fermionic classical shadows122 use fermionic Gaussian random 
unitaries to access k-body reduced density matrices of fermi-
onic states encoded in a qubit system with optimal sampling 
complexity (up to a logarithmic factor).

Finally, we note that other schemes for observable estimation, 
based on grouping compatible Pauli observables123, adaptive selec-
tion of measurement settings124 or sampling of high-weight matrix 
elements125, have been shown to provide further advantage in certain 
situations.

Machine learning in quantum-enhanced feature space
To use NISQ devices for general ML problems, a class of supervised 
learning models using quantum-enhanced feature spaces was pro-
posed126,127. These quantum machine learning (QML) models are trained 
to predict outputs, such as a real number or a discrete label, given 
an input vector. The input vector, referred to as a feature vector, is 
transformed into a higher-dimensional quantum-enhanced feature 
vector (a quantum state) using NISQ devices. The QML models then 
train a linear function over the quantum-enhanced feature vectors 
via convex optimization. Because of the convex landscape, the global 
optimum can always be found efficiently, without encountering any 
barren plateau problem128.

Whereas training these QML models is always easy, a recent 
paper129 proves that the original proposal126,127, which constructs the 
quantum-enhanced feature vector as a quantum state, can have a poor 
prediction performance. For simple learning tasks, the authors show129 
that the prediction performance can be significantly worse than classi-
cal ML models even if the QML model can perfectly fit the training data. 
The issue stems from the fact that most pairs of quantum states have an 
exponentially small fidelity overlap, which leads to bad generalization 
performance on new unseen data through a learning-theoretic analy-
sis129. To resolve this issue, the authors129 propose a different approach 
for constructing the quantum-enhanced feature vectors using RM. Each 
quantum-enhanced feature vector corresponds here to a finite set of 
properties of the quantum state estimated with RM instead of the full 
quantum state itself. The RM variant yields a simple proof of quantum 
speed-up over any classical ML model assuming a highly plausible 
cryptographic conjecture129 and provides a quadratic speed-up over 
the original proposal of the quantum-enhanced supervised learning 
model126,127 in the number of measurements130. This work129 also shows 
empirically that the RM variant yields a higher prediction accuracy over 
conventional classical ML models and the original QML proposal126,127.

Higher-order polynomial functionals of the density matrix
The use of RM to measure the purity ρtr( )2  is illustrated in the example 
discussed in the Supplementary Information. Expectation values of 
higher-order k-copy observables of the form Oρtr( )k⊗  have also been 
estimated via RM. In particular, the classical shadow formalism enables 
one to access the expectation value of any such k-copy observable O 
by cross-correlating k different shadows; this extends equation (4), 
the special case where k = 2 and O is the swap operator, to more general 
k and O (ref.24).

As an important application, RM can be used to access moments 
ρtr(( ) )AB

T kA  of the partial transpose ρAB
TA of a density matrix ρAB describ-

ing two subsystems A and B (refs.36,131). These moments are the  
expec tation values ρ ρtr(( ) ) = tr((Π ⊗ Π ) )AB
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Fig. 7 | Variational quantum algorithm using randomized measurements.  
The number of randomized measurements (red) to estimate the Hamiltonian 
variance H ρ Hρtr( ) − tr( )2 2 of the Schwinger model, describing one-dimensional 
quantum electrodynamics, scales only logarithmically with system size, providing, 
for large systems, an exponential advantage over a direct measurement of 
Hamiltonian terms (brown) or optimized ‘hand-crafted’ schemes (light blue)117. 
This can be further improved by derandomization, where each random choice is 
replaced with the one that yields the best expected performance in the randomized 
protocol120 (dark blue). Adapted with permission from ref.24, Springer Nature Ltd.
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permutation operations ΠA, ΠB acting on k copies of A and k copies of 
B, respectively132,133. There are inequalities that are satisfied by such 
moments if ρAB

TA is a non-negative operator; thus, if these inequalities 
are found to be violated, then ρAB

TA must have a negative eigenvalue, and 
it follows that ρAB is entangled36,57,131,134,135. This property was used to 
experimentally demonstrate mixed-state entanglement in (sub)sys-
tems consisting of up to seven qubits36. Similarly, symmetry-resolved 
entropies40, the quantum Fisher information41, and moments of ‘rea-
ligned’ density matrices136 can be interpreted as expectation values of 
multicopy observables and inferred from RM. A recent paper41, in 
particular, presents closed-form formulas for estimating the numbers 
of measurements that are required to measure an arbitrary k-copy 
observable O via classical shadows.

Polynomials of the density matrix can also be used to detect and 
quantify multipartite entanglement. One way to achieve this is by study-
ing moments of the outcomes of RM, implemented with independent 
local random unitary operations on each subsystem27,28,137–141. Such a 
procedure does not require a common reference frame shared by the 
constituents, and is robust against local miscalibration of the measure-
ment basis. It is thus well suited to detect multipartite entanglement in 
quantum networks with distantly separated parties28,139,142. Detecting 
multipartite entanglement in this way has been experimentally dem-
onstrated with four-photon quantum states27. Another (fourth-order) 
polynomial function of the density matrix that can be estimated using 
RMs is the stabilizer Rényi entropy, which quantifies the non-Clifford 
resources needed to prepare a quantum state143,144.

Finally, we note that RM recently inspired numerical sampling 
techniques for tensor networks that allow one to estimate polyno-
mial functionals of tensor network states without potentially costly 
contraction of multiple replicas145.

Challenges and perspectives
We list below some of the current challenges and open questions for the 
RM toolbox, which we have grouped into four main topics: assessment 
and mitigation of errors occurring during the measurement process, 
use of different random unitaries ensembles as measurement primi-
tives, implementation of RM in quantum systems that are not qubits, 
and applications of RMs for learning tasks.

Robustness and error mitigation
In the era of NISQ devices, quantum operations are necessarily altered 
by noise and decoherence. This applies in particular to the measure-
ment process itself. Any practical procedure for learning properties of 
a quantum system must thus be equipped with sufficient robustness 
against noise — that is, the ability to make accurate predictions even 
in the presence of (a certain level of) noise.

Prediction procedures based on RM involve an average over an 
ensemble of random unitary rotations. As such, the influence of noise 
that alters the application of the random unitary and the projective 
measurement can often be reduced to an averaged noise channel. This 
averaged noise channel can be efficiently learned from calibration 
experiments, in order to provide robust estimations.

First, estimation formulas presented in refs.22,31,146 for purity (see 
equation (3)) and fidelity estimation involve only the measured bit-
strings s. No information on the applied random unitaries U, other than 
the assertion that they are picked from an ensemble that covers the 
unitary group evenly (a unitary 2-design), is required. Thus, the estima-
tion procedure is insensitive to gate-independent unitary errors, for 
example random over- and under-rotations22,31,35,56,61,146. Second, in the 

presence of well-characterized depolarization or simple qubit readout 
errors, the estimation procedure can be corrected based on calibration 
experiments to provide unbiased estimations31,56,61,146.

In the classical shadows formalism, robust estimations can also be 
performed effectively in the presence of an unknown noise channel 
(satisfying certain standard assumptions such as gate-independence 
and time-independence). This is achieved via a calibration step that uses 
a state that can be prepared easily, say the state 0 N⊗  (refs.29,30,147). By 
applying random unitaries that twirl the unknown noise, one can put 
the noise into the form of a purely stochastic Pauli channel. The calibra-
tion step characterizes this Pauli channel; thus the noise can be com-
pensated in the classical post-processing of the RM results when 
expectation values of observables are estimated. If the noise is not too 
strong, and is Markovian, gate-independent and time-independent, this 
procedure effectively eliminates the bias, reducing the effect of the noise 
on estimated observables until it becomes comparable to the noise floor 
arising from the sampling error in the characterization of the Pauli chan-
nel. In this case, the procedure requires approximately the same number 
of measurements as the standard shadow estimation scheme29,30.

Local versus global random unitaries
So far we have discussed in detail implementations of RMs with local 
random unitaries corresponding to single-qubit rotations, but the ideas 
in the RM toolbox extend well beyond this. This includes, in particular, 
global random unitaries which scramble information across the entire 
system, implemented as quantum circuits or, in an approximate way, 
as random quenches.

Quantum information aspects. This idea of using global random uni-
taries goes back to early work, even before their local counterparts21,22,51. 
Global random unitaries come with analytic expressions that are well 
suited for estimating certain global state properties. However, in con-
trast to local random unitaries, the type of post-processing matters a 
lot. Special-purpose formulas, such as equation (3) for the purity, have 
global counterparts that can be computed efficiently21,22. This, however, 
may not be the case for global variants of general-purpose formulas, 
such as equation (2), because these require explicit knowledge of the 
random unitaries in question. This issue can quickly become challeng-
ing, owing to the curse of dimensionality (a general unitary acting on 
N qubits has roughly 4N degrees of freedom). A notable exception is 
random multiqubit Clifford circuits24,26. These are global scrambling 
unitaries that nonetheless come with efficient classical post-processing 
(via the Gottesman–Knill theorem148).

In the quantum circuit framework, one can also consider interpo-
lations between local and global random unitaries. In recent work149, 
the authors use tensor network techniques to study random unitaries 
based on shallow-depth circuits. In such a setup, the circuit depth 
provides a convenient tuning knob: local properties are best estimated 
with very shallow circuits (realizing ‘quasilocal random unitaries’). 
In contrast, the number of experimental runs to estimate certain global 
properties such as the global state fidelity decreases exponentially with 
the circuit depth. Generalizing this approach, other authors150 consider 
ensembles of random unitaries whose distribution is invariant under 
multiplication with Pauli strings. This comprises local and global ran-
dom unitaries as well as unitaries generated by shallow-depth random 
circuits. A drawback of both approaches is the lack of a simple analyti-
cal expression for classical shadows and succinct property prediction 
based on the obtained RM data (in contrast to RMs implemented with 
local random unitaries: see equations (1) and (2)).
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Experimental aspects. The choice of implementing local versus global 
random unitaries also depends on the level of experimental control 
that is available in a given quantum hardware setting. This choice can 
be made based on how the process of creating of these unitaries is 
affected by decoherence. In a Hamiltonian spin system, RMs with global 
random unitaries can be implemented approximately, for example at 
the level of an approximate unitary 2-design22,51,146,151. The idea is to use 
random quenches built from engineered time-dependent disorder 
potentials, requiring coherent interactions during a time window that 
increases with system size. With a quantum computer, one can also 
implement random unitaries with Clifford circuits, with a size scaling 
quadratically with the number of qubits152. From this perspective of 
decoherence, local random unitaries seem thus to have an advantage 
over global random unitaries, as the required coherence time does not 
increase with system size. However, for implementing local random 
unitaries with high fidelity in programmable quantum simulators of 
trapped ions35 or Rydberg atoms153, for example, an important assump-
tion is that any residual interaction between qubits can be turned off 
or made negligible. Global random unitaries can be created instead in 
presence of an interaction ‘background’, and may be thus seen as more 
appealing for certain experimental setups. Finally, between these two 
extreme cases of local–global random unitaries, the shallow-depth 
random circuits of refs.149,150 can also be seen as a good compromise 
to realize random unitaries in an interacting system, while requiring a 
limited coherence time (related to the depth of the circuit). In addition, 
robust estimation schemes29,30 to further mitigate the effect of noise 
and decoherence might be transferred to this setting150.

Beyond qubits
The RM toolbox can be extended to other quantum systems beyond 
qubits, in particular to systems consisting of qudits (d-level systems 
with d ≥ 3) and to fermionic and bosonic systems using global random 
unitaries.

Qudits. Although the RM toolbox is traditionally discussed for qubits 
or spin-1/2 particles in quantum computing and quantum simulation, 
atomic platforms in particular offer naturally high-dimensional internal 
state spaces that can serve as qudits in hardware-efficient universal 
quantum computing154, and can also represent spins S > 1/2 in quantum 
simulation. We emphasize that the present protocols and applications, 
discussed for qubits, generalize to these cases (see ref.23), and random 
unitary operations and state-resolved measurements on single qudits 
are readily implementable on existing platforms of trapped ions or 
Rydberg tweezer arrays5,8, for instance. In these settings, classical shad-
ows can furthermore be constructed from general positive operator-
valued measurements155,156. Single-qubit symmetric informationally 
complete measurements157,158 seem an ideal candidate, because they 
may alleviate the need for choosing measurement settings at random 
while still allowing for fast state reconstruction and fast estimation 
of arbitrary polynomial functionals of the quantum state. Recently, 
this approach has been implemented in both superconducting circuit 
architectures159 and trapped-ion quantum computers160.

Fermions and bosons. Beyond qubits and qudits, programmable 
quantum many-body systems can be engineered with bosonic or 
fermionic particles as basic constituents. A seminal example is pro-
vided by ultracold fermionic atoms in optical lattices described by 
a 2D Fermi–Hubbard model with repulsive interactions, where state 
of the art experiments achieve single-site control and site-resolved 

single-shot readout via a quantum gas microscope161. These setups 
provide the toolbox to prepare and study strongly correlated equi-
librium phases and non-equilibrium dynamics. We note that local 
random unitaries as discussed above are typically not available in 
these experiments, as physical Hamiltonians generating unitaries are 
constrained by conservation laws, such as atom number conservation 
in closed systems. Instead, an RM toolbox can be developed based 
on global random unitaries, which have a block structure inherited 
from the conservation of particles22,51,146,162. Finally, we note that the 
RM toolbox has also been transferred to photonic quantum devices 
implementing randomized global Clifford measurements using spatial 
light modulators and single-photon detection163.

Learning about the quantum world using classical machines
For a classical machine to learn, store and manipulate any object 
of interest, one must construct a classical representation of the 
object. RMs provide a powerful set of tools for converting quantum 
systems into efficient classical representations that capture many 
aspects of the original quantum object. These tools bridge the gap 
between the quantum and classical worlds. Any algorithm originally 
designed for the purpose of learning in a classical world can now be 
used to learn about a quantum-mechanical world by using RMs as a  
quantum-to-classical converter.

Classical algorithms for learning in a classical world are capable 
of predicting what would happen in scenarios never encountered 
before164–167. Some well-known examples include outperforming the 
best human players in games, answering questions after reading an 
article, and identifying potential illnesses in the human body. By com-
bining these classical algorithms with quantum-to-classical converters, 
we envisage that classical machines may one day achieve a powerful 
ability to predict the behaviour of the quantum world as well. Potential 
applications range from predicting the properties of exotic quantum 
systems that have not previously been realized in the laboratory65 to 
designing better quantum computers and discovering new physical 
phenomena. Thus we anticipate that quantum-to-classical conversion 
enabled by the RM toolbox will have a vital role in unravelling some of 
nature’s deepest secrets.

Published online: xx xx xxxx
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