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INTRODUCTION: Solving quantum many-body
problems, such as finding ground states of
quantum systems, has far-reaching conse-
quences for physics, materials science, and
chemistry. Classical computers have facilitated
many profound advances in science and tech-
nology, but they often struggle to solve such
problems. Scalable, fault-tolerant quantum com-
puters will be able to solve a broad array of quan-
tum problems but are unlikely to be available
for years to come. Meanwhile, how can we best
exploit our powerful classical computers to ad-
vance our understanding of complex quantum
systems? Recently, classical machine learning
(ML) techniques have been adapted to investi-
gate problems in quantummany-body physics.
So far, these approaches are mostly heuristic,
reflecting the general paucity of rigorous theory
in ML. Although they have been shown to be
effective in some intermediate-size experiments,
these methods are generally not backed by con-
vincing theoretical arguments to ensure good
performance.

RATIONALE: A central question is whether clas-
sical ML algorithms can provably outperform
non-ML algorithms in challenging quantum
many-body problems. We provide a concrete
answer by devising and analyzing classical ML
algorithms for predicting the properties of
ground states of quantum systems. We prove

that these ML algorithms can efficiently and
accurately predict ground-state properties of
gapped local Hamiltonians, after learning from
data obtained bymeasuring other ground states
in the same quantum phase of matter. Fur-
thermore, under a widely accepted complexity-
theoretic conjecture, we prove that no efficient
classical algorithm that does not learn from
data can achieve the same prediction guaran-
tee. By generalizing from experimental data,
ML algorithms can solve quantummany-body
problems that could not be solved efficiently
without access to experimental data.

RESULTS:We consider a family of gapped local
quantumHamiltonians, where theHamiltonian
H(x) depends smoothly on m parameters (de-
noted by x). TheML algorithm learns from a set
of training data consisting of sampled values of
x, each accompanied by a classical representa-
tion of the ground state ofH(x). These training
data could be obtained from either classical
simulations or quantum experiments. During
the prediction phase, theML algorithmpredicts
a classical representation of ground states for
Hamiltonians different from those in the train-
ing data; ground-state properties can then be
estimated using the predicted classical repre-
sentation. Specifically, our classical ML algo-
rithm predicts expectation values of products
of local observables in the ground state, with a

small error when averaged over the value of x.
The run time of the algorithm and the amount
of training data required both scale polyno-
mially inm and linearly in the size of the quan-
tum system. Our proof of this result builds on
recent developments in quantum information
theory, computational learning theory, and con-
densed matter theory. Furthermore, under the
widely accepted conjecture that nondetermin-
istic polynomial-time (NP)–complete problems
cannot be solved in randomized polynomial
time, we prove that no polynomial-time classi-
cal algorithm that does not learn from data can
match the prediction performance achieved by
the ML algorithm.
In a related contribution using similar proof

techniques, we show that classical ML algo-
rithms can efficiently learn how to classify quan-
tum phases of matter. In this scenario, the
training data consist of classical representations
of quantum states, where each state carries a
label indicating whether it belongs to phase A
or phase B. TheML algorithm then predicts the
phase label for quantum states that were not
encountered during training. The classical ML
algorithm not only classifies phases accurately,
but also constructs an explicit classifying func-
tion. Numerical experiments verify that our
proposedMLalgorithmsworkwell in a variety
of scenarios, including Rydberg atom systems,
two-dimensional random Heisenberg models,
symmetry-protected topological phases, and
topologically ordered phases.

CONCLUSION: We have rigorously established
that classicalML algorithms, informed by data
collected in physical experiments, can effective-
ly address some quantum many-body prob-
lems. These rigorous results boost our hopes
that classicalML trained on experimental data
can solve practical problems in chemistry and
materials science that would be too hard to
solve using classical processing alone. Our
arguments build on the concept of a succinct
classical representation of quantum states
derived from randomizedPaulimeasurements.
Although some quantumdevices lack the local
control needed to perform such measure-
ments, we expect that other classical repre-
sentations could be exploited by classical ML
with similarly powerful results. How can we
make use of accessible measurement data to
predict properties reliably? Answering such
questions will expand the reach of near-term
quantum platforms.▪
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Classical algorithms for quantum many-body problems. Classical ML algorithms learn from training
data, obtained from either classical simulations or quantum experiments. Then, the ML algorithm produces a
classical representation for the ground state of a physical system that was not encountered during training.
Classical algorithms that do not learn from data may require substantially longer computation time to
achieve the same task.
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Classical machine learning (ML) provides a potentially powerful approach to solving challenging quantum
many-body problems in physics and chemistry. However, the advantages of ML over traditional
methods have not been firmly established. In this work, we prove that classical ML algorithms can
efficiently predict ground-state properties of gapped Hamiltonians after learning from other
Hamiltonians in the same quantum phase of matter. By contrast, under a widely accepted conjecture,
classical algorithms that do not learn from data cannot achieve the same guarantee. We also prove that
classical ML algorithms can efficiently classify a wide range of quantum phases. Extensive numerical
experiments corroborate our theoretical results in a variety of scenarios, including Rydberg atom
systems, two-dimensional random Heisenberg models, symmetry-protected topological phases, and
topologically ordered phases.

S
olving quantum many-body problems,
such as finding ground states of quantum
systems, has far-reaching consequences
for physics, materials science, and chem-
istry. Although classical computers have

facilitated many profound advances in science
and technology, they often struggle to solve
such problems. Powerfulmethods, such as den-
sity functional theory (1, 2), quantum Monte
Carlo (3–5), and density-matrix renormaliza-
tion group (6, 7), have enabled solutions to
certain restricted instances ofmany-body prob-
lems, but many general classes of problems
remain outside the reach of even the most ad-
vanced classical algorithms.
Scalable, fault-tolerant quantum computers

will be able to solve a broad array of quantum
problems but are unlikely to be available for
years to come. Meanwhile, how can we best ex-
ploit our powerful classical computers to ad-
vance our understanding of complex quantum
systems? Recently, classical machine learning
(ML) techniques have been adapted to inves-
tigate problems in quantum many-body phys-
ics (8, 9) with promising results (10–27). So far,
these approaches are mostly heuristic, reflect-
ing the general paucity of rigorous theory in
ML. Although they were shown to be effective
in some intermediate-size experiments (28–30),
thesemethods are generally not backed by con-
vincing theoretical arguments to ensure good
performance, particularly for problem instan-
ces where traditional classical algorithms falter.

In general, simulating quantum many-body
physics is hard for classical computers because
accurately describing an n-qubit quantum sys-
tem may require an amount of classical data
that is exponential in n. In prior work, this
bottleneck has been addressed using classical
shadows—succinct classical descriptions of
quantummany-body states that can be used to
accurately predict a wide range of properties
with rigorous performance guarantees (31, 32).
Furthermore, this quantum-to-classical conver-
sion technique can be readily implemented in
various existing quantum experiments (33–35).
Classical shadows create opportunities for ad-
dressing quantum problems using classical
methods, such as ML. In this paper, we build
on the classical shadow formalism and devise
polynomial-time classical ML algorithms for
quantum many-body problems that are sup-
ported by rigorous theory.
We consider two applications of classical

ML, indicated in Fig. 1. The first application we
examine is learning to predict classical repre-
sentationsofquantummany-bodygroundstates.
We consider a family ofHamiltonians,where the
Hamiltonian H(x) depends smoothly on m real
parameters (denoted by x). TheML algorithm is
trained on a set of training data consisting of
sampled values of x, each accompanied by the
corresponding classical shadow for the ground
state r(x) of H(x). These training data could be
obtained from either classical simulations or
quantum experiments. During the prediction
phase, the ML algorithm predicts a classical
representation of r(x) for values of x different
from those in the training data. Ground-state
properties can then be estimated using the pre-
dicted classical representation.
This learning algorithm is efficient, provided

that the ground-state properties to be predicted
do not vary too rapidly as a function of x. Suf-

ficient upper bounds on the gradient can be
derived for any family of gapped, geometrically
local Hamiltonians in any finite spatial dimen-
sion, as long as the property of interest is the
expectation value of a sum of few-body observ-
ables. The conclusion is that any such property
can be predicted with a small average error,
where the amount of training data and the
classical computation time are polynomial inm
and linear in the system size. Furthermore, we
show that classical algorithms that do not learn
from data cannot make accurate predictions
in polynomial time without violating widely
accepted complexity-theoretic conjectures. To-
gether, we rigorously establish the advantage
ofML algorithmswith data over thosewithout
data (36) in a physically relevant task.
The classical ML algorithm could general-

ize from training data that are obtained either
through quantum experiments or classical sim-
ulations; the same rigorous performance guar-
antees apply in either case. If the training data
are obtained from quantum experiments, the
rigorous result shows that classical ML can
explore and predict properties of new physical
systems that are challenging to prepare and
measure in the laboratory. Even if the exper-
imentalists only have limited measurement
capability, such as being able to measure a spe-
cific property of r(x), the theorem established
in this work immediately implies that a classical
ML model can predict that specific property ac-
curately. If the training data are generated clas-
sically, it could be more efficient and more
accurate to use the MLmodel to predict prop-
erties for new values of the input x rather than
doing new simulations, which could be com-
putationally very demanding. Promising in-
sights into quantum many-body physics are
already beingobtainedusing classicalMLbased
on classical simulation data (10, 12, 14, 17, 19, 20,
23–25, 37, 38). Our rigorous analysis identifies
general conditions that guarantee the success of
classical ML models and elucidate the advan-
tages of classical ML models over non-ML al-
gorithms, which do not learn from data. These
results enhance the prospects for interpretable
ML techniques (38–40) to further shed light on
quantum many-body physics.
In the second application we examine, the

goal is to classify quantum states of matter into
phases (41) in a supervised learning scenario.
Suppose that during training we are provided
with sample quantum states that carry labels
indicating whether each state belongs to phase
A or phase B. Our goal is to classify the phase
for new quantum states that were not encoun-
tered during training. We assume that, during
both the training and classification stages, each
quantum state is represented by its classical
shadow, which could be obtained either from
a classical computation or from an experiment
on a quantum device. The classical ML mod-
el, then, trains on labeled classical shadows
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and learns to predict labels for new classical
shadows.
We assume that the A and B phases can be

distinguished by a nonlinear function of mar-
ginal density operators of subsystems of constant
size. This assumption is reasonable because we
expect the phase to be revealed in subsystems
that are larger than the correlation length but do
not depend on the total system size. We show
that if sucha function exists, a classicalMLmodel
can learn to distinguish the phases using an
amount of training data and classical processing
that are polynomial in the system size. We do
not need to know anything about this nonlinear
function in advance, apart from its existence.
Here, we review the classical shadow formal-

ism (31) and use this formalism to derive rigor-
ous guarantees for ML algorithms in predicting
ground-stateproperties andclassifyingquantum
phases of matter. We also describe numerical
experiments in a wide range of physical systems
to support our theoretical results.

Constructing efficient classical
representations of quantum systems

We begin with an overview of the randomized
measurement toolbox (31, 32, 42–45), rele-
gating further details to section S1 (46). We
approximate an n-qubit quantum state r by per-

forming randomized single-qubit Paulimeasure-
ments onT copies of r. That is,wemeasure every
qubit of the unknown quantum state r in a
random Pauli basis X, Y, or Z to yield a mea-
surement outcome of ±1. Collapse of the wave
function implies that thismeasurement proce-
dure transforms r into a randompure product

state s tð Þ�� � ¼ �n
i¼1 s

tð Þ
i

��� E
, where s tð Þ

i

��� E
∈ 0j i; 1j i;f

þj i; �j i; iþj i; i�j ig are eigenstates of the se-
lected Pauli matrices. Performing one random-
ized measurement grants us classical access
to one such snapshot. Performing a total of
T randomized measurements grants us ac-
cess to an entire collection ST rð Þ ¼ s tð Þ

i

�
:i ∈

���n
1;…;nf g; ; t; ∈ 1;…;Tf gg . Each element is a

highly structured single-qubit pure state, and
there are nT of them in total. So, 3nT bits suf-
fice to store the entire collection in classical
memory. The randomized measurements can
be performed in actual physical experiments
or through classical simulations. Resulting
data can then be used to approximate the
underlying n-qubit state r

r ≈ sT rð Þ ¼ 1

T

XT
t¼1

s tð Þ
1 �…� s tð Þ

n

where s tð Þ
i ¼ 3 s tð Þ

i

��� E
s tð Þ
i

D ���� I ð1Þ

and I denotes the 2 × 2 identity matrix. This
classical shadow representation (31, 32) ex-
actly reproduces the global density matrix in
the limit T→∞, but T ¼ O constr log nð Þ=e2½ �
already provides an e-accurate approxima-
tion of all reduced–r-body density matrices
(in trace distance). This, in turn, implies that
we can use sT(r) to predict any function that
depends on only reduced-density matrices,
such as expectation values of (sums of) local
observables and (sums of) entanglement en-
tropies of small subsystems. Classical storage
and postprocessing costs also remain tracta-
ble in this regime. To summarize, the clas-
sical shadow formalism equips us with an
efficient quantum-to-classical converter that
allows classical machines to efficiently and
reliably estimate subsystem properties of any
quantum state r.

Predicting ground states of quantum
many-body systems

We consider the task of predicting ground-
state representations of quantum many-body
Hamiltonians in finite spatial dimensions.
Suppose that a family of geometrically local,
n-qubit Hamiltonians H xð Þ : x∈ �1; 1½ �mf g is
parameterized by a classical variable x. That is,
H(x) smoothly maps a boundedm-dimensional
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Fig. 1. Central concepts. (A) Efficient quantum-to-classical conversion. The
classical shadow of a quantum state, constructed by measuring very few
copies of the state, can be used to predict many properties of the state with a
rigorous performance guarantee. (B) Predicting ground-state properties. After
training on data obtained in quantum experiments, a classical ML model predicts
a classical representation of the ground state r(x) of the Hamiltonian H(x) for
parameters x spanning the entire phase. This representation yields estimates of
the properties of r(x), avoiding the need to run exhaustive classical computations

or quantum experiments. (C) Classifying quantum phases. After training, a
classical ML model receives a classical representation of a quantum state
and classifies the phase from which the state was drawn. (D) Training data.
For predicting ground states, the classical ML model receives a classical
representation of r(x) for each value of x sampled during training. For predicting
quantum phases of matter, the training data consist of classical representations
of quantum states accompanied by labels identifying the phase to which
each state belongs.
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vectorx (parametrization) to aHermitianmatrix
of size 2n× 2n (n-qubit Hamiltonian).We do not
impose any additional structure on this map-
ping; in particular, we donot assumeknowledge
about how the physical Hamiltonian depends
on the parameterization. The goal is to learn a
model ŝ xð Þ that can predict properties of the
ground state r(x) associated with the Hamil-
tonian. This problem arises in many practi-
cal scenarios. Suppose diligent experimental
effort has produced experimental data for
ground-state properties of various physical
systems. We would like to use these data to
train an ML model that predicts ground-state
representations of hitherto unexplored phys-
ical systems.

An ML algorithm with rigorous guarantee

We will prove that a classical ML algorithm
can predict classical representations of ground
states after training on data belonging to the
same quantum phase of matter. Formally, we
consider a smooth family of Hamiltonians H
(x) with a constant spectral gap. During the
training phase of the ML algorithm, many
values of x are randomly sampled, and for
each sampled x, the classical shadow of the
corresponding ground state r(x) of H(x) is
provided, either by classical simulations or
quantum experiments. The full training data
of sizeN are given by xl→sT r xlð Þ½ �f gNl¼1, where
T is the number of randomized measurements
in the construction of the classical shadows at
each value of xl.
We train classicalMLmodels using the size-N

training data, such that when given the input
xl, theMLmodel can produce a classical repre-
sentation ŝ xð Þ that approximates sT[r(xl)].
During prediction, the classical ML model
produces ŝ xð Þ for values of x different from
those in the training data. Although ŝ xð Þand
sT[r(xl)] classically represent exponentially
large density matrices, the training and pre-
diction can be done efficiently on a classical
computer using various existing classical ML
models, such as neural networks with large
hidden layers (47–50) and kernel methods
(51, 52). In particular, the predicted output of
the trained classical ML models can be writ-
ten as the extrapolation of the training data
using a learned metric k(x, xl) ∈ R

ŝ xð Þ ¼ 1

N

XN
l¼1

k x; xlð ÞsT r xlð Þ½ � ð2Þ

For example, prediction using a trained neu-
ral network with large hidden layers (46) is
equivalent to using the metric k x; xlð Þ ¼XN
l′¼1

f NTKð Þ x; xl′ð Þ F�1
� �

l′l
, where f (NTK)(x, x′) is

the neural tangent kernel (47) corresponding
to the neural network and Fl′l = f (NTK)(xl′, xl)
[see section S3 (46) for more discussion]. The

ground-state properties are then estimated
using these predicted classical representa-
tions ŝ xð Þ. Specifically, fO(x) = tr[Or(x)] can
be predicted efficiently whenever O is a sum
of few-body operators.
To derive a provable guarantee, we consider

the simple metric k x; xlð Þ ¼
X

k∈Zm; kk k2≤L
cos pk�½

x � xlð Þ�with cutoff L, which we refer to as the
l2-Dirichlet kernel. We prove that the predic
tion will be accurate and efficient if the func-
tion fO(x) does not vary too rapidly when x
changes in any direction. Sufficient upper
bounds on the gradient magnitude of fO(x)
can be derived using quasi-adiabatic contin-
uation (53, 54).
Under the l2-Dirichlet kernel, the classical

ML model is equivalent to learning a truncated
Fourier series to approximate the function fO(x).
The parameter L is a cutoff for the wave num-
ber k that depends on (upper bounds on) the
gradient of fO(x). Using statistical analysis, one
can guarantee thatEx tr Oŝ xð Þ½ � � fO xð Þj j2 ≤ e
as long as the amount of training data obeys
N ¼ mO 1=eð Þ in them→∞ limit. The conclusion
is that any such fO(x) can be predicted with a
small constant average error, where the amount
of training data and the classical computation
time are polynomial inm and atmost linear in
the system size n. Moreover, the training data
need only contain a single classical shadow
snapshot at each point xl in the parameter
space (i.e., T = 1). An informal statement of the
theorem is given below; we explain the proof
strategy in section S5 and providemore details
in section S6 (46). We also discuss how one
could generalize the proof to long-range inter-
acting systems, electronic Hamiltonians, and
other settings, including when one cannot per-
form classical shadow tomography (31), in sec-
tion S6.2 (46).

Theorem 1 (learning to predict ground-
state representations; informal)

For any smooth family of Hamiltonians H xð Þ :f
x∈ �1; 1½ �mg in a finite spatial dimension with a
constant spectral gap, the classical ML algo-
rithm can learn to predict a classical repre-
sentation of the ground state r(x) of H(x) that
approximates few-body reduced-densitymatrices
up to a constant error e when averaged over
x. The required training data size N and
computation time are polynomial in m and
linear in the system size n.
Though formally efficient in the sense thatN

scales polynomially with m for any fixed ap-
proximation error e, the required amount of
training data scales badly with e. This unfor-
tunate scaling is not a shortcoming of the con-
sideredML algorithm, but a necessary feature.
In section S7 (46), we show that the data size
and time complexity cannot be improved fur-
ther without making stronger assumptions
about the class of gapped local Hamiltonians.

However, in cases of practical interest, theHam-
iltonian may obey restrictions such as trans-
lational invariance or graph structure that can
be exploited to obtain better results. Incorpor-
ating these restrictions can be achieved by
using a suitable k(x, xl), such as one that cor-
responds to a large-width convolutional neural
network (CNN) (48) or a graph neural network
(49). Rigorously establishing thatneural network–
based ML algorithms can achieve improved
prediction performance and efficiency for par-
ticular classes of Hamiltonians requires fur-
ther investigation.

Computational hardness for non-ML algorithms

In the following proposition, we show that a
classical polynomial-time algorithm that does
not learn from data cannot achieve the same
guarantee in estimating ground-state properties
without violating the widely believed conjec-
ture that nondeterministic polynomial-time
(NP)–complete problems cannot be solved in
randomized polynomial time. This proposition
is a corollary of standard complexity-theoretic
results (55, 56). See section S8 (46) for the de-
tailed statement and proof.

Proposition 1 (informal)

Consider a randomized polynomial-time classical
algorithm A that does not learn from data. Sup-
pose for any smooth family of two-dimensional
(2D) Hamiltonians H xð Þ : x∈ �1; 1½ �mf g with
a constant spectral gap, A can efficiently
compute expectation values of one-body ob-
servables in the ground state r(x) of H(x) up
to a constant errorwhen averaged over x. Then,
there is a randomized classical algorithm that
can solve NP-complete problems in polyno-
mial time.
It is instructive to observe that a classical

ML algorithmwith access to data can perform
tasks that cannot be achieved by classical al-
gorithms that do not have access to data. This
phenomenon is studied in (36), where it is
shown that the complexity class defined by
classical algorithms that can learn from data is
strictly larger than the class of classical algo-
rithms that do not learn from data. (The data
can be regarded as a restricted form of ran-
domized advice string.) We caution that ob-
taining the data to train the classical MLmodel
could be challenging. However, if we focus only
on data that could be efficiently generated by
quantum-mechanical processes, it is still pos-
sible that a classical ML algorithm that learns
from data could be more powerful than clas-
sical computers. In section S8 (46), we present
a contrived family of Hamiltonians that estab-
lishes this claim based on the (classical) com-
putational hardness of factoring.

Classifying quantum phases of matter

Classifying quantum phases of matter is ano-
ther important application of ML to physics.
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Wewill consider this classification problem in
the case where quantum states are succinctly
represented by their classical shadows. For
simplicity, we consider the classification of
two phases (denotedA and B), but the analysis
naturally generalizes to classifying any num-
ber of phases.

ML algorithms

We envision training a classical ML algorithm
with classical shadows, where each classical
shadow carries a label y indicating whether
it represents a quantum state r from phase
A [y(r) = 1] or phase B [y(r) = −1]. We want
to show that a suitably chosen classical ML
algorithm can learn to efficiently classify the
phase for new classical shadows beyond those
encountered during training. Following a strat-
egy standard in learning theory, we consider a
classical ML algorithm that maps each classical
shadow to a corresponding feature vector in a
high-dimensional feature space and then at-
tempts to find a hyperplane that separates fea-
ture vectors in the A phase from feature vectors
in the B phase. The learning is efficient if the
geometry of the feature space is efficiently com-
putable and if the feature map is sufficiently
expressive. Thus, our task is to construct a fea-
ture map with the desired properties.
In the simpler task of classifying symmetry-

breaking phases, there is typically a local order
parameterO ¼

X
i

Oi given as a sum of r-body
observables for some r > 0 that satisfies

tr Orð Þ ≥ 1;∀r ∈ phase A; tr Orð Þ ≤
� 1;∀r ∈ phase B ð3Þ

Under this criterion, the classification function
may be chosen to be y rð Þ ¼ sign tr Orð Þ½ �. Hence,
classifying symmetry-breaking phases can be
achieved by finding a hyperplane that separates
the two phases in the high-dimensional feature
space that subsumes all r-body reduced-density
matrices of the quantum state r. The feature
vector consisting of all r-body reduced-density
matrices of the quantum state r can be accu-
rately reconstructed from the classical shadow
representation ST(r) when T is sufficiently
large.
Finding a suitable choice of hyperplane in the

feature space can be cast as a convex optimiza-
tion problem known as the soft-margin support
vector machine (SVM), discussed in more detail
in section S10.1 (46). With a sufficient amount
of training data, the hyperplane found by the
classical ML model will generalize so that the
phase y(r) can be predicted accurately for a
previously unseen quantum state r. The clas-
sical MLmodel is not merely a black box; it also
discovers the order parameter (encoded by the
hyperplane), guiding physicists toward a deeper
understanding of the phase structure.
For more exotic quantum phases of mat-

ter, such as topologically ordered phases, the

above classical ML model no longer suffices.
The topological phase of a state is invariant
under a constant-depth quantum circuit, and
a phase containing the product state 0j i�n is
called the trivial phase. Using these notions,
we can prove that no observable—not even one
that acts on the entire system—can be used
to distinguish between two topological phases.
The proof, given in section S9 (46), uses the ob-
servation that random single-qubit unitaries can
confuse any global or local order parameter.

Proposition 2

Consider two distinct topological phases A
and B (one of the phases could be the trivial
phase). No observable O exists such that

tr Orð Þ > 0;∀r ∈ phase A; tr Orð Þ ≤ 0;

∀r ∈ phase B ð4Þ
Although this proposition implies that no
linear function tr(Or) can be used to classify
topologically ordered phases, it does not ex-
clude nonlinear functions, such as quadratic
functions tr Or� rð Þ , degree-d polynomials
tr Or�d
� �

, and more general analytic functions.
For example, it is known that the topological
entanglement entropy (57, 58), a nonlinear
function of r, can be used to classify a wide
variety of topologically ordered phases. For
this purpose, it suffices to consider a subsys-
tem whose size is large compared with the cor-
relation length of the state but is independent
of the total size of the system. The correlation
length in the groundstate of a localHamiltonian
increases when the spectral gap between the
ground state and the first excited state be-
comes smaller (59). On the other hand, a linear
function on the full system will fail even with
constant correlation length.
To learn nonlinear functions, we need amore

expressive ML model. For this purpose, we de-
vise a powerful feature map that takes the
classical shadow ST(r) of the quantum state r
to a feature vector that includes arbitrarily-large
r-body reduced-density matrices, as well as an
arbitrarily-high–degree polynomial expansion

ϕ shadowð Þ ST rð Þ½ �

¼ lim
D;R→∞

⊕d¼0

ffiffiffiffiffi
td

d!

D

r
⊕r¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

r!

g
n

� �rR

r
⊕i1¼1

n…

 

⊕ir¼1
nvec

1

T

XT
t¼1

�l¼1
rsil

tð Þ
" #!�d

ð5Þ

where t,g > 0 are hyperparameters. The direct
sum ⊕R

r¼0 is a concatenation of all r-body
reduced-density matrices, and the other direct
sum ⊕D

d¼0 subsumes all degree-d polynomial
expansions. The computational cost of finding
a hyperplane in feature space that separates
the training data into two classes is domi-
nated by the cost of computing inner products

between feature vectors. The inner product
ϕ shadowð Þ ST rð Þ½ �;ϕ shadowð Þ ST ~rð Þ½ �	 �

can be ana-
lytically computed by reorganizing the direct
sums,writing it as a double series, andwrapping
both series into an exponential, which gives

k shadowð Þ ST rð Þ; ST ~rð Þ½ �

¼ exp
t
T 2

XT
t;t′¼1

exp
g
n

Xn
i¼1

tr s tð Þ
i ~s tð Þ

i

� �" #( )

ð6Þ

where ST rð Þ and ST ~rð Þ are classical shadow
representations of r and ~r, respectively. The
computation time for the inner product is
O(nT2), linear in the system size n and quad-
ratic in T, the number of copies of each quan-
tum state that are measured to construct the
classical shadow.

Rigorous guarantee

By statistical analysis, we can establish a
rigorous guarantee for the classical ML model
a;ϕ shadowð Þ ST rð Þ½ �	 �

, where a is the trainable
vector defining the classifying hyperplane.
The result is the following theorem, proven
in section S10 (46).

Theorem 2 (classifying quantum phases
of matter; informal)

If there is a nonlinear function of few-body
reduced-density matrices that classifies phases,
then the classical algorithm can learn to classify
these phases accurately. The required amount
of training data and computation time scale
polynomially in system size.
If there is an efficient procedure based on

few-body reduced-density matrices for classi-
fying phases, the proposed ML algorithm is
guaranteed to find the procedure efficiently.
This includes local order parameters for clas-
sifying symmetry-breaking phases and topolog-
ical entanglement entropy in a sufficiently large
local region for partially classifying topological
phases (57, 58). We expect that, to classify topo-
logical phases accurately, the classicalMLmod-
el will need access to local regions that are
sufficiently large compared with the corre-
lation length, and as we approach the phase
boundary, the correlation length increases.
As a result, the classifying function for topo-
logical phases may depend on r-body subsys-
tems with a larger r, and the amount of training
data and computation time required would
increase accordingly. The classical ML model
not only classifies phases accurately but also
constructs a classifying function explicitly.
Our classical ML model may also be useful

for classifying and understanding symmetry-
protected topological (SPT) phases. SPT phases
are characterized much like topological phases
butwith the additional constraint that all struc-
tures involved (states, Hamiltonians, and quan-
tum circuits) respect a particular symmetry. It
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is reasonable to expect that an SPT phase can
be identified by examining reduced-density
matrices on constant-size regions (60–65),
where the size of the region is large compared
with the correlation length. The existence of
classifying functions based on reducedmatrices
has been rigorously established in some cases
(66–73). In section S12 (46), we prove that the
ML algorithm is guaranteed to efficiently clas-
sify a class of gapped spin-1 chains in one dimen-
sion. For more general SPT phases, the ML
algorithm should be able to corroborate known
classification schemes, determine new and po-
tentially more-compact classifiers, and shed
light on interacting SPT phases in two ormore
dimensions for which complete classification
schemes have not yet been firmly established.
The hypothesis of theorem 2, stating that

phases can be recognized by inspecting regions
of constant size independent of the total system
size, is particularly plausible for gapped phases,
but it might apply to some gapless phases as
well. Our classical ML model would be able to
efficiently classify such gapless phases. On the
other hand, the contrapositive of theorem 2
asserts that if the classicalMLmodel is not able
to distinguish between two distinct gapless
phases, then nonlocal data are required to char-
acterize at least one of those phases.

Numerical experiments

We have conducted numerical experiments as-
sessing the performance of classical ML algo-
rithms in some practical settings. The results
demonstrate that our theoretical claims carry
over to practice, with the results sometimes

turning out even better than our guarantees
suggest.

Predicting ground-state properties

For predicting ground states, we consider clas-
sical ML models encompassed by Eq. 2. We
examine various metrics k(x,xl) equivalent to
training neural networks with large hidden
layers (47, 50) or training kernel methods
(51, 74). We find the best ML model and the
hyperparameters using a validation set to min-
imize root mean square error (RMSE) and re-
port the predictions on a test set. The full
details of the models and hyperparameters, as
well as their comparisons, are given in sections
S4.2 and S4.3 (46).

Rydberg atom chain

Our first example is a systemof trappedRydberg
atoms (75, 76), a programmable and highly con-
trolled platform for Ising-type quantum simu-
lations (77–82). Following (77), we consider a 1D
array of n = 51 atoms, with each atom effectively
described as a two-level system composed of a
ground state gj i and a highly excited Rydberg
state rj i. The atomic chain is characterized by a
Hamiltonian H(x) (given in Fig. 2A) whose
parameters are the laser detuning x1 = D/W
and the interaction range x2 =Rb/a. The phase
diagram (Fig. 2B) features a disordered phase
and several broken-symmetry phases, stem-
ming from the competition between the de-
tuning and the Rydberg blockade (arising from
the repulsive van der Waals interactions).
We trained a classical ML model using 20

randomly chosen values of the parameter x =

(x1,x2); these values are indicated by gray cir-
cles in Fig. 2B. For each such x, an approx-
imation to the exact ground state was found
using density matrix renormalization group
(DMRG) (6) based on the formalism of matrix
product states (MPSs) (83). For each MPS, we
performed T = 500 randomized Pauli meas-
urements to construct a classical shadow. The
classical ML model then predicted classical
representations at the testing points in the
parameter space, and these predicted clas-
sical representations were used to estimate
expectation values of local observables at the
testing points.
Predictions for expectation values of Pauli

operators Zi and Xi at the testing points are
shown in Fig. 2C and were found to agree well
with exact values obtained from the DMRG
computation of the ground state at the testing
points. Additional predictions can be found in
section S4.1 (46). Also shown are results from a
more-naïve procedure, in which properties are
predicted using only the data at the point in
the training set that is closest to the testing
point. The naïve procedure predicts poorly,
illustrating that the considered classical ML
model effectively leverages the data frommul-
tiple points in the training set.
This example corroborates our expectation

that classical machines can learn to efficiently
predict ground-state representations. An im-
portant caveat is that the rigorous guarantee
in theorem 1 applies only when the training
points and the testing points are sampled
from the same phase, whereas in this exam-
ple, the training data include values of x from
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Fig. 2. Numerical experiment for predicting ground-state properties in a 1D
Rydberg atom system with 51 atoms. (A) Hamiltonian and the illustrations of the
Rydberg array geometry and the three resulting phases. (B) Phase diagram. The
system’s three distinct phases (77) are characterized by two order parameters (for
Z2 and Z3 orders). Training data are enclosed by gray circles, and three specific
testing points are indicated by the star, diamond, and cross symbols, respectively.

(C) Local expectation values. We use classical ML (the best model is selected from a
set of ML models) to predict the expectation values of Pauli operators Xi and Zi for
each atom at the three testing points. (Top) Results for the first 15 atoms. (Bottom)
Predictions obtained from the training data nearest to the testing points. The
markers denote predicted values, whereas the solid lines denote exact values
obtained from DMRG. Additional predictions are shown in section S4.1 (46).
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three different phases. Nevertheless, our nu-
merics show that classical machines can still
learn to predict well.

2D antiferromagnetic Heisenberg model

Our next example is the 2D antiferromagnetic
Heisenbergmodel. Spin-½particles (i.e., qubits)
occupy sites on a square lattice, and for each
pair (ij) of neighboring sites, the Hamiltonian
contains a term Jij XiXj þ YiYj þ ZiZjð Þ, where
the couplings {Jij} are uniformly sampled from
the interval [0, 2]. The parameter x is a list of all
Jij couplings; hence, in this case, the dimension
of the parameter space is m = O(n), where n is
the number of qubits. TheHamiltonianH(x) on
a 5 × 5 lattice is shown in Fig. 3A.
We trained a classical ML model using 90

randomly chosen values of the parameter x =
{Jij}. For each such x, the exact ground state
was found using DMRG, and we simulated
T = 500 randomized Pauli measurements to
construct a classical shadow. The classical
ML model predicted the classical represen-
tation at new values of x, and we used the
predicted classical representation to estimate
a two-body correlation function, the expecta-
tion value of Cij ¼ 1

3 XiXj þ YiYj þ ZiZjð Þ, for
each pair of qubits (ij). In Fig. 3B, the pre-
dicted and actual values of the correlation func-
tion are displayed for a particular value of x,
showing reasonable agreement.
Figure 3C shows the prediction performance

for all pairs of spins and for variable system
sizes. Each red point in the plot represents the
RMSE in the correlation function estimated
using our predicted classical representation
for a particular pair of spins and averaged over
sampled values of x. For comparison, each blue
point is the RMSE when the correlation func-
tion is predicted using the classical shadow

obtained by measuring the actual ground state
T = 500 times. For most correlation functions,
the prediction error achieved by the best clas-
sical ML model is comparable to the error
achieved by measuring the actual ground state.

Classifying quantum phases of matter

For classifying quantum phases of matter, we
consider an unsupervised classical ML model
that constructs an infinite-dimensional non-
linear feature vector for each quantum state r
by applying the map ϕ shadowð Þ in Eq. 5 with
t,g = 1 to the classical shadow ST(r) of the
quantum state r. We then perform a principal
components analysis (PCA) (84) in the infi-
nite-dimensional nonlinear feature space. The
low-dimensional subspace found by PCA in
the nonlinear feature space corresponds to a
nonlinear low-dimensional manifold in the
original quantum state space. This method is
efficient using the shadow kernel k(shadow)

given in Eq. 6 and the kernel PCA procedure
(85). Details are given in sections S4.4. and
S4.5 (46).

Bond-alternating XXZ model

We begin by considering the bond-alternating
XXZ model with n = 300 spins. The Hamil-
tonian is given in Fig. 4A; it encompasses the
bond-alternating Heisenberg model (d = 1)
and the bosonic version of the Su-Schrieffer-
Heeger model (d = 0) (86). The phase diagram
in Fig. 4B is obtained by evaluating the partial
reflection many-body topological invariant
(62, 87). There are three distinct phases: trivial,
SPT, and symmetry broken.
For each value of J and d considered, we

construct the exact ground state using DMRG
and find its classical shadow by performing
randomized Pauli measurement T = 500 times.

We then consider a 2D principal subspace of the
infinite-dimensional nonlinear feature space
found by the unsupervised ML based on the
shadow kernel, which is visualized in Fig. 4, C
and D. We can clearly see that the different
phases are well separated in the principal
subspace. This shows that even without any
phase labels on the training data, theMLmodel
can classify the phases accurately. Hence, when
trained with only a small amount of labeled
data, the ML model will be able to correctly
classify the phases as guaranteed by theorem 2.

Distinguishing a topological phase from a
trivial phase

We consider the task of distinguishing the
toric code topological phase from the trivial
phase in a system of n = 200 qubits. Figure 5A
illustrates the sampled topological and trivial
states.We generate representatives of the non-
trival topological phase by applying low-depth
geometrically local random quantum circuits
to Kitaev’s toric code state (88) with code dis-
tance 10, and we generate representatives of
the trivial phase by applying random circuits
to a product state.
Randomized Pauli measurements are per-

formed T = 500 times to convert the states to
their classical shadows, and these classical
shadows are mapped to feature vectors in the
high-dimensional feature space using the fea-
ture map ϕ shadowð Þ . Figure 5B displays a 1D
projection of the feature space using the
unsupervised classical ML model for various
values of the circuit depth, indicating that
the phases become harder to distinguish as the
circuit depth increases. In Fig. 5C, we show the
classification accuracy of the unsupervised clas-
sical MLmodel. We also compare with train-
ing CNNs that use measurement outcomes
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Fig. 3. Numerical experiment for predicting ground-state properties in the
2D antiferromagnetic Heisenberg model with 25 atoms. (A) Hamiltonian and
the illustration of the Heisenberg model geometry. We consider random
couplings Jij, sampled uniformly from [0, 2]. A particular instance is shown with
coupling strength indicated by the thickness of the edges connecting lattice
points. (B) Two-point correlator. Exact values and ML predictions of the

expectation value of the correlation function Cij ¼ 1
3 XiXj þ YiYj þ ZiZj
� �

for all

spin pairs (ij) in the lattice, for the Hamiltonian instance shown in (A). The
absolute value of Cij is represented by the size of each circle, and the circle’s
color indicates the actual value. (C) Prediction error. Each blue point indicates
the RMSE (averaged over Heisenberg model instances) of the correlation
function for a particular pair (ij), where the estimate of Cij is obtained using a
classical shadow with T = 500 randomized Pauli measurements of the true
ground state. Red points indicate errors in ML predictions for Cij.
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from the Pauli-6 positive operator-valued mea-
sure (POVM) (89) as input to learn anobservable
for classifying the phases. Because proposition 2
establishes that no observable (even a global
one) can classify topological phases, this CNN
approach is doomed to fail. On the other hand, if
the CNN takes classical shadow representations
as input, then it can learn nonlinear functions
and successfully classify the phases.

Outlook

We have rigorously established that classical
ML algorithms, informed by data collected in

physical experiments or using classical calcu-
lations, can effectively address some quantum
many-body problems. These results boost our
hopes that classical ML trained on experi-
mental data can solve practical problems in
chemistry and materials science that would
be too hard to solve using classical process-
ing alone.
Our arguments build on the concept of a

classical shadow derived from randomized
Pauli measurements. We expect, though, that
other succinct classical representations of
quantum states could be exploited by classi-

cal ML with similarly powerful results. For
example, some currently available quantum
simulators are highly programmable but lack
the local control needed to perform arbitrary
single-qubit Pauli measurements. Instead, after
preparing a many-body quantum state of in-
terest, one might switch rapidly to a different
Hamiltonian and then allow the state to evolve
for a short time before performing a computa-
tional basis measurement. How can we make
use of that measurement data to predict prop-
erties reliably (90, 91)? For that matter, might
we be able to generalize from experimental
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Fig. 5. Numerical experiments for distinguishing between trivial and
topological phases. (A) State generation. Trivial or topological states
are generated by applying local random quantum circuits of some circuit
depth to a product state or exactly solved topological state, respectively.
(B) Unsupervised phase classification. Visualization of the quantum states
projected to one dimension using the unsupervised ML (nonlinear PCA with

shadow kernel), shown for varying circuit depth (divided by the code distance 10,
which quantifies the depth at which the topological properties are washed out).
The feature space is sufficiently expressive to resolve the phases for a small
enough depth without training, with classification becoming more difficult
as the depth increases. (C) Classification accuracy for three ML algorithms
described in the text.

A C D

B

Fig. 4. Numerical experiments for classifying quantum phases in the bond-
alternating XXZ model. (A) Illustration of the model—a 1D qubit chain, where
the coefficient of XiXiþ1 þ YiYiþ1 þ dZiZiþ1ð Þ alternates between J and J′.
(B) Phase diagram. The system’s three distinct phases are characterized by the
many-body topological invariant ~ZR, discussed in (62, 87). Blue denotes ~ZR ¼ 1,

red denotes ~ZR ¼ �1, and gray denotes ~ZR≈0. (C and D) Unsupervised phase

classification. (Bottom) ~ZR versus J/J′ at cross sections d = 0.5 (C) and
d = 3.0 (D) of the phase diagram. (Top) Visualization of the quantum states
projected to two dimensions using the unsupervised ML (nonlinear PCA with
shadow kernel). In all panels, the colors of the points indicate the value of J/J′;
the upper panels suggest that the phases naturally cluster in the expressive
feature space.
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data that are already routinely available to
predict properties of chemical compounds and
materials that have not yet been synthesized?
Answering such questions will be important
goals for future research.

Materials and methods summary

Here, we provide the key ideas for designing
ML algorithms to predict ground states and
to classify quantum phases of matter. We refer
the readers to the supplementary materials
(46) for algorithmic details and the proofs of
the main theorems.

Predicting ground states

To understand why the ML algorithm works,
we begin by considering a simpler task: train-
ing an ML model to predict a single ground-
state property tr O rð Þ, whereO is an observable
and r is the ground state. In this simpler task,
the training data are xl→tr Or xlð Þ½ �f gNl¼1, where
xl ∈ �1; 1½ �m is a classical description of the
Hamiltonian H(xl) and r(xl) is the ground
state of H(xl). Intuitively, in a quantum phase
ofmatter, the ground-state property tr O r xð Þ½ �
changes smoothly as a function of the input
parameter x. The smoothness condition can
be rigorously established as an upper bound
on the average magnitude of the gradient
of tr O r xð Þ½ � using quasi-adiabatic evolution
(53, 54), assuming that the spectral gap of H
(x) is bounded below by a nonzero constant
throughout the parameter space. The upper
bound on the average gradient magnitude en-
ables us to design a simple classical MLmodel
based on an l2-Dirichlet kernel for general-
izing from the training set to a new input
x ∈ �1; 1½ �m

Ô xð Þ ¼ 1

N

XN
l¼1

k x; xlð Þtr Or xlð Þ½ � ð7Þ

where k x; xlð Þ ¼
X

k∈Zm; kk k2≤L
cos pk � x � xlð Þ½ �

is the l2-Dirichlet kernel with cutoff L. Using
statistical analysis, we can guarantee that
the prediction error is small given a number
of training dataN polynomial in the number
of parameters m.
The main idea of the statistical analysis is

to bound the model complexity. In particular,
the model complexity depends on the num-
ber of wave vectors k in the l2-Dirichlet kernel.
The more wave vectors k that we include, the
higher the model complexity and the more
data needed in theMLmodel to achieve good
prediction performance. We show that the
number of m-dimensional wave vectors with
a Euclidean norm bounded byL ismO(L), and
we only need to consider L to be of orderffiffiffiffiffiffiffi

1=e
p

to achieve prediction error at most e.
We then generalize this idea to the task of

predicting the ground-state representation. We
consider a training data xl→sT r xlð Þ½ �f gNl¼1 ,

where sT r xlð Þ½ � is the classical shadow repre-
sentation of the quantum state r xlð Þ obtained
from performing randomized Pauli measure-
ment on the stater xlð Þ. Following the expression
for predicting a fixed property, the predicted
ground-state representation is given by

ŝ xð Þ ¼ 1

N

XN
l¼1

k x; xlð ÞsT r xlð Þ½ � ð8Þ

Using the property of classical shadows, we
have tr OsT r xlð Þ½ �f g≈tr Or xlð Þ½ � for a wide
range of observables O. By moving the sum
outside of the trace, we can reduce the prob-
lem to predicting a fixed ground-state prop-
erty. Hence, if the classicalMLmodel based on
an l2-Dirichlet kernel can predict ground-state
properties accurately, then it can predict the
ground-state representation accurately.

Classifying quantum phases of matter

TheML algorithm is based on the SVMmodel.
The underlying idea of SVM is simple and in-
tuitive. Suppose that we have N data points
that form twowell-separated clusters. Wemay
try to separate these training clusters with a
linear hyperplane. When we get a new data
point, we simply check which half space it be-
longs to and assign the label accordingly. How-
ever, there could be many hyperplanes that
separate these two training clusters. SVM con-
siders the hyperplane that yields the largest
margin, which is equivalent tomaximizing the
distance from each cluster to the hyperplane.
Intuitively, maximizing the margin allows the
hyperplane to be most robust to the sampling
errors of the training data. Using statistical
analysis, one can rigorously show that the big-
ger the margin, the better the generalization
performance would be.
SVM can be enhanced using the kernel trick.

When the N data points cannot be separated
using a linear hyperplane, we need to separate
them using a more complex surface. This is
achieved by mapping each data point to a
high-dimensional vector space through a non-
linear mapping and looking for a linear hyper-
plane in the high-dimensional space. One can
perform the training and prediction in the
high-dimensional space by only computing
inner products between two points in the high-
dimensional space. The inner product is often
referred to as the kernel function, and this
technique of mapping to a much larger space
is knownas the kernel trick. Inmany situations,
one considers the high-dimensional space to
be infinite dimensional. The shadow kernel
that we defined in Eq. 6 also corresponds to an
infinite-dimensional vector space.
For the task of classifying quantum phases of

matter, we assume that there exists a classifying
function f(r) based on a nonlinear function of
the reduced-density matrices of the quantum
state. More precisely, we assume that states rA

in phase A satisfy f(rA) >1 and states in phase B
satisfy f(rA) < −1. This assumption is often
satisfied when we focus on states not too close
to the phase boundary. We show in the supple-
mentarymaterials (46) that various SPT phases
and topologically ordered phases do satisfy
this assumption. Because the shadow kernel
corresponds to an inner product in an infinite-
dimensional space containing all possible non-
linear combinations of the reduced-density
matrices, SVM based on the shadow kernel is
able to learn the classifying function. The
amount of data required to learn this classify-
ing function depends on the margin of the
hyperplane in the infinite-dimensional space,
which can be shown to scale polynomially in
system size.

Numerical experiments

For experiments on predicting ground-state
properties, we consider the supervised ML
algorithm described in Eq. 2. We examine
metrics k x; xlð Þ∈R based on Gaussian kernel,
Dirichlet kernel, and neural tangent kernel
(50). Depending on different training data
sizes and the number of measurements per
quantum state, we found that different ker-
nels perform better than others. For classify-
ing quantum phases of matter, we consider an
unsupervised ML algorithm, where no labeled
training data are provided. The kernel trick
described above can also be applied to un-
supervised ML algorithms. A standard exam-
ple is kernel PCA. PCA tries to find a direction,
known as the principal component, such that
the data points along this direction are most
separated. If the points are not well separated
in any direction, thenwe can considermapping
all points to an infinite-dimensional space. Sim-
ilar to the supervised setting, we only need
to consider inner products between pairs of
points in the infinite-dimensional space (kernel
function) to find the principal component.
Hence, we can also apply the shadow kernel
to classify quantum phases of matter in an
unsupervised fashion. This is what we con-
sidered in the numerical experiments shown
in Fig. 4 and Fig. 5.
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For those unfamiliar with the classical shadow formalism (31 ), Section 1 provides a concise introduction and
contains all the necessary information on classical shadows to follow this paper. Discussion of related literature
on methods in many-body physics, in particular works for training machine learning models to solve quantum
many-body problems, is given in Section 2.

Readers interested in the numerical experiments can jump directly to Section 3, which provides a detailed
discussion on practical approaches for combining neural networks with classical shadows. The reader could
then continue to Section 4, which gives additional numerical experiments, details of numerical experiments,
and example codes (in Python) for using the machine learning models.

The rest of the appendices are dedicated to providing a rigorous understanding in using classical machine
learning models to solve quantum many-body problems.

Predicting ground states : We recommend that readers start with Section 5, which provides the idea for
why classical machine learning models can be trained to predict ground state representations of quantum
systems. In Section 5, we also provide the proof idea for generalizing to other settings (such as Fermionic
systems, long-range interacting systems, etc). The detailed proof is given in Section 6. In Section 7, we give a
fundamental lower bound in the required data size for learning to predict ground state properties for general
classes of Hamiltonians. In Section 8, we show why non-ML algorithms cannot achieve a similar guarantee as
ML algorithms in predicting ground state representations.

Classifying phases of matter : The reader could begin with the basic proposition given in Section 9, which
shows that no (local or global) observable tr(O⇢) can be used to classify topological phases. This motivates
the need to consider stronger machine learning models that can learn nonlinear functions in the quantum
state ⇢. The readers could then proceed to Section 10, which provides a general theory for establishing provable
guarantees in training machine learning models based on classical shadows to classify quantum phases of matter.
In Section 11, we briefly introduce symmetry-protected topological phases and prove that the proposed machine
learning model can classify a particular subset of such phases.
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1. BACKGROUND ON CLASSICAL SHADOWS

The classical shadows formalism uses randomized (single-shot) measurements to predict many properties of
an unknown quantum state ⇢ at once (31 ), see also (32 , 45 ). The underlying idea dates back to (42 ) and
also features prominently in (43 , 44 , 96 ). In particular, the classical shadows formalism comes with rigorous
performance guarantees in terms of approximation accuracy, classical storage, as well as data processing. Here,
we focus on randomized single-qubit Pauli measurements and repeat the following procedure a total of T times:
(i) prepare an independent copy of ⇢; (ii) select n single qubit Pauli measurements uniformly at random (Z, X
and Y occur with probability 1/3 each) and (iii), perform the associated measurement to obtain n classical bits
(+1 if we measure ‘up’ and �1 if we measure ‘down’). Subsequently, we store the associated post-measurement
state

|s(t)
1

i ⌦ · · · ⌦ |s(t)
n i with |s(t)

1
i, . . . , |s(t)

n i 2 {|0i, |1i, |+i, |�i, |i+i, |i�i} ⇢ C
2 (S1)

in classical memory. This is very cheap because there are only six possibilities for each qubit. After T repetitions,
we obtain an entire collection of nT single-qubit states that we arrange in a two-dimensional array:

ST (⇢) =
n

|s(t)
i i : i 2 {1, . . . , n}, t 2 {1, . . . , T}

o
2 {|0i, |1i, |+i, |�i, |i+i, |i�i}

n⇥T (S2)

The distribution of product states contains valuable information about the underlying n-qubit density matrix
⇢. In fact, we can use ST (⇢) to approximate ⇢ via

�T (⇢) =
1

T

TX

t=1

⇣
3|s(t)

1
ihs(t)

1
| � I

⌘
⌦ · · · ⌦

⇣
3|s(t)

n ihs(t)
n | � I

⌘
, (S3)

where I denotes the identity matrix (here, a 2-by-2 identity). It is instructive to view this as the empirical
average of T independent and identically (iid) random matrices. Each random matrix is an iid copy of �1(⇢) =�
3|s1ihs1|� I

�
⌦ · · ·⌦

�
3|snihsn|� I

�
. Each tensor factor is guaranteed to have eigenvalues �+ = 2 and �� = �1.

This ensures that

tr (�1(⇢)) =tr (|s1ihs1| � I) · · · tr (|snihsn| � I) = 1 and (S4a)

k�1(⇢)kp = k3|s1ihs1| � Ikp · · · k3|snihsn| � Ikp = (|�+|
p + |��|

p)n/p = (2p + 1p)n/p , (S4b)

regardless of the concrete realization (and the underlying quantum state ⇢). The most relevant Schatten-p
norms are k�1(⇢)k1 = 3n, k�1(⇢)k2 = 5n/2 and k�1(⇢)k1 = 2n. Note, however, that the matrix �1(⇢) is never
positive semidefinite.

The random matrix �1(⇢) is a highly structured tensor product that can assume a total of 6n values. Each
of them reflects the outcome of performing randomly selected single-qubit Pauli measurements on the n-qubit
state ⇢. Let us denote these Pauli matrices by W1, . . . , Wn 2 {X, Y, Z} and let o1, . . . , on 2 {±1} be the
observed outcomes (+1 if we measure ‘spin up’ and �1 if we measure ‘spin down’). Elementary reformulations
and Born’s rule then imply

�1(⇢) =
1

2
(I + 3o1W1) ⌦ · · · ⌦

1

2
(I + 3onWn) with prob.

1

3n
tr

✓
1

2
(I + o1W1) ⌦ · · · ⌦

1

2
(I + onWn)⇢

◆
. (S5)

This construction ensures that �1(⇢) exactly reproduces the underlying quantum state ⇢ in expectation. That
is, if we average over all 3n choices of Pauli measurements and the associated (single-shot) outcomes oi 2 {±1},
we obtain

E
s1,...,sn

[�1(⇢)] = E
s1,...,sn


1

2
(I + 3o1W1) ⌦ · · · ⌦

1

2
(I + 3on3Wn)

�
(S6a)

=
X

W1,...,Wn=X,Y,Z

X

o1,...,on=±1

1

3n
tr

✓
1

2
(I + o1W1) ⌦ · · · ⌦

1

2
(I + onWn)⇢

◆
(S6b)

⇥
1

2
(I + o13W1) ⌦ · · · ⌦

1

2
(I + on3Wn) (S6c)

= ⇢. (S6d)

We refer to Ref. (31 ) for a more detailed derivation and context.
The classical shadow (S3) attempts to approximate this expectation value by an empirical average over

T independent samples, much like Monte Carlo sampling approximates an integral. The accuracy of the
approximation increases with T , but insisting on accurate approximations of the global state ⇢ is prohibitively
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expensive. Known fundamental lower bounds (97 , 98 ) state that classical shadows of exponential size (at least)
T = ⌦

�
2n/✏2

�
are required to ✏-approximate ⇢ in trace distance. This quickly becomes intractable in terms of

both measurement budget, as well as classical storage and processing.
This bleak picture lightens up considerably if we restrict our attention to subsystem approximations. The

classical shadow size required to accurately approximate all reduced r-body density matrices scales exponen-
tially in subsystem size r, but is independent of the total number of qubits n.

Lemma 1. Fix ✏, � 2 (0, 1), a subsystem size r  n and let �T (⇢) be a classical shadow (S3) of an n-qubit
quantum state ⇢ with size

T = (8/3)12r (r (log(n) + log(12)) + log(1/�)) /✏2 = O
�
r12r log(n/�)/✏2

�
. (S7)

Then, with probability at least 1 � �,

ktr¬A (�T (⇢)) � tr¬A (⇢)k
1

 ✏ for all subsystems A ⇢ {1, . . . , n} with size |A|  r. (S8)

Proof. Let us start by considering a fixed subsystem A = {i1, . . . , ir} comprised of (at most) r qubits. Use
linearity to exchange partial trace with expectation value to obtain

E

s(t)
i1

,...,s(t)
ir

h�
3|s(t)

i1
ihs(t)

i1
| � I

�
⌦ · · · ⌦

�
3|s(t)

ir
ihs(t)

ir
| � I

�i
(S9a)

= tr¬A

 
E

s(t)
1 ,...,s(t)

n

h�
3|s(t)

1
ihs(t)

1
| � I

�
⌦ · · · ⌦

�
3|s(t)

n ihs(t)
n | � I

�i
!

(S9b)

= tr¬A(⇢), (S9c)

according to Eq. (S6). In words, each reduced tensor product is an independent random matrix that reproduces
the r-qubit state tr¬A(⇢) exactly in expectation. Empirical averages of T such independent and identically
distributed (iid) random matrices tend to concentrate sharply around this expectation value. The matrix
Bernstein inequality, see e.g. (99 ), provides powerful tail bounds in terms of operator norm deviation. Let
X1, . . . , XT be iid random D-dimensional matrices that obey kXt � EXtk1  R almost surely. Then, for
✏̃ > 0,

Pr

"�����
1

T

TX

t=1

(Xt � EXt)

�����
1

� ✏̃

#
 2D exp

✓
�

T ✏̃2/2

�2 + R✏̃/3

◆
where �2 =

�����
1

T

X

t

EX2

t

�����
1

. (S10)

Let us apply this tail bound to classical shadow concentration. We have D  2r (at most r qubits) and set
Xt =

�
3|s(t)

i1
ihs(t)

i1
� I

�
⌦ · · ·⌦

�
3|s(t)

ir
ihs(t)

ir
|� I

�
, such that EXt = tr¬A(⇢). Eq. (S4) then implies kXt �EXtk1 

kXtk + kEXtk1  2r + 1 =: R. Accurately bounding �2 is somewhat more involved, and we turn to existing
literature. A computation detailed in (100 , Appendix C.3) yields �2 = 3r. We are now ready to apply the
matrix Bernstein inequality. For ✏̃ > 0,

Pr [ktr¬A (�T (⇢)) � tr¬A(⇢)k
1

� ✏̃]  2r+1 exp

✓
�

T ✏̃2/2

3r + (2r + 1)✏̃/3

◆
 2r+1 exp

✓
�

3T ✏̃2

8 ⇥ 3r

◆
, (S11)

for ✏̃ 2 (0, 1). This is a powerful concentration statement in operator norm. We can use the equivalence relation
between trace- and operator norm, kXk1  kXk1  DkXk1, to obtain a tail bound for trace norm deviations:

Pr [ktr¬A (�T (⇢)) � tr¬A(⇢)k
1

� ✏]  Pr [ktr¬A (�T (⇢)) � tr¬A(⇢)k
1

� ✏/2r]  2r+1 exp

✓
�

3T ✏2

8 ⇥ 12r

◆
. (S12)

We see that, for a fixed subsystem A = {i1, . . . , ir}, the probability of an ✏-deviation in trace distance is
exponentially suppressed in the size T of the classical shadow. A union bound allows us to extend this assertion
to all subsystems comprised of (at most) r qubits:

Pr


max

A⇢{1,...,n},|A|r
ktr¬A (�T (⇢)) � tr¬A(⇢)k

1
� ✏

�


X

A⇢{1,...,n},|A|r

Pr [ktr¬A (�T (⇢)) � tr¬A(⇢)k
1

� ✏]

(S13a)

 nr2r+1 exp

✓
�

3T ✏2

8 ⇥ 12r

◆
. (S13b)

Setting T = (8/3)12r (log(nr12r) + log(1/�)) /✏2 = (8/3)12r (r (log(n) + log(12)) + log(1/�)) /✏2 ensures that
this upper bound on failure probability does not exceed �.
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2. RELATED WORK

2.1. Estimating ground state properties

Determining the ground state of a system governed by a known many-body Hamiltonian is a long-standing
problem in quantum science. Despite having several well-established and practically successful algorithms at
our disposal, we are typically faced with either a runtime that scales exponentially with system size, and/or
a lack of rigorous performance guarantees. The literature is vast, and surveying it is beyond the scope of this
article. Instead, we review a few families of established algorithms in order to put our work into proper context.

Density functional theory (DFT) has been a workhorse for determining properties of interacting electronic
systems in quantum chemistry and solid-state physics. DFT recasts the problem of finding the many-body
state with minimal energy into finding a few-body energy functional. While the “true” functional corresponding
to the ground state is known to exist in theory (1 , 2 ), determining it to polynomial accuracy in the number of
electrons is QMA-hard (101 ). Various efficient approximations to the true functional have seen much practical
success, but they are difficult to justify rigorously (except so far for some special cases (102 )). These limitations
present an opportunity for ML approaches to be used instead of or to supplement DFT methods (26 , 103 ). In
(26 ), they utilized the Hohenberg-Kohn theorem in DFT which implies the existence of a mapping from single-
particle densities to correlation function. Then (26 ) proposed to train deep learning models to approximately
learn the mapping between correlation functions and the densities. The authors in (26 ) found that across
the phase boundary, the mapping becomes hard to learn. This empirical observation could be seen as a
manifestation of the fact that Theorem 1 only holds when we do not consider the presence of phase transitions.
However, our numerical experiments on Rydberg atoms suggest that ML models could still predict well when
there are multiple phase boundaries. Understanding when predictions would be accurate in the presence of
phase transitions is an interesting and important question to study further.

The family of algorithms known as Quantum Monte Carlo (QMC) (3 , 4 ) utilizes probabilistic sampling tech-
niques to estimate observable properties at either finite or zero temperature. For ground states, expectation
values can be obtained using an imaginary-time evolution projector or a high-power of the model Hamilto-
nian (104 ). The efficiency of QMC methods depends on the structure of the Hamiltonian, specifically on
whether all of its off-diagonal matrix elements are negative (i.e. it is stoquastic (105 )). In this case, the ground
state wavefunction is real-valued and positive, and the algorithmic complexity of the QMC estimators scales
polynomially with the number of particles. For non-stoquastic Hamiltonians, the QMC suffers from the so-
called sign problem, which makes evaluation of statistical properties of the system NP-hard and renders QMC
intractable for large systems or low temperatures (106 ). It is important to note that, even for stoquastic
Hamiltonians with polynomial computational complexity, the success of QMC simulations heavily relies on the
existence of efficient sampling schemes (e.g. cluster updates) which are sufficiently ergodic, and lead to small
auto-correlation time (107 ). In general, it is not possible to prove the existence of such update algorithms, nor
their ergodicity.

An alternative approach to solve the ground state properties of a many-body Hamiltonian is based on the
variational principle in quantum mechanics, which states that the expectation value of the energy on any valid
wavefunction is always greater or equal to the ground state energy. It is then possible to design classical paramet-
ric representations of the many-body wavefunction, and update their parameters to minimize the corresponding
energy estimator. A notable example is the density-matrix renormalization group (6 , 7 ) (DMRG). This algo-
rithm can be interpreted as a variational optimization of a Matrix Product State (MPS) (83 , 108 , 109 ), which
is a local decomposition of a wavefunction as a one-dimensional tensor network. These parametrized wavefunc-
tions display area law of entanglement and exponentially-decaying correlations (110 ), which lend themselves
most effective for systems described by one-dimensional gapped Hamiltonians. Furthermore, a standout feature
of DMRG is that modifications of the original procedure, such as rigorous renormalization group algorithms
(111 ), are guaranteed to find the ground state of one-dimensional geometrically-local gapped Hamiltonians in
polynomial time (111–113 ). In two spatial dimensions, MPS-based DMRG can still be applied to solve for
ground states (114–116 ), though it suffers an exponential scaling in one of the two linear dimensions of the
system. Projected entangled pair states (PEPS) (117–119 ), the two-dimensional generalization of MPSs, are
instead a more suitable ansatz in this context. However, while improved algorithms for PEPS optimization are
routinely put forward (120–122 ), the same level of performance achieved by DMRG in 1d systems is still out
of reach.

Another class of variational wavefunctions that has recently received a lot of attention is neural-network
quantum states (12 ). In this framework, a neural network is used as a parametric function approximator of a
many-body wavefunction  �(�) = h�| i, where the classical state � is interpreted as the neural-network input,
and � is a set of neural-network parameters (i.e. weights and biases). In a variational setting, these parameters
are iteratively optimized to lower the total energy (5 ), or additionally the energy variance. Neural-network
quantum states have been explored in a variety of setups, including topological phases (10 ), Fermi-Hubbard
models (14 ), molecular ground states (24 ), frustrated magnetism (123 ), and more (21 , 124–127 ). The auto-
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regressive property of some types of neural networks (e.g. recurrent neural networks, transformers, etc.) has
also been leveraged to improve convergence of variational Monte Carlo (128 ). In contrast to tensor-network
states, this class of wavefunctions can more easily display non-local correlations, allowing in principle to capture
quantum states with higher entanglement (129 ).

Another class of machine learning methods (17 , 19 , 20 , 23 , 25 ) train neural networks to predict the ground
state or excited state properties directly. The input to the neural network is a description of the Hamiltonian,
and the output is a ground state property of interest. The training data is a set of different Hamiltonians
(inputs) and their corresponding ground state properties (outputs). This class of ML methods is closest to the
setting considered in this paper. Methods in this class lack rigorous guarantees, so it is not clear when such
approaches could outperform non-ML algorithms. In one of our main contributions, given in Theorem 1 and
Proposition 1, we introduce an ML model that, when trained with experimental data, can accurately predict
ground state representations better than any classical algorithm that does not learn from data. Our model
is relatively basic, utilizing the well-known l2-Dirichlet kernel, but it is already enough to establish a rigorous
guarantee. Similarly determining when other ML models yield an advantage over non-ML algorithms is an
interesting topic for future work.

2.2. Classifying quantum phases of matter

Proposals for classifying quantum phases of matter abound. These include quantum neural networks (130 ),
classical neural networks (11 , 15 , 131–133 ), or other classical machine learning models (16 , 22 , 134 , 135 ).
Since these models do not come with rigorous guarantees, relying on them too much can lead one astray. For
example, some deep neural networks can misclassify the original phase if the corresponding state is distorted
by noise, even if the distortion is very slight (136 ).

In this work, we provide rigorous machine learning approaches that are guaranteed to classify accurately under
the specified conditions given in Theorem 2. We believe similar analyses can be performed on other machine
learning models to understand their limitation and potential, which will be an important future direction. The
ML model used in (22 ), which is based on defining diffusion maps over classical spins systems, is the ML
approach that seems most similar to that used in our work. Hence, it is very likely that the models considered
in (22 ) can be rigorously analyzed via similar techniques. Neural network approaches for classifying phases of
matter will be harder to analyze, but one should be able to study neural network with large hidden layers using
the theory developed in this work and the theory of neural tangent kernels (47 , 50 ).

2.3. Classical representations of quantum systems

One of the most important ingredients in designing classical ML procedures for understanding quantum
spin systems is the construction of efficient classical representations of the underlying quantum systems. The
properties of the quantum system retained by the classical representation directly determine the set of functions
the classical ML procedure can learn. The classical shadow formalism (31 , 32 ), developed by some of us
and others and used throughout this work, is a versatile framework for this purpose. It has been extended
to fermionic systems (137 , 138 ), suggesting that our ML approaches may be extendable as well. Classical
shadows have also been shown to allow sample-efficient reconstruction of Hamiltonian from thermal states
(139 ), although such an algorithm is not yet time efficient. However, classical shadows provide only one of
many promising and actively studied approaches for efficient representation (31 , 32 , 45 , 140–143 ).

While the curse of dimensionality prevents one from representing general quantum spin systems both exactly
and efficiently, simplifying assumptions can lift the curse and drastically reduce both the overhead and complex-
ity of representing and characterizing the system. A prime example is a classical system, whose Hamiltonian is
diagonal in the computational basis. ML methods for such systems, such as those in Ref. (22 ) (discussed above),
do not require an additional quantum-to-classical compression. Another example, relevant to electronic mate-
rial characterization, is the family of solid-state band insulators (144 ) — gapped two- and three-dimensional
non-interacing fermionic systems with various crystalline symmetries. Their myriad topological phases can
typically be characterized by data at a discrete set of high-symmetry points in the Brillouin zone (145–150 ).
The techniques developed here should pave the way for certifying accuracy of current ML methods for band
insulator characterization (e.g., (151–157 )) as well as developing new ones.

3. NEURAL NETWORKS WITH CLASSICAL SHADOW FOR QUANTUM MANY-BODY
PROBLEMS

Imposing inductive biases in the ML model is a common technique for boosting the prediction performance
of ML models. One approach is to enhance the proposed ML algorithms with neural networks, such as con-
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volutional or graph neural networks. These neural networks could better capture structure of the underlying
function we are trying to learn and hence may require significantly less data than the very expressive ML model
given in the main text. We leave the proof that neural network enhancements can lead to better prediction
performance as a goal for future work.

There are multiple ways of combining classical shadows and neural networks. Here, we will only showcase
one such approach by utilizing the theory of neural tangent kernels (47 ). Remarkably, this theory allows us to
efficiently train various types of neural networks (convolutional/graph/etc.) with an infinite number of neurons
in each hidden layer (infinite width). As such, this line of work has gained a lot of attention (49 , 50 , 158 ) in
recent years. In the limit of infinite width, one can analytically solve for the neural network after training on
a set of data {x`, y`}

N
`=1

, where x` and y` are vectors of some size. For example, consider training a neural
network that takes in a vector x and produces a vector fNN

✓ (x) through the following optimization problem
using gradient descent,

min
✓

NX

`=1

��fNN

✓ (x`) � y`

��2

2
, (S14)

where we begin on a randomly initialized ✓. Note that due to the infinite number of neurons, ✓ is a vector of
infinite dimension. The trained neural network fNN

✓⇤ (x) can always be written in the following form

fNN

✓⇤ (x) =
NX

`=1

NX

`0=1

k(NTK)(x, x`)(K
�1)``0y`0 , (S15)

where k(NTK)(x, x0) is a function called the neural tangent kernel (47 ), and K`,`0 = k(NTK)(x`, x`0) is the
kernel matrix of the neural tangent kernel. One can see that the infinite-dimensional vector ✓⇤ does not appear
on the right hand side of Eq. (S15). And as long as we can efficiently evaluate the neural tangent kernel
k(NTK)(x, x0), we can evaluate the infinite-dimensional neural network in polynomial time. This is the main
contribution of (47 ), which enables one to efficiently train infinite-width neural networks. For a given neural
network architecture, one can compute k(NTK)(x, x0) efficiently using open-source software, such as (50 ). In
Section 4 4.2, we give the code for training infinite-width neural networks using the open-source software: Neural
Tangents (50 ).

3.1. Predicting ground state representation

For the task of predicting ground state representation, we consider the training data to be
�
x` ! �T (⇢(x`))

 N

`=1
, (S16)

where �T (⇢(x`)) is the classical shadow representation of ⇢(x`) given in Eqs. (1) and (S3) based on T randomized
Pauli measurements. Recall that �T (⇢(x`)) is a 2n

⇥ 2n matrix that reproduces ⇢(x`) in expectation over the
randomized Pauli measurements. Suppose we now train an infinite-width neural network parameterized by ✓
that takes in an input x and produces an exponential-size matrix �NN

✓ (x), by solving the optimization problem

min
✓

NX

`=1

���NN

✓ (x`) � �T (⇢(x`))
��2

F
. (S17)

The squared Frobenius difference between two matrices is equal to the squared Euclidean norm of their vector-
izations (flattenings). In turn, the theory of infinite-width neural networks (47 ) shows that the trained neural
network �NN

✓⇤ (x) could be written in the form

�NN

✓⇤ (x) =
NX

`=1

NX

`0=1

k(NTK)(x, x`)(K
�1)``0�T (⇢(x`0)). (S18)

The kernel function k(NTK)(x, x0) depends on the neural network architecture and could be calculated utilizing
existing open-source software (50 ). This also falls into the general form shown in the main text; see Eq. (2).
Hence, training an infinite-width neural networks to predict an exponentially large density matrix can be done
efficiently on a classical computer. For a given neural network architecture, all one has to do is compute the
kernel function k(NTK)(x, x0). Then the neural network optimized using the training data could be analytically
solved as given in Eq. (S18). To estimate a property on the predicted ground state using the neural network is
as simple as evaluating

tr(O�NN

✓⇤ (x)) =
NX

`=1

NX

`0=1

k(NTK)(x, x`)(K
�1)``0 tr(O�T (⇢(x`0))), (S19)
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which can be done by first computing tr(O�T (⇢(x`))), 8` = 1, . . . , N and compute the linear interpolation.

3.2. Classifying phases of matter

We want to learn how to classify two phases of n-qubit states. A fully classical training set would simply
consist of N labeled classical representations of quantum states {⇢` ! y`}

N
`=1

, where y` = +1 (�1) if ⇢` belongs
to phase A (B). However, insisting on perfect knowledge of each ⇢` is impractical for a variety of reasons.
Instead, we assume that we have access to classical shadows of ⇢`. The raw data ST (⇢`) behind each classical
shadow is a 2-dimensional array,

ST (⇢`) =
n

|s(t)
i i : i 2 {1, . . . , n}, t 2 {1, . . . , T}

o
where |s(t)

i i 2 {|0i , |1i , |+i , |�i , |i+i , |i�i}. (S20)

In the main text, we propose to use this data to train a support vector machine based on the shadow kernel

k(shadow)

⇣
ST (⇢`), S̃T (⇢`0)

⌘
= exp

0

@ ⌧

T 2

TX

t,t0=1

exp

 
�

n

nX

i=1

tr
⇣�

3|s(t)
i ihs(t)

i | � I
��

3|s̃(t)
i ihs̃(t)

i | � I
�⌘
!1

A . (S21)

This specific choice of (deterministic) kernel function allows us to carry out a thorough theoretical analysis of
the entire learning procedure; see Section 10.

But there are other sensible kernels that may perform even better in practice. For instance, we could feed
the two-dimensional data array (S20) into a neural network architecture, e.g. a convolutional neural network.
In the limit of an infinite number of neurons in each hidden layer, this produces the neural tangent kernel
k(NTK)

⇣
ST (⇢`), S̃T (⇢`0)

⌘
(47 ). This kernel is positive-semidefinite and should be viewed as a measure of

similarity induced by the trained neural network. Mercer’s theorem (159 ) allows us to make this intuition
precise by reformulating the neural tangent kernel as a Gram matrix in feature space:

k(NTK)

⇣
ST (⇢`), S̃T (⇢`0)

⌘
=
D
�(NTK) (ST (⇢`)) ,�(NTK)

⇣
S̃T (⇢`0)

⌘E
. (S22)

Hence, any infinite-width neural network with input array ST (⇢) induces a feature map �(NTK) that can be
used instead of the doubly-infinite feature map �(shadow) (5) that is associated with the shadow kernel (S21).

4. DETAILS REGARDING NUMERICAL EXPERIMENTS

In this section, we provide additional numerical experiments as well as more details about the numerical
experiments described in the main text.

4.1. Additional numerical experiments

Rydberg atom chain — In the main text, we have provided partial prediction outcomes for a one-dimensional
chain of n = 51 Rydberg atoms; see Fig. 2. Here, we supply predictions of expectation values of Pauli operators
Zi and Xi on all 51 atoms at the testing points marked in Fig. 2B. These are shown in Fig. S1 and Fig. S2,
respectively. These extend the more restricted presentation in the main text to all qubits. In Fig. S3, we show
a different baseline considering bivariate B-spline interpolation from the training data.

Distinguishing an SPT phase from a trivial phase — We consider a one-dimensional chain of n = 50 qubits
with Z2 ⇥Z2 symmetry. The 1D cluster state is in the nontrivial SPT phase. We generate other representatives
of the nontrivial SPT phase by applying symmetric depth-3 geometrically local random quantum circuits to
the cluster state, and we generate representatives of the trivial phase by applying symmetric depth-3 random
circuits to a product state.

Randomized Pauli measurements are performed T = 500 times to convert the states to their classical shadows,
and these classical shadows are mapped to feature vectors in the infinite-dimensional feature space using the
feature map �(shadow) (5). In Fig. S4A, inner products of feature vectors (matrix elements of the shadow kernel)
are displayed. Fig. S4B shows the feature vectors projected onto a two-dimensional subspace using nonlinear
principal component analysis (PCA) based on the shadow kernel k(shadow). Both figures show that feature
vectors representing distinct phases can be distinguished easily. Correspondingly, the classical ML efficiently
learns how to classify phases accurately, even if the training data is unlabeled.
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Classical ML Nearest training data

Classical ML Nearest training data

Nearest training dataClassical ML

*Solid lines indicate exact values from DMRG

Figure S1: Numerical experiment for predicting ground state properties (Pauli-Z in each atom) in a 1D Rydberg atom
system with 51 atoms. We use the classical ML to predict the ground state properties at the three testing points. Also
shown are “predictions” obtained from the training data nearest to the testing points. The markers denote predicted
values, while the solid lines denote exact values obtained from DMRG.

Classical ML Nearest training data

Classical ML Nearest training data

Nearest training dataClassical ML

*Solid lines indicate exact values from DMRG

Figure S2: Numerical experiment for predicting ground state properties (Pauli-X in each atom) in a 1D Rydberg atom
system with 51 atoms. We use the classical ML to predict the ground state properties at the three testing points. Also
shown are “predictions” obtained from the training data nearest to the testing points. The markers denote predicted
values, while the solid lines denote exact values obtained from DMRG.

Distinguishing a topologically-ordered phase from a trivial phase — We consider the task of distinguishing the
toric code (88 ) topologically-ordered phase from the trivial phase in a system of n = 200 qubits. We generate
other representatives of the topologically-ordered phase by applying two-dimensional depth-3 geometrically
local random quantum circuits to the toric code state, and we generate representatives of the trivial phase by
applying two-dimensional depth-3 random circuits to a product state.

Randomized Pauli measurements are performed T = 500 times to convert the states to their classical shadows,
and these classical shadows are mapped to feature vectors in the infinite-dimensional feature space using the
feature map �(shadow). In Fig. S4, C and D, inner products of feature vectors (matrix elements of the shadow
kernel) and the projection of feature space data onto the two-dimensional subspace spanned by the largest
principal components are shown. Once more, one can clearly see that feature vectors representing distinct
phases can be distinguished easily. Correspondingly, the classical ML efficiently learns how to classify phases
accurately, even if the training data is unlabeled.

4.2. Ground state properties of the Rydberg atom chain

Our first example is a one-dimensional chain of n = 51 Rydberg atoms (75–77 ). Each atom can be in either
its ground state or a highly excited Rydberg state. Such systems can effectively be regarded as a qubit, where
the basis state |0i is the ground state |gi and the basis state |1i is the Rydberg state |ri. The Hamiltonian of
the atomic chain is

H =
⌦

2

X

i

Xi � �
X

i

Ni + ⌦
X

i<j

✓
Rb

a|i � j|

◆6

NiNj , (S23)
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Spline interpolation

Spline interpolation

Spline interpolation

*Solid lines indicate exact values from DMRG

Spline interpolation

Spline interpolation

Spline interpolation

*Solid lines indicate exact values from DMRG

Figure S3: “Predictions” obtained by performing bivariate B-spline interpolation using the training data. The markers
denote interpolated values, while the solid lines denote exact values obtained from DMRG.
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Figure S4: Numerical experiments for distinguishing trivial and topological phases. Trivial or topological states are
generated by applying low-depth local random quantum circuits to a product state or exactly solved topological state
respectively. (a) Kernel matrix for SPT/trivial phases The exactly solved topological state is the cluster state.
The (i, j)-entry denotes the inner product of the i-th and j-th feature vectors in the infinite-dimensional feature space
defined by the classical shadow representation. To the left, states from the two phases are randomly mixed. To the
right, the two phases are ordered. (b) Kernel matrix for topologically-ordered/trivial phases. The exactly
solved topological state is the toric code ground state.

where ⌦ is the (fixed) Rabi frequency, � is the laser detuning, Ni is the Rydberg occupation number operator,
a is the separations of the atoms, and Rb is the so called Rydberg blockade radius. For large and negative �,
the ground state of H is a vacuum state, where all atoms are in the ground state |gi. In contrast, for large and
positive �, different broken-symmetry ground states can be engineered depending on the value of Rb.

Approximations of the exact ground states of the Rydberg chain were found using the density-matrix renor-
malization group (DMRG) based on matrix product states (MPS). Starting from a random MPS with bond
dimension � = 10, we variationally optimize the MPS using a singular value decomposition (SVD) cutoff of
10�9. We perform a number of DMRG sweeps until the change in energy is below ✏ = 10�6. Upon convergence,
we perform randomized Pauli measurements simply by performing local rotations into the corresponding Pauli
bases, and sampling the resulting state (160 ).

In Fig. 2B, the color in the phase diagram corresponds to the phase obtained by two order parameters for
characterizing Z2 and Z3 order. For Z2 order, where the atoms are in |rgrgrg . . .i or |grgrgr . . .i, we consider
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the order parameter,

OZ2 =
1

n � 1

n�1X

i=1

(|rigi+1ihrigi+1| + |giri+1ihgiri+1|) . (S24)

For Z3 order, where the atoms are in |rggrgg . . .i or |grggrg . . .i or |ggrggr . . .i, we consider the order parameter,

OZ3 =
1

n � 2

n�2X

i=1

(|rigi+1gi+2ihrigi+1gi+2| + |giri+1gi+2ihgiri+1gi+2| + |gigi+1ri+2ihgigi+1ri+2|) . (S25)

We estimate the two order parameters of the ground state ⇢. First we check which order parameter (OZ2 or
OZ3) yields a larger expectation value. Then, we check if that expectation value is larger than the threshold
value 0.8. If OZ2 > OZ3 and OZ2 > 0.8, we associate the state with the Z2-order phase (red color). Else if
OZ3 > OZ2 and OZ3 > 0.8, we say that the state is in the Z3-order phase (vanilla color). If neither of these
conditions is satisfied (both expectation values are less than 0.8), we assign the disordered phase (blue color)
to this state.

For the Rydberg atom experiment, the input parameter vector x is two-dimensional. We first normalize the
values to lie within a square [�1, 1]2. Then we consider classical machine learning models given by

�̂N (x) =
NX

`=1

(x, x`)�T (x`) =
NX

`=1

 
NX

`0=1

k(x, x`0)(K + �I)�1

`0`

!

| {z }
(x,x`)

�T (x`), (S26)

where � > 0 is a parameter to regularize the model when K is not invertible, �T (x`) is shorthand for �T (⇢`)
and denotes the classical shadow representation of the ground state ⇢` = ⇢(x`) under T randomized Pauli
measurements. Moreover, Kij = k(xi, xj) is the kernel matrix, k(x, x0) is a kernel function, and (x, x`) is
a function that depends on the kernel function, the kernel matrix K, and �. We consider a set of different
regularization parameters,

� 2 {0.0125, 0.025, 0.05, 0.125, 0.25, 0.5, 1.0, 2.0, 4.0, 8.0}, (S27)

and we also consider a set of different kernel functions k(x, x0) = k̃(x, x0)/
q

k̃(x, x)k̃(x0, x0), where

k̃(x, x0) = exp(�� kx � x0
k
2

2
), (Gaussian kernel), (S28a)

k̃(x, x0) =
3X

k1=�3

3X

k2=�3

cos (⇡(k1(x1 � x0

1
) + k2(x2 � x0

2
))) , (Dirichlet kernel), (S28b)

k̃(x, x0) = k(NTK)(x, x0), (Neural tangent kernel). (S28c)

The hyperparameter � > 0 in the Gaussian kernel is chosen to be equal to N2/
PN

i=1

PN
j=1

kxi � xjk
2

2
, the

inverse of the average distance between xi and xj . We consider the neural tangent kernel k(NTK)(x, x0) (47 , 50 )
that is equivalent to an infinite-width feed-forward neural network with 2, 3, 4, 5 hidden layers and that uses the
rectified linear unit (ReLU) as the activation function. Computing the neural tangent kernel can be implemented
easily using the open-source software Neural Tangents (50 ). Suppose that the input data {x`}

N
`=1

is stored in
a numpy array of size N ⇥ m, denoted as dataX in the following code. We can use then use following code to
generate the neural tangent kernel matrix. The imported package neural_tangents can be downloaded from
https://github.com/google/neural-tangents.

import jax
import numpy as np
from neural_tangents import stax

init_fn, apply_fn, kernel_fn = stax.serial(
stax.Dense(32), stax.Relu(),
stax.Dense(32), stax.Relu(),
stax.Dense(1)

)
kernel_NN2 = kernel_fn(dataX, dataX, ’ntk’)

init_fn, apply_fn, kernel_fn = stax.serial(

https://github.com/google/neural-tangents
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stax.Dense(32), stax.Relu(),
stax.Dense(32), stax.Relu(),
stax.Dense(32), stax.Relu(),
stax.Dense(1)

)
kernel_NN3 = kernel_fn(dataX, dataX, ’ntk’)

init_fn, apply_fn, kernel_fn = stax.serial(
stax.Dense(32), stax.Relu(),
stax.Dense(32), stax.Relu(),
stax.Dense(32), stax.Relu(),
stax.Dense(32), stax.Relu(),
stax.Dense(1)

)
kernel_NN4 = kernel_fn(dataX, dataX, ’ntk’)

init_fn, apply_fn, kernel_fn = stax.serial(
stax.Dense(32), stax.Relu(),
stax.Dense(32), stax.Relu(),
stax.Dense(32), stax.Relu(),
stax.Dense(32), stax.Relu(),
stax.Dense(32), stax.Relu(),
stax.Dense(1)

)
kernel_NN5 = kernel_fn(dataX, dataX, ’ntk’)

list_kernel_NN = [kernel_NN2 , kernel_NN3 , kernel_NN4 , kernel_NN5]

# Normalization of the kernel matrix
for r in range(len(list_kernel_NN)):

for i in range(len(list_kernel_NN[r])):
for j in range(len(list_kernel_NN[r])):

list_kernel_NN[r][i][j] /= (list_kernel_NN[r][i][i] \
∗ list_kernel_NN[r][j][j]) ∗∗ 0.5

In order to predict the expectation value tr(O�̂N (x)) of an observable O for a new ground state �̂N (x), we
utilize the following property of expectation values,

tr(O�̂N (x)) =
NX

`=1

(x, x`) tr(O�T (x`)). (S29)

Hence, we first compute tr(O�T (x`)), which can be done efficiently for r-body observables that factorize nicely
into tensor products. Indeed, an O = Oi1 ⌦ . . . ⌦ Oir ensures

tr(O�T (x`)) =
1

T

TX

t=1

tr
⇣
O�(t)

1
(x`) ⌦ · · · ⌦ �(t)

n (x`)
⌘

=
1

T

TX

t=1

tr
⇣
Oi1�

(t)
i1

(x`)
⌘

. . . tr
⇣
Oir�

(t)
ir

(x`)
⌘

, (S30)

and the right hand side can be computed with O(Tn) arithmetic operations. Then, we can compute tr(O�̂N (x))
by extrapolating tr(O�T (x`)) using (x, x`). We utilize scikit-learn, a Python package (161 ), for the training
of these machine learning models.

Due to the different classical ML models one could consider (corresponding to different regularization param-
eters � and kernel functions k(x, x0)), we have to perform model selection to find an appropriate ML model.
Typically, the prediction performance will be quite sensitive to these parameters, so one has to select them
carefully. To evaluate the ML models, we consider 100 different points x 2 [�1, 1]2 in parameter space. Among
these 100 points, we select N = 20 to be training data. These are the circled points in Fig. 2B. For each
property we would like to predict, we choose one of the the three kernels and the different values of � such
that the prediction error is minimized on a validation set containing 80 � 3 inputs of x. The validation set is
disjoint from the 20 training points and the 3 testing points for evaluating the prediction performances (special
markers in Fig. 2A). Their purpose is to perform model selection. Finally, we test on the three input x’s shown
by the special markers (cross, diamond and star) in Fig. 2B.

We found that for each property we would like to predict, the prediction performance for different classical
ML model varies moderately. When we have sufficiently large training data size N , most choices of � and
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Figure S5: Numerical experiment for predicting ground state properties (Pauli-X and Z in each atom) in a 1D Rydberg
atom system with 51 atoms under different hyperparameters. (Left) The prediction error (root-mean-square error)
over different training sizes N with a fixed number T = 10 of randomized Pauli measurements, also referred to as the
shadow size. (Right) The prediction error over different shadow sizes T with a fixed training data size N = 31.

the kernel function should yield good prediction performance. However, we are using a very small number of
training data in our experiments, hence the choice of these options becomes more important. In particular, the
best choice of � can differ quite significantly over the different properties we would like to predict.

For completeness, we include a set of experiments where we vary the training data size N or the classical
shadow size T , where by “shadow size” we mean the number of randomized Pauli measurements used to
approximate each state. The result in given in Fig. S5. For this set of experiments, we consider a fixed set of 70
validation points in the phase space. Recall that we are using the ML model to predict ground state properties.
Here, we consider the properties to be the expectation values of single-site Pauli-X and Pauli-Z operators.
Because there are a total of 51 atoms, there are a total of 51 ⇥ 2 = 102 properties. For each property, we
randomly draw 10 different points in the phase space (not in the training set or the validation set). Therefore,
the test set is of size 1020, where each instance in the test set corresponds to a property of a point in the
phase space. The prediction error is given by the root-mean-square error over the 1020 instances in the test
set. We can see that as training set size N increases, the prediction becomes better. However, we see that as
the training size increases, the slope of the prediction error (RMSE) over N flattens. This is expected from
the theorem we established showing that N = mO(1/✏), where N is the training set size, m is the number of
parameters, and ✏ is the prediction error. While the theorem only provides an upper bound on N , if we assume
the upper bound is saturated, then we can use elementary calculus to derive

d✏

dN
is proportional to �

✏2

N log(m)
. (S31)

Hence, the analysis is compatible with the observation that the slope of RMSE over N flattens as N becomes
larger. While we proved a rigorous result using the Dirichlet kernel, other commonly used ML models may
yield a better prediction performance in practice. Proving rigorous prediction guarantees and understanding
the limitations and strengths for other more commonly used ML models are important future directions.

4.3. Ground state properties of the 2D antiferromagnetic Heisenberg model

Our next example is the two-dimensional antiferromagnetic Heisenberg model. Spin-1

2
particles (i.e. qubits)

occupy sites on a square lattice, and for each pair (ij) of neighboring sites the Hamiltonian contains a term
Jij (XiXj + YiYj + ZiZj) where the couplings {Jij} are uniformly sampled from the interval [0, 2]. The param-
eter x is a list of all Jij couplings; hence in this case the dimension of the parameter space is m = O(n), where
n is the number of qubits. The Hamiltonian H(x) on a 5⇥5 lattice is shown in Fig. 3A. The exact ground state
was found using DMRG. Analogously to the Rydberg atoms experiments, we fixed the SVD cutoff to 10�8 and
stopped the DMRG runs when the difference in energy was below 10�4.

The classical ML models we considered are the same as the Rydberg atom chain experiment. The only
difference is that we slightly modify the Dirichlet kernel (S28b) to

k(x, x0) =
X

i 6=j

3X

ki=�3

3X

kj=�3

cos
�
⇡(ki(xi � x0

i) + kj(xj � x0

j))
�
, (Dirichlet kernel). (S32)



14

Figure S6: Numerical experiment for predicting ground state properties (two-point correlation functions) in a 2D an-
tiferromagnetic Heisenberg model with 5 ⇥ 5 spins under different hyperparameters. (Left) The predict error (root-
mean-square error) over different training size N with a fixed number of randomized Pauli measurements T = 10, also
referred to as the shadow size. (Right) The prediction error (root-mean-square error) over different shadow size T with
a fixed training data size N = 90.

We trained the classical ML model using a training set containing N = 90 randomly chosen values of the
parameter x = {Jij}. Then, for each property we would like to predict, we find the top-performing ML model
setting (out of all � parameters and kernel functions k(x, x0)) on a validation set containing 100 parameters x
distinct from the training set. Finally, we test on 10 newly sampled parameters x to estimate the prediction
error. Fig. 3B shows the prediction outcome from one of the input parameter x. Fig. 3C shows the RMSE from
all 10 input parameters.

Similar to the Rydberg atom experiment, the best-performing ML model setting differs across the properties
we would like to predict. The three kernels perform similarly at larger training data size N and larger number
of randomized Pauli measurements T . But neural networks and Gaussian kernel methods tend to perform
better in most cases. The best choice of � differs substantially across the different properties: there is no single
choice of � that performs uniformly better than the other choices.

To showcase these effects, we also include a set of experiments where we vary the training data size N or the
classical shadow size T , that is, the number of randomized Pauli measurements used to approximate each state.
The numerical results are summarized in Fig. S6. For this set of experiments, we consider fixed sets of 100
validation points. For this set of experiments, we consider a fixed set of 70 validation points in the phase space.
Recall that we are using the ML model to predict ground state properties. Here, we consider the properties to
be the two-point correlation functions over every pair of the 25 spins. This results in a total of 25 ⇥ 25 = 625
properties. For each property, we randomly draw 10 testing points in the m = O(n) dimensional parameter
space (not in the training set or the validation set). Therefore, the test set is of size 6250, where each instance
in the test set corresponds to a property of a point in the parameter space. The prediction error is given by
the root-mean-square error over the 6250 instances in the test set. The results resemble what was found in the
Rydberg atom experiments, but with one notable difference — in the Rydberg experiments, but not for the
2D antiferromagnet, the Dirichlet kernel has the best performance for the largest shadow size T we considered.
This may be because the dimension m of the parameter space is much lower in the Rydberg case.

4.4. Classifying phases of the bond-alternating XXZ model

To illustrate our classical ML for classifying quantum phases of matter, we consider the bond-alternating
XXZ model with n = 300 spin- 1

2
particles (i.e. qubits). The Hamiltonian is given by

X

i:odd

J(XiXi+1 + YiYi+1 + �ZiZi+1) +
X

i:even

J 0(XiXi+1 + YiYi+1 + �ZiZi+1), (S33)

and encompasses the bond-alternating Heisenberg model (� = 1), as well as the bosonic version of the Su-
Schrieffer-Heeger model (86 ) (� = 0). The phase diagram in Fig. 4B is obtained by evaluating the partial
reflection many-body topological invariant (62 , 87 ). It is given by

Z̃R =
ZRq

[tr(⇢2

I1
) + tr(⇢2

I2
)]/2

, where ZR = tr(⇢I1[I2RI1[I2), (S34)
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and we consider I1 with 6 spins: the 145-th spin to the 150-th spin. Likewise, we fix I2 to also contain 6 spins:
the 151-th spin to the 156-th spin. Hence, the union I1 [ I2 contains 12 spins. The symbols ⇢I1 , ⇢I2 and ⇢I1[I2
denote the reduced density matrices associated with each local region. The reflection operator RI1[I2 acts on
the local region I1 [ I2 and is given by

RI1[I2 |s1, . . . , s|I1[I2|i = |s|I1[I2|, . . . , s1i , 8s1, . . . , s|I1[I2| 2 {0, 1}. (S35)

The partial reflection many body-topological invariant can resolve three phases: trivial (Z̃R = +1), symmetry-
protected topological (SPT) (Z̃R = �1) and symmetry broken (Z̃R = 0). In Fig. 4B, we use the colors blue
(trivial), red (SPT) and gray (symmetry broken) to visualize these different types of phases.

For each value of J 0/J and � considered, we construct the exact ground state using DMRG, and find its
classical shadow by performing randomized single-qubit Pauli measurements a total of T = 500 times. To
simulate this experiment, we follow the same setting for DMRG used in (87 ). We limit the maximum number
of sweeps to 100 and set the DMRG cutoff to 10�9. We initialize the state to be the Néel state |0101 . . .i.
To pin one of the degenerate ground state in the symmetry broken phase, we include a penalty term given by
0.1JZ1 in the Hamiltonian.

After obtaining the classical shadow representation ST (⇢`) for each quantum state ⇢`, we compute the kernel
matrix K 2 R

N⇥N , where each entry is given by the shadow kernel k(shadow)(ST (⇢`), ST (⇢`0)). Recall that the
shadow kernel is defined as

k(shadow)(ST (⇢), ST (⇢̃)) = exp

0

@ 1

T 2

TX

t,t0=1

exp

 
1

n

nX

i=1

tr
⇣
�(t)

i �̃(t0)
i

⌘!
1

A , where �(t)
i = 3|s(t)

i ihs(t)
i | � I, (S36)

and the classical shadow representation is given by

ST (⇢) =
n

|s(t)
i i : i 2 {1, . . . , n} , t 2 {1, . . . , T}

o
, where |s(t)

i i 2 {|0i , |1i , |+i , |�i , |i+i , |i�i} . (S37)

Care should be taken when computing diagonal elements of the kernel matrix K. The problem is that for ⇢ = ⇢̃

and t = t0, we necessarily have tr
⇣
�(t)

i �̃(t)
i

⌘
= 5 for all 1  i  n. And the double exponential will amplify this

already substantial contribution enormously. We found that counteracting this blow-up improves the numerical
stability of the kernel method substantially. When ` = `0, when we compute k(shadow)(ST (⇢`), ST (⇢`)), we
sum over t 6= t0 instead of all t, t0. In particular, when ⇢ = ⇢̃, we consider a slight modification to the kernel
definition,

k(shadow)(ST (⇢), ST (⇢)) = exp

0

@ 1

T (T � 1)

X

t 6=t0

exp

 
1

n

nX

i=1

tr
⇣
�(t)

i �(t0)
i

⌘!
1

A , (S38)

This modification also seems to slightly improve the classification performance.
After evaluating the kernel matrix K, we renormalize the entries to obtain the standardized kernel matrix

K``0 =
K``0

p
K``K`0`0

for `, `0 2 {1, . . . , N} . (S39)

Subsequently, we perform kernel principal component analysis (PCA) on K. The implementation we used for
kernel PCA is based on scikit-learn (162 ). The output of kernel PCA is a list of low-dimensional vectors (the
dimension can be chosen arbitrarily, but we choose two dimensions for this experiment). Each low-dimensional
vector corresponds to a quantum state. In Fig. 4, C and D, we can see that the low-dimensional vectors are
clustered into different quantum phases of matter.

Distinguishing an SPT phase from a trivial phase — We consider a one-dimensional chain of n = 50 qubits
with Z2 ⇥Z2 symmetry. The 1D cluster state is in the nontrivial SPT phase. We generate other representatives
of the nontrivial SPT phase by applying symmetric low-depth geometrically local random quantum circuits to
the cluster state, and we generate representatives of the trivial phase by applying symmetric random circuits
to a product state. We simulate the application of symmetric low-depth geometrically local random quantum
circuits to the cluster state through matrix product states (MPS). Each circuit layer consists of patterns of
random two-qubit gates acting on next-to-nearest neighbors sites. We generate the random gates in a block-
sparse structure in the parity symmetry sectors. This choice, together with the choice of connectivity, guarantees
that the Z2 ⇥ Z2 symmetry is conserved during the circuit evolution.

Randomized Pauli measurements are performed T = 500 times to convert the states to their classical shadows.
We perform kernel PCA to find low-dimensional representation for the quantum states using exactly the same
method as the experiment on bond-alternating XXZ model.
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4.5. Distinguishing a topological phase from a trivial phase

We consider the task of distinguishing the toric code topological phase from the trivial phase in a system of
n = 200 qubits. Kitaev’s toric code state (88 ) is in the nontrivial topologically-ordered phase, while a product
state represents the trivial phase. To populate both phases, we apply low-depth geometrically local random
Clifford circuits (163 ) to Kitaev’s toric code state (88 ) with code distance 10, and we generate representatives
of the trivial phase by applying random Clifford circuits to a product state. We utilize Clifford circuits to ensure
efficient simulation of in total n = 200 qubits (and with a depth up to 9) by means of the Gottesman-Knill
theorem. We again perform kernel PCA to find low-dimensional representations for the quantum states using
exactly the same method as the experiment on bond-alternating XXZ model. This is used to generate the
plot in Fig. 5B for a one-dimensional projection of the feature space, as well as the plot in Fig. S4D for a
two-dimensional projection.

For the unsupervised ML model shown in Fig. 5C, we consider a combination of kernel PCA and randomized
projections (164 ). First we perform kernel PCA to map the data to a six-dimensional subspace of the infinite-
dimensional feature space. Then we repeat the following procedure 500 times. We select a one-dimensional
subspace uniformly at random in the six-dimensional subspace. We project all the quantum states to the
one-dimensional subspace. Then, we find the center point (according to median instead of mean) to split up
the quantum states into two phases. We also record the sum of the absolute values from all points to the
center point in the one-dimensional subspace. Finally, we consider the classification obtained from the random
one-dimensional projection that results in the largest sum of the absolute values.

For the convolutional neural network (CNN) approach shown in Fig. 5C, we consider the following CNN built
from Keras (165 ).

import tensorflow as tf
from tensorflow.keras import datasets , layers, models

model = models.Sequential()
model.add(layers.Conv2D(32, (2, 2), activation=’relu’, padding=’same’,

input_shape=(2∗L, L, 6)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(32, (2, 2), activation=’relu’, padding=’same’))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(32, (2, 2), activation=’relu’, padding=’same’))
model.add(layers.Flatten())
model.add(layers.Dense(32, activation=’relu’))
model.add(layers.Dense(2))

In the above code, L is the code distance for the toric code and is equal to 10 in this experiment (recall that
toric code ground state has n = 2L2 qubits). This CNN model is supervised and requires a training data with
a corresponding label for indicating which phase the training data point is in. We first perform the Pauli-6
POVM on each qubit (89 ) to transform the quantum state into a array of size n where each entry has six
outcomes. We perform one-hot encoding to yield a classical vector of size 6n, where each entry in the classical
vector is either 0 or 1. Because the toric code ground state is two-dimensional (2L ⇥ L), we restructure the
classical vector into a three-dimensional tensor of size 2L ⇥ L ⇥ 6. The first two dimensions corresponds to
the spatial dimension of the toric code ground state. The last dimension corresponds to the one-hot encoded
vector for the six-outcome POVM. We then train the above model using the Adam optimizer (166 ) with the
categorical cross entropy as the loss function. The code is given below.

model.compile(optimizer=’adam’,
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=[’accuracy’])

We train the convolutional neural network using 100 training points (half are topologically-ordered states,
and the other half are trivial states). Then we use a validation set of 100 points to perform early stopping.
This is because the longer we train, the more likely the neural network is going to overfit. Hence, it is a good
practice to perform model selection by choosing which model to use at different time points (during the training
process). We choose the model that performs the best on the validation set. Then we test the classification
accuracy (the percentage that the prediction of the phases is correct) on a testing set consisting of 100 points.

The performance of the above ML model is not substantially different from random guessing. Hence, we also
consider a very simple CNN enhanced with classical shadow under T = 500 randomized Pauli measurements.
In particular, we compute the local reduced density matrix using the classical shadow. Then for each qubit, we
represent it with the local reduced density matrix. For simplicity, we consider the i-th qubit to be represented
by a vector of size 16, which includes the 2-body reduced density matrix for the subsystem consisting of the
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i-th and the i + 1-th qubit. Hence, each quantum state is now represented by a classical vector of dimension
2L2

⇥ 16. We reshape the classical vector into a three-dimensional tensor of size 2L ⇥ L ⇥ 16. The classical
vector is feed into the convolutional neural network structured as follows. We also apply the Adam optimizer
(166 ) with the categorical cross entropy as the loss function. The evaluation process is exactly the same as the
CNN approach based on the Pauli-6 POVM.

import tensorflow as tf
from tensorflow.keras import datasets , layers, models

model = models.Sequential()
model.add(layers.Conv2D(16, (1, 1), activation=’relu’,\

padding=’same’, input_shape=(2∗L, L, 16)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(16, (2, 2), activation=’relu’,\

padding=’same’))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(16, (2, 2), activation=’relu’,\

padding=’same’))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Flatten())
model.add(layers.Dense(32, activation=’relu’))
model.add(layers.Dense(2))

model.compile(optimizer=’adam’,
loss=tf.keras.losses.SparseCategoricalCrossentropy(

from_logits=True),
metrics=[’accuracy’])

5. PROOF IDEA FOR THE EFFICIENCY IN PREDICTING GROUND STATES

5.1. Main result

In order to illustrate the proof of Theorem 1, let us begin by looking at a simpler task: training a machine
learning model to predict a specified ground state property instead of the classical representation of the ground
state. Consider the property tr(O⇢), where ⇢ is the ground state and O is a local observable. In this simpler
task, we consider the training data to be

�
x1 ! tr(O⇢(x1)), . . . , xN ! tr(O⇢(xN ))

 
, (S40)

where x` 2 [�1, 1]m is a classical description of the Hamiltonian H(x`) and ⇢(x`) is the ground state of H(x).
Intuitively, in a quantum phase of matter, the ground state property tr(O⇢(x)) changes smoothly as a function
of the input parameter x. The smoothness condition can be rigorously established as an upper bound on the
average magnitude of the gradient of tr(O⇢(x)) using quasi-adiabatic evolution (53 , 54 ), assuming that the
spectral gap of H(x) is bounded below by a nonzero constant throughout the parameter space. The upper bound
on the average gradient magnitude enables us to design a simple classical ML model based on an l2-Dirichlet
kernel for generalizing from the training set to a new input x 2 [�1, 1]m:

ÔN (x) =
1

N

NX

`=1

(x, x`) tr(O⇢(x`)) with (x, x`) =
X

k2Zm,kkk2⇤

cos(⇡k · (x � x`)) 2 R. (S41)

The l2-Dirichlet kernel is often used in the study of high-dimensional Fourier series (167 ) and the proposed ML
model is equivalent to learning a truncated Fourier series to approximate the function tr(O⇢(x)), where the
parameter ⇤ is a cutoff on the wavenumber k that depends on the upper bound on the gradient of tr(O⇢(x)).
Using statistical analysis, one can guarantee that Ex |ÔN (x)� tr(O⇢(x))|2  ✏ as long as the amount of training
data N = mO(1/✏) where our big-O notation is with respect to the m ! 1 limit. Hence, we can achieve a small
constant prediction error with an amount of training data and computational time that are both polynomial
in the number m of input parameters. The training is efficient because the number of modes needed for the
truncated Fourier series to provide an accurate approximation to tr(O⇢) scales polynomially with m.

The key to the statistical analysis is to bound the model complexity of the above machine learning model.
In particular, the model complexity depends on the number of wave vectors we consider in the l2-Dirichlet
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kernel. The more wave vectors k we include, the higher the model complexity; and we would have to use more
data to train the ML model to achieve good generalization performance. Furthermore, one could show that
the amount of data is proportional to the number of wave vectors we consider. In order to achieve a prediction
error Ex |ÔN (x) � tr(O⇢(x))|2  ✏, we would need to select ⇤ to be of order

p
1/✏. Hence, the number of

wave vectors is proportional to the number of lattice points in an m-dimensional l2 ball of radius ⇤. The
volume of an m-dimensional l2 ball with radius ⇤ is proportional to ⇤m = (1/✏)m/2. If the number of lattices
points is proportional to the volume, then this would imply an exponential scaling in the number of parameters
m. However, through a proper combinatorial analysis, we show that the number of lattices points is actually
proportional to mO(⇤

2
) = mO(1/✏), which is only polynomial in the number of parameters m.

We can build on this idea to address the task of predicting ground state representations. Now instead of
predicting tr(O⇢) for a new input x, the goal is to predict the classical shadow of the ground state ⇢(x). We
consider the training data to be

�
x` ! �1(⇢(x`))

 N

`=1
, where �1(⇢(x`)) is the classical shadow representation

of ⇢(x`) obtained from just a single randomized Pauli measurement of the state (the T = 1 case of Eq. (1)).
Following the same approach as outlined above for the case of predicting a single property, the predicted ground
state representation is now given by

�̂N (x) =
1

N

NX

`=1

(x, x`)�1(⇢(x`)) with (x, x`) =
X

k2Zm,kkk2⇤

cos(⇡k · (x � x`)) 2 R. (S42)

One can then guarantee that this representation accurately predicts expectation values for a wide range of
observables.

The fact that only a single snapshot �1 per parameter point is required for our protocol may be surprising.
However, since the snapshots depends on the parameters, sampling over training data indirectly samples over
different snapshots, and is thus sufficient for a reasonable estimate of properties of the phase. The estimate can
of course be further improved if multiple snapshots are used for each parameter point, and we leave proving
such improved bounds as an exciting goal for future work.

5.2. Generalization to other systems and settings

In this subsection, we discuss how one could generalize the proof of Theorem 1 to various different scenarios.

5.2.a. Prediction based on other quantum measurements

Throughout this work, we considered classical shadows based on randomized Pauli measurements (31 ). How-
ever, it may be difficult to perform randomized Pauli measurements in some experimental systems. Theorem 1
can be directly generalized to other kinds of measurement procedures. Consider a restricted setting where the
experimentalist can only obtain training data of the form

{x` ! tr(O⇢(x`))}
N
`=1

, (S43)

for a single observable O (that can be written as a sum of local observables). In this case, the classical ML
model can no longer predict a classical representation of ⇢(x) for a new x. Nevertheless, the classical ML model
can still predict tr(O⇢(x)) accurately for a new x by following the proof sketch in Section 5 5.1.

More generally, suppose the experimentalist can construct some classical representation of the ground state
⇢(x`) through the available measurements, such as classical shadows based on another random unitary ensemble
(91 ), or simply a list of properties of ⇢(x`). And suppose that the classical representation allows us to predict
the expectation values of observables O1, O2, . . . , OM in the ground state ⇢(x`). Then for a new x, the classical
ML model can predict tr(Oi⇢(x)) accurately for i = 1, . . . , M .

5.2.b. A variable number of parameters

So far, we have considered the input vector x to be of a fixed dimension m. Here we briefly discuss how
to generalize Theorem 1 to a setting where the input is not a fixed dimensional vector. We can think of the
input as ⇠ = (m, x), where m 2 N is a discrete variable specifying the number of parameters, and x 2 R

m is an
m-dimensional vector with continuous entries. The number of parameters m may range from mmin to mmax.
We consider a class of Hamiltonians H(⇠) = H((m, x)) that depends on both the discrete parameter m and the
continuous vector x. For example, we may have

m = 1 : H((m, x)) =
nX

i=1

x1(XiXi+1 + YiYi+1), (S44)
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m = 2 : H((m, x)) =
nX

i=1

x1(XiXi+1 + YiYi+1) + x2(ZiZi+1), (S45)

where x1, x2 denote the first and second entry of the vector x. In order the train the ML model, we can consider
training data to be of the form

�
⇠` ! �T (⇢(⇠`))

 N

`=1
, (S46)

where ⇢(⇠`) is the ground state of the Hamiltonian H(⇠`) (and ⇠` = (m`, x`)). In this most general case, we
can now simply train a distinct ML model for each m 2 [mmin, mmax]. Using this direct method, we only need
a training data size N that is (mmax � mmin + 1) times larger than the training data size when m is fixed.

5.2.c. Systems with long-range interactions

For simplicity, the proof for our main theorem (Theorem 1) focuses on Hamiltonians that can be written as
a sum of geometrically local terms,

H(x) =
X

j

hj(x), (S47)

where hj(x) acts on a constant number of constituents that are contained in a ball of constant size in a finite-
dimensional space. Our proof can be generalized to some physical systems where hj(x) acts on constituents that
are geometrically non-local. The main condition we must impose is that the evolution under the Hamiltonian
H(x) in the ground state ⇢(x) has a bounded speed of information spreading. In the study of quantum many-
body systems (168–170 ) this assumption is described as a linear light cone, meaning that if a perturbation is
applied at a point P at time zero, then the effects of that perturbation at a later time t are mostly confined to
a region centered at P with radius vt; here v > 0 is called the Lieb-Robinson velocity.

To be more precise, consider two few-body operators, OA acting on a set of constituents A, and OB acting
on a set of constituents B; the sets A and B need not be geometrically local. We denote by d(OA, OB) the
minimum Euclidean distance between constituents in A and constituents in B. Recall that in the Heisenberg
picture, operators evolve according to O(t) = eitH(x)Oe�itH(x), where H(x) is the Hamiltonian. We require
that the expectation value in the ground state ⇢(x) of the commutator of OA with OB(t) is highly suppressed
when d(OA, OB) is small compared to vt, i.e.,

|tr ([OA, OB(t)] ⇢(x))| 
c|t|�

max(0, d(OA, OB) � v|t|)↵
kOAk

1
kOBk

1
, (S48)

where c is a constant, and ↵ > � > 0 are constants that determine the decay,
Such Lieb-Robinson bounds were proven for geometrically local Hamiltonians decades ago, but linear light

cones in physical systems with non-local interactions had not been studied until comparatively recently (168–
170 ). It has now been established that, for many long-range interacting systems, Eq. (S48) applies, where ↵
is sufficiently large compared to � for our arguments to apply. Specifically, in the proof given in Section 6, we
can replace Eq. (S112) by

| tr([O, Dû(x)]⇢(x))| 

X

i

Z
1

�1

W�(t)
X

j

����tr
✓

Oi, e
itH(x)

@hj

@û
(x)e�itH(x)

�
⇢(x)

◆���� dt, (S49)

and also replace the Lieb-Robinson bound in Eq. (S106) by the bound in Eq. (S48). When ↵ is sufficiently
large compared to � in Eq. (S48), we can guarantee that the right hand side of Eq. (S49) is upper bounded by

const ⇥

X

i

kOik1 , (S50)

using an analysis similar to that given in Section 6 6.5. After establishing such an upper bound on
| tr([O, Dû(x)]⇢(x))|, we can follow exactly the same proof given in the other sections in Section 6 to show
that the classical ML model can accurately predict the classical representation of the ground state for long-
range interacting systems with a similar guarantee as Theorem 1, assuming that the Lieb-Robinson velocity v
is bounded above by a constant.
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5.2.d. Fermionic systems

We can also generalize the proof of Theorem 1 to fermionic systems, such as those arising in studies of
electronic structure; see for example (171 ). We consider second quantization, also known as the occupation
number representation, and use the abstract Fock space to represent the Hamiltonians of fermionic systems.
Given a system of n spin orbitals, the Fock space is a 2n-dimensional space spanned by |c0, c1, . . . , cn�1i, where
cj = 1 indicates that mode j is occupied and cj = 0 indicates that mode j is unoccupied. A vector in the
Fock space is a linear combination of these 2n basis states. Given a mode j 2 {1, . . . , n}, a fermionic creation
operator Aj is defined by

A†

j |c0, c1, . . . , 0j , . . . , cn�1i = (�1)
Pj�1

k=0 ck |c0, c1, . . . , 1j , . . . , cn�1i ,

A†

j |c0, c1, . . . , 1j , . . . , cn�1i = 0,
(S51)

whereas the fermionic annihilation operator Aj is defined by

Aj |c0, c1, . . . , 0j , . . . , cn�1i = 0,

Aj |c0, c1, . . . , 1j , . . . , cn�1i = (�1)
Pj�1

k=0 ck |c0, c1, . . . , 0j , . . . , cn�1i .
(S52)

For a fermionic system, each local term hj(x) in the Hamiltonian H(x) =
P

j hj(x) is a Hermitian matrix
that can be expressed as a product of an even number of fermionic creation and annihilation operators; we
refer to such a Hermitian matrix as an even fermionic observable. For example, we could have hpqrs(x) =
Upqrs(x)A†

pA
†
qArAs + Upqrs(x)A†

sA
†
rAqAp, where Upqrs(x) is a complex-valued number. (This particular term

conserves the total fermion number, but fermion number conservation is not actually required for our arguments
to work.) Two even fermionic observables acting on disjoint sets of spin orbitals commute with one another, just
as two local observables acting on disjoint sets of qubits commute. As a result, several results in qubit systems
based on the commutation relations of disjoint local observables can be easily generalized to even fermionic
observables in fermionic systems. In particular, one can generalize the proof of Theorem 1 as follows.

• First we construct a classical shadow representation for fermionic systems. An efficient approach for
constructing such a representation is given in (137 ). This work rigorously analyzes how to predict
a large number of properties using outcomes of measurements performed after randomized fermionic
Gaussian unitaries. We can replace the classical shadow based on randomized Pauli measurements with
the fermionic partial tomography introduced in (137 ).

• Secondly we establish a bounded speed of information spreading under evolution governed by H(x) in
the ground state ⇢(x). Intuitively, we would like the “diameter” of the support (by “support” we mean
the set of spin orbitals that an observable acts on substantially) of an even fermionic observable under
Heisenberg evolution to grow at most linearly in time. As for qubit systems, this growth rate is known as
the Lieb-Robinson velocity. Because two even fermionic observables acting on disjoint sets of spin orbitals
commute with one another, one can establish an upper bound on the Lieb-Robinson velocity in fermionic
systems by following the argument used for qubit systems (172 , 173 ). This argument does not work
for arbitrary fermionic systems, but it does work if the interaction graph of the spin orbitals is suitably
sparse.

After these replacements, the rest of the proof follows immediately, yielding a version of Theorem 1 for fermionic
systems. As we noted, the argument used to bound the Lieb-Robinson velocity does not work for some fermionic
systems; for example it fails in models where orbitals have all-to-all connectivity without any geometrical
constraints (the same is true for qubit systems). But the proof of Theorem 1 does go through for tight-binding
models, including the Fermi-Hubbard model. Since computing ground state properties of the Fermi-Hubbard
model is notoriously difficult for classical computers, it is encouraging to find that our classical ML algorithm
can compute these properties efficiently when provided with polynomial-size training data.

6. PROOF OF EFFICIENCY FOR PREDICTING GROUND STATES

This section contains a detailed proof for one of our main contributions. Namely, a rigorous performance
guarantee for learning to predict ground state representations.

Theorem 3 (Theorem 1, detailed restatement). Consider any family of n-qubit geometrically-local Hamiltoni-
ans {H(x) : x 2 [�1, 1]m} in a finite spatial dimension, such that each local term in H(x) depends smoothly on
x, and the smallest eigenvalue and the next smallest eigenvalues have a constant gap � � ⌦(1) between them.
Let ⇢(x) be the ground state of H(x), that is

⇢(x) = lim
�!1

e��H(x)/ tr(e��H(x)) 2 (H2)
⌦n (ground state of Hamiltonian H(x)) (S53)



21

where H2 is the vector space of 2⇥2 Hermitian matrices. Suppose that we are interested in learning to predict a
sum O =

PL
i=1

Oi of L local observables that satisfies
PL

i=1
kOik  B (bounded norm). Then, classical shadow

data {x` ! �1(⇢(x`))}N
`=1

, with x` ⇠ Unif[�1, 1]m and

N = B2mO(B2/✏) (training data size), (S54)

suffices to produce a ground state prediction model

�̂N (x) =
1

N

NX

`=1

(x, x`)⇢(x`) with (x, x`) =
X

k2Zm,kkk2⇤

cos(⇡k · (x � x`)) 2 R, (S55)

that achieves

E
x⇠[�1,1]m

| tr(O�̂N (x)) � tr(O⇢(x))|2  ✏, (S56)

with high probability. The classical training time for constructing �̂N (x) and the prediction time for computing
tr(O�̂(x)) are both upper bounded by O((n + L)B2mO(B2/✏)).

Theorem 3 can be generalized to the following statement about learning a family of quantum states. In
particular, we will prove the following theorem and use it to derive Theorem 3.

Theorem 4. Consider a parametrized family of n-qubit states {⇢(x) : x 2 [�1, 1]m} and a sum O =
PL

i=1
Oi

of L local observables that obey

E
x⇠[�1,1]m

krx tr(O⇢(x))k2

2
 C (smoothness condition), (S57a)

X

i

kOik  B (bounded norm). (S57b)

Then, classical shadow data {x` ! �1(⇢(x`))}N
`=1

, with x` ⇠ Unif[�1, 1]m and

N = B2mO(C/✏) (training data size), (S58)

suffices to produce a state prediction model we can learn from classical data {x` ! �1(⇢(x`))}N
`=1

to produce a
model

�̂N (x) =
1

N

NX

`=1

(x, x`) tr(O⇢(x`)) with (x, x`) =
X

k2Zm,kkk2⇤

cos(⇡k · (x � x`)) 2 R, (S59)

that achieves

E
x⇠[�1,1]m

| tr(O�̂N (x)) � tr(O⇢(x))|2  ✏, (S60)

with high probability. The classical training time for constructing �̂N (x) and the prediction time for computing
tr(O�̂(x)) are both upper bounded by O((n + L)B2mO(C/✏)).

The following sections are structured as follows. In Section 6 6.1, we provide an overview to illustrate the
proof of the sample complexity upper bound. The first step, given in Section 6 6.2, bounds the truncation error
when approximating the quantum state function ⇢(x) using a truncated Fourier series. The second step, given
in Section 6 6.3, bounds the generalization error for learning the Fourier approximation to the quantum state
function ⇢(x). Then, in Section 6 6.4, we analyze the training and prediction time of the proposed classical
machine learning model. These three sections establish Theorem 4. Finally, in Section 6 6.5, we use Theorem 4
and nice properties about ground states of Hamiltonians to prove Theorem 3.

6.1. Overview for sample complexity upper bound

The key intermediate step is to construct a truncated Fourier series of the quantum state function ⇢(x). The
Fourier series of the matrix-valued function ⇢(x) is given as

⇢(x) =
X

k2Zm

ei⇡k·xAk, (S61)
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where Ak are matrix-valued Fourier coefficients

Ak =
1

2m

Z

[�1,1]m
e�i⇡k·x⇢(x)dmx. (S62)

We define the truncated Fourier series as

⇢⇤(x) =
X

k2Zm,kkk2⇤

ei⇡k·xAk, (S63)

where ⇤ > 0 is a pre-specified cutoff value. Given an observable O that can be written as a sum of local
observables O =

P
i Oi with

P
i kOik1  B and Ex⇠[�1,1]m krx tr(O⇢(x))k2

2
 C, the proof of Theorem 3

consists of two parts.
First, we bound the error between the truncated Fourier series ⇢⇤(x) and the true quantum state function

⇢(x) in Section 6 6.2 giving

E
x⇠[�1,1]m

|tr(O⇢(x)) � tr (O⇢⇤(x))|2  O

✓
C

⇤2

◆
, (S64)

We choose the truncation ⇤ = ⇥(
p

C/✏) such that the error between truncated Fourier series and the true
quantum state function obeys

E
x⇠[�1,1]m

|tr(O⇢(x)) � tr (O⇢⇤(x))|2 
✏

4
. (S65)

In the second part, we bound the error between the machine learning model �̂(x) and the truncated Fourier
series ⇢⇤(x) in Section 6 6.3. With high probability over the randomness in generating the training data, we
have

E
x⇠[�1,1]m

|tr(O�̂(x)) � tr (O⇢⇤(x))|2 
B2mO(⇤

2
)

N
. (S66)

The training data contains two sources of randomness, one from the sampling of x` and the other from the
local randomized measurement to construct approximate classical representation for ⇢(x`) that could be feed
into the classical machine learning model. We choose the training data size

N =
2B2mO(C/✏)

✏
 B2mO(C/✏)+log(1/✏)+1 = B2mO(C/✏), (S67)

such that the error between the machine learning model and the truncated Fourier series obeys

E
x⇠[�1,1]m

|tr(O�̂(x)) � tr (O⇢⇤(x))|2  ✏/4, (S68)

with high probability. The two parts can be combined by a triangle inequality to yield

E
x⇠[�1,1]m

|tr(O�̂(x)) � tr (O⇢(x))|2 (S69a)



 r
E

x⇠[�1,1]m
|tr(O�̂(x)) � tr (O⇢⇤(x))|2 +

r
E

x⇠[�1,1]m
|tr(O⇢(x)) � tr (O⇢⇤(x))|2

!2

= ✏, (S69b)

with high probability over the randomness in the training data. This establishes the sample complexity upper
bound for Theorem 3.

When the Hamiltonians H(x) have spectral gap � ⌦(1) in the domain x 2 [�1, 1]m, for any observable
O =

P
i Oi that can be written as a sum of local observables with

P
i kOik1  B, we have

E
x⇠[�1,1]m

krx tr(O⇢(x))k2

2
 O(B2). (S70)

Hence, we can prove the sample complexity upper bound in Theorem 4 by utilizing Theorem 3 and the fact
that C = O(B2).
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6.2. Controlling the truncation error

For a fixed observable O, we can define a function

f(x) = tr(O⇢(x)) =
X

k2Zm

ei⇡k·x tr(OAk). (S71)

And the truncated Fourier series of the function f(x) is given by

f⇤(x) = tr(O⇢⇤(x)) = ⇢⇤(x) =
X

k2Zm,kkk2⇤

ei⇡k·x tr(OAk). (S72)

Lemma 2 (truncation error). Let f(x) =
P

k2Zm ↵kei⇡k·x and f⇤(x) =
P

k2Zm,kkk2⇤
↵kei⇡k·x. Then

E
x⇠[�1,1]m

|f(x) � f⇤(x)|2 
1

⇡2⇤2
E

x⇠[�1,1]m
krxf(x)k2

2
for any cutoff ⇤ > 0. (S73)

Proof. The claim follows from standard Harmonic analysis arguments. More precisely, we combine orthogonality
(
R
[�1,1]m ei(⇡(k�k0

)xdmx = �(k,k0)) with the fact that the Fourier transform exchanges differentials (“momentum”)
with multiplications (“position”):

rxf(x) =
X

k2Zm

↵krxei⇡kx = i⇡
X

k2Zm

↵kkei⇡kx. (S74)

Use orthogonality to rewrite the truncation error as

E
x⇠[�1,1]m

|f(x) � f⇤(x)|2 =

Z

[�1,1]m

���
X

k2Zm:kkk>⇤

ei⇡kx↵k

���
2

dmx (S75a)

=
X

k:kkk2>⇤

X

k0:kk0k2>⇤

⇣Z

[�1,1]m
ei⇡(k�k0

)xdmx
⌘
↵k↵k (S75b)

=
X

k:kkk2>⇤

|↵k|
2 . (S75c)

Conversely, we use orthogonality and Rel. (S74) to rephrase this upper bound. Let hk0, ki be the Euclidean
inner product between two vectors k, k0

2 Z
m. Then,

E
x⇠[�1,1]m

krxf(x)k2

2
=

Z

[�1,1]m

�����
X

k2Zm

⇡kei⇡kx↵k

�����

2

2

dmx (S76a)

=
X

k,k02Zm

⇡2
hk0, ki

Z

[�1,1]m
ei⇡(k�k0

)xdmx↵k0↵k (S76b)

=⇡2
X

k2Zm

hk, ki|↵k|
2 = ⇡2

X

k2Zm

kkk
2

2
|↵k|

2 . (S76c)

In words, the upper bound from Eq. (S75c) can be rephrased as the Euclidean norm krxf(x)k2

2
of the vector

rxf(x). The advertised claim readily follows from comparing these two reformulations:

X

k:kkk2>⇤

|↵k|
2


1

⇤2

X

k:kkk2>⇤

kkk
2

2
|↵k|

2


1

⇡2⇤2

⇣
⇡2

X

k2Zm

kkk
2

2
|↵k|

2

⌘
. (S77)

Using Lemma 2 and the condition that Ex⇠[�1,1]m krx tr(O⇢(x))k2

2
 C, we can obtain the desired inequality

for bounding the truncation error,

E
x⇠[�1,1]m

|tr(O⇢(x)) � tr (O⇢⇤(x))|2  O

✓
C

⇤2

◆
. (S78)
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6.3. Controlling generalization errors from using the training data

This section is devoted to a practical issue regarding training data based on classical shadows. Each label
is obtained by performing a single-shot quantum measurement of a parametrized quantum state ⇢(xi). We
can use Eq. (S3) to convert the single-shot outcome into �1(⇢) =

Nn
i=1

(3|siihsi| � I). Such a classical shadow
approximation reproduces the underlying state in expectation, i.e., Es1,...,sn [�1(⇢)] = ⇢. Recall that the training
data T = {x` ! �1(⇢(x`))}

N
`=1

consists of such classical shadow approximations. The machine learning model
makes predictions based on a truncated Fourier kernel for future predictions. For new input x 2 [�1, 1]n, we
predict

�̂(x) =
1

N

NX

`=1

(x, x`)�1 (⇢(x`)) with (S79a)

(x, x`) =
X

k2Zm,kkk2⇤

ei⇡k·(x�x`) =
X

k2Zm,kkk2⇤

cos(⇡k · (x � x`)). (S79b)

In the following, we will show that machine learning model �̂(x) is equal to the truncated Fourier series ⇢⇤(x)
of the true target quantum state if we take the expectation over the training data, which includes the sampled
inputs x1, . . . , xN and the randomized measurement outcomes S1(⇢(x`)) = {si}

n
i=1

for each input x`. Moreover,
statistical flucutations due to shot noise will be small provided that we are interested in predicting an observable
that decomposes nicely as a sum of local terms. These observations are the content of the following statement.

Lemma 3 (Statistical properties of the predicted quantum state �̂(x)). Let T = {x` ! �1(⇢(x`))}N
`=1

be a
training set featuring uniformly random inputs x`

unif
⇠ [�1, 1]m and classical shadows of the associated quantum

states as labels. Then, the machine learning model obeys

E
T

[�̂(x)] = ⇢⇤(x) =
X

k2Zm,kkk2⇤

ei⇡k·xAk. (S80)

Moreover, suppose that an observable O =
P

i Oi decomposes into a sum of q-local terms. Then, with probability
at least 1 � �, we have

E
x⇠[�1,1]m

|tr(O�̂(x)) � tr (O⇢⇤(x))|2 
1

N
9q
�X

i

kOik1

�2
(2m + 1)⇤

2 �
⇤2 log(2m + 1) + log (4/�)

�
. (S81)

The advertised bound can be further streamlined if the observable locality q and confidence level � are
constant. Assuming q, � = O(1) ensures the following simplified scaling:

E
x⇠[�1,1]m

|tr(O�̂(x)) � tr (O⇢⇤(x))|2 = O

0

@ 1

N

 
X

i

kOik

!2

(2m + 1)⇤
2
+log(⇤

2
)+1

1

A =
(
P

i kOik)2 mO(⇤
2
)

N
.

(S82)
Using the condition that

P
i kOik  B, we have

E
x⇠[�1,1]m

|tr(O�̂(x)) � tr (O⇢⇤(x))|2 =
B2mO(⇤

2
)

N
, (S83)

which controls the generalization error from quantum measurements. The argument is based on fundamental
properties of classical shadows that have been reviewed in Section 1.

Proof of Lemma 3. We begin by condensing notation somewhat. Here, we only consider classical shadows of
size T = 1. Hence, we may replace the superscript (t) by (x`) to succinctly keep track of classical input
parameters. More precisely, we let |s(x`)

i i be the randomized Pauli measurement outcome for the i-th qubit
when measuring the quantum state ⇢(x`). The training data T = {x` ! �1(⇢(x`))}N

`=1
is determined by the

following random variables

x` 2 [�1, 1]m, for ` 2 {1, . . . , N}, (S84a)

s(x`)

i 2 {|0i , |1i , |+i , |�i , |i+i , |i�i} , for i 2 {1, . . . , n} and ` 2 {1, . . . , N}. (S84b)

The first claim is an immediate consequence of Eq. (S6):

E
T

[�̂(x)] =
1

N

NX

`=1

E
x`⇠[�1,1]m

"
(x, x`) E

s
(x`)
1 ,...,s

(x`)
n

[�1(⇢(x`))]

#
(S85a)
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=
1

N

NX

`=1

E
x`⇠[�1,1]m

[(x, x`)⇢(x`)] (S85b)

= E
x1⇠[�1,1]m

[(x, x1)⇢(x1)] (S85c)

=
X

k2Zm,kkk2⇤

ei⇡k·x
E

x1⇠[�1,1]m

⇥
e�i⇡k·x1⇢(x1)

⇤
(S85d)

=
X

k2Zm,kkk2⇤

ei⇡k·x 1

2m

Z

[�1,1]m
e�i⇡k·x1⇢(x)dmx1 (S85e)

=
X

k2Zm,kkk2⇤

ei⇡k·xAk (S85f)

= ⇢⇤(x). (S85g)

Here, we have also used the fact that each x` is sampled independently and uniformly from [�1, 1]m.
The second result is contingent on the training data for predicting the ground state representation T =

{x` ! �1(⇢(x`))}N
`=1

. We begin with using the definitions of �̂(x) (S79) and ⇢⇤(x) to rewrite the expression of
interest as

E
x⇠[�1,1]m

|tr(O�̂(x)) � tr (O⇢⇤(x))|2

=
1

2m

Z

[�1,1]m
dmx

������

X

k2Zm,kkk2⇤

ei⇡k·x

 
1

N

NX

`=1

e�i⇡k·x` tr (O�1 (⇢(x`))) � tr (OAk)

!������

2

(S86a)

=
X

k2Zm,kkk2⇤

�����
1

N

NX

`=1

e�i⇡k·x` tr (O�1 (⇢(x`))) � tr (OAk)

�����

2

, (S86b)

⌘

X

k2Zm,kkk2⇤

D(k)(T )2 , (S86c)

where we have evaluated the Fourier integral over x and introduced shorthand notation D(k)(T )2 for each
summand.

The next key step is to notice that each Ak is an expectation value over both the parameters and the shadows.
Writing out Ak and expressing ⇢ in terms of shadows using Eq. (S6),

tr (OAk) =
1

2m

Z

[�1,1]m
e�i⇡k·x` tr (O⇢(x`)) dmx` (S87a)

= E
x`⇠[�1,1]m

e�i⇡k·x` tr (O⇢(x`)) (S87b)

= E

x` and s
(x`)
1 ,...,s

(x`)
n

e�i⇡k·x` tr (O�1 (⇢(x`))) . (S87c)

Plugging this back into the summand in Eq. (S86c) yields

D(k)(T )2 =

�����
1

N

NX

`=1

e�i⇡k·x` tr (O�1 (⇢(x`))) � E

x` and s
(x`)
1 ,...,s

(x`)
n

e�i⇡k·x` tr (O�1 (⇢(x`)))

�����

2

. (S88)

Therefore, each D(k)(T )2 is the (square-)deviation of an empirical average from the true expectation value Ak.
Hence, we can use Hoeffding’s inequality to bound it, provided that O is local and bounded. This may come as
a surprise, as the empirical average samples only different parameters x` and not different shadows �. However,
the shadows depend on the parameters, so sampling only over the parameters turns out to be sufficient for a
reasonable estimate.

In order to apply Hoeffding’s inequality, we first have to make sure the expectation value is bounded. Re-
call that O =

P
i Oi decomposes nicely into a sum of q-body terms. More formally, supp(Oj) ⇢ {1, . . . , n}

contains at most q qubits. We also know trace and trace norm of each single-qubit contribution to �1(⇢(x`)),
tr
�
3|s(x`)

j ihs(x`)

j | � I
�

= 1, and Eq. (S4) asserts
��3|s(x`)

j ihs(x`)

j | � I
��

1
= 3. The matrix Hoelder inequality then

implies, for every x` 2 [�1, 1]m,
��ei⇡k·x` tr (O�1 (⇢(x`)))

�� 

X

i

|tr (Oi�1(⇢(x`)))| (S89a)



26

=
X

i

|tr (OAitr¬Ai (�1 (⇢(x`))))| (S89b)



X

i

kOAik1 ktr¬Ai (�1 (⇢(x`)))k1
(S89c)

=
X

i

kOik1

Y

j2supp(Oi)

���3|s(x`)

j ihs(x`)

j | � I

���
1

(S89d)

=
X

i

kOik13|supp(Oj)|  3q
X

i

kOik1. (S89e)

Thus, the expectation value is bounded.
We are now ready to bound the likelihood of a large deviation D(k)(T )2. To recap, for each k 2 Z

m obeying
kkk

2
 ⇤, we face a contribution that collects the (square-)deviation of a sum of iid and bounded random

variables around their expectation value. These variables are complex, but one can analyze their real and
imaginary parts separately and collect them into a complex version of Hoeffding’s inequality:

Pr
⇥
D(k)(T )2 � ⌧2

⇤
= Pr

⇥
D(k)(T ) � ⌧

⇤
(S90a)

 2 exp

 
�

2N⌧2

9q (
P

i kOik)2

!
for all ⌧ > 0. (S90b)

This concentration bound connects training data size N = |T | with the size of a (fixed, but arbitrary) con-
tribution to the expected deviation (S86). For fixed magnitude ⌧ and confidence �, there is always a (finite)
training data size N = N(⌧, �) that ensures D(k)(T )2  ⌧ with probability at least 1 � �. We can extend this
reasoning to the entire sum in Eq. (S86) by exploiting that Rel. (S90) is independent of k, and the summation
only ranges over finitely many terms. Introduce K⇤ = |{k 2 Z

m : kkk
2

 ⇤}| — the number of wave-vectors
k 2 Z

m whose Euclidean norm is bounded by ⇤ — and apply a union bound to conclude

Pr

2

4
X

k2Zm,kkk2⇤

D(k)(T )2 � K⇤⌧
2

3

5  Pr
⇥
9k 2 Z

m : kkk
2

 ⇤, s.t. D(k)(T )2 � ⌧2
⇤

(S91a)



X

k2Zm,kkk2⇤

Pr
⇥
D(k)(T )2 � ⌧2

⇤
(S91b)

 2K⇤ exp

 
�

2N⌧2

9q (
P

i kOik)2

!
. (S91c)

for all ⌧ > 0. To finish the argument, we take guidance from Eq. (S90). Fix a confidence level � 2 (0, 1) and set

⌧2 =
1

N
9q

 
X

i

kOik

!2

log(2K⇤/�) to ensure Pr


E

x⇠[�1,1]m
|tr(O�̂(x)) � tr (O⇢⇤(x))|2 � K⇤⌧

2

�
 �.

(S92)
The advertised bound follows from inserting an explicit bound on the number of relevant wavevectors:

K⇤ = |{k 2 Z
m : kkk

2
 ⇤}|  (2m + 1)⇤

2

. (S93)

To see this, note that kkk
2

2
=

Pn
i=1

|ki|
2

�
Pn

i=1
|ki| = kkk

1
, because ki 2 Z. Conversely, every k 2 Z

m

that obeys kkk
2

 ⇤ also obeys kkk
1

 ⇤2. Next, we enumerate all wave-vectors that obey the relaxed
condition kkk

1
 ⇤2. To this end, we consider a simple process: select an index i 2 [m], and update the

associated wave number by +1 (increment), 0 (do nothing) or �1 (decrement). Repeating this process a
total of ⇤2 times allows us to generate no more than (2m + 1)⇤

2

different wavevectors. But, at the same
time, every wave vector k 2 Z

m that obeys kkk
2

 ⇤2 can be reached in this fashion. Hence, we conclude
K⇤ 

���k 2 Z
m : kkk

1
 ⇤2

 ��  (2m + 1)⇤
2

.

6.4. Computational time for training and prediction

We have proposed a very simple prediction model that is based on approximating a truncated Fourier series
(l2-Dirichlet kernel). The training time is equivalent to loading the training data T = {x` ! �1(⇢(x`))}

N
`=1

.
Only a single snapshot is provided for each sampled parameter x` (i.e., T = 1), so we relabel s(t)

! s(x`). The
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training data is given by the collection of x` and shadows {sx`
i }

n
i=1

, following Eq. (S84). Therefore, one only
needs

O ((n + m)N) = O

⇣
(n + m)B2mO(C/✏)

⌘
= O

⇣
nB2mO(C/✏)

⌘
(training time) (S94)

computational time to load the relevant data into a classical memory. Next, suppose that O =
PL

i=1
Oi

is comprised of L q-local terms. Then, we can compute the associated expectation value for the predicted
quantum state �̂(x) by evaluating

tr(O�̂(x)) =
1

N

NX

`=1

LX

i=1

(x, x`) tr(Oi�1(⇢(x`))). (S95)

Recall that the kernel function is defined as

(x, x`) =
X

k2Zm,kkk2⇤

ei⇡k·(x�x`) =
X

k2Zm,kkk2⇤

cos(⇡k · (x � x`)). (S96)

This can be computed in time O (K⇤), where K⇤ = |{k 2 Z
m : kkk

2
 ⇤}|  (2m+1)⇤

2

, according to Rel. (S93)
above. Because we have chosen ⇤ = ⇥(

p
C/✏), the runtime to evaluate one kernel function is upper bounded

by mO(C/✏).
On the other hand, the computation of each tr(Oj�1(⇢(x`))) can be performed in constant time after stor-

ing the data in a classical memory. This is a consequence of the tensor product structure of �1(⇢(x`)) =
Nn

i=1

⇣
3|s(x`)

i ihs(x`)

i | � I

⌘
which ensures

tr(Oj�1(⇢(x`))) = tr
⇣
Oj

O

i2supp(Oj)

⇣
3|s(x`)

i ihs(x`)

i | � I

⌘⌘
, (S97)

where supp(Oj) is the set of qubits in {1, . . . , n} the local observable Oj acts on. Because |supp(Oj)|  q = O(1),
computing tr(Oj�1(⇢(x`))) takes only constant time. However, the computation time does scale exponentially
in |supp(Oj)|. This can become a problem if |supp(Oj)| ceases to be a small constant. Putting everything
together implies that tr(O�̂(x)) can be computed in time (at most)

O

⇣
NLmO(C/✏)

⌘
= O

⇣
LB2mO(C/✏)

⌘
(prediction time). (S98)

We conclude that both classical training time and prediction time for tr(O�̂(x)) are upper bounded by

O((n + L)B2mO(C/✏)). (S99)

This concludes the proof of all statements given in Theorem 4.

6.5. Spectral gap implies smooth parametrizations

We attempt to deduce Theorem 3 from Theorem 4. The key step involves showing that the ground state
⇢(x) in a quantum phase of matter satisfies the following condition: For any observable O =

P
i Oi that can

be written as a sum of local observables with
P

i kOik1  B, we have

E
x⇠[�1,1]m

krx tr(O⇢(x))k2

2
 O(B2). (S100)

Then we can apply Theorem 4 with C = O(B2) to derive Theorem 3.
The average gradient magnitude Ex⇠[�1,1]m krx tr(O⇢(x))k2

2
depends on the observable O in question, but

also on the parametrization x 7! H(x) 7! ⇢(x). This section provides a useful smoothness bound based on
physically meaningful assumptions:

(a) Physical system: We consider n finite-dimensional quantum many-body systems that are arranged at
locations, or sites, in a d-dimensional space, e.g., a spin chain (d = 1), a square lattice (d = 2), or a
cubic lattice (d = 3). Unless specified otherwise, our big-O, ⌦, ⇥ notation will be with respect to the
thermodynamic limit n ! 1.

(b) Hamiltonian: H(x) decomposes into a sum of geometrically local terms H(x) =
P

j hj(x), each of which
only acts on an O(1) number of sites in a ball of O(1) radius. Individual terms hj(x) obey khj(x)k

1
 1

and also have bounded directional derivative: k@hj/@ûk
1

 1, where û is a unit vector in parameter
space. However, each term hj(x) can depend on the entire input vector x 2 [�1, 1]m.
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(c) Ground-state subspace: We consider “the” ground state ⇢(x) for the Hamiltonian H(x) to be defined as
⇢(x) = lim�!1 e��H(x)/ tr(e��H(x)). This is equivalent to a uniform mixture over the eigenspace of H(x)
with the minimum eigenvalue.

(d) Observable: O decomposes into a sum of few-body observables O =
P

i Oi, each of which only acts on an
O(1) number of sites. Each few-body observables Oi can act on geometrically-nonlocal sites.

Assumptions (a)–(c) should be viewed as mild technical assumptions that are often met in practice. The
main result of this section bounds the smoothness condition based on an additional requirement.

Lemma 4 (Spectral gap implies smoothness condition). Consider a class of local Hamiltonians

{H(x) : x 2 [�1, 1]m} (S101)

and an observable O =
P

i Oi that obey the technical requirements (a)–(c) above. Moreover, suppose that the
spectral gap of each H(x) is lower bounded by (constant) � > ⌦(1). Then,

E
x⇠[�1,1]m

krx tr(O⇢(x))k2

2
 call

⇣X

i

kOik1

⌘2

. (S102)

Here, call > 0 is a constant that depends on spatial dimension d, spectral gap �, as well as the Lieb-Robinson
velocities.

The proof is based on combining two powerful techniques from quantum many body physics. Namely,
Lieb-Robinson bounds (174 ) to exploit locality and the spectral flow formalism (54 ), also referred to as quasi-
adiabatic evolution or continuation (53 , 175 ), to exploit the spectral gap.

Quasi-adiabatic continuation for gapped Hamiltonians (53, 54, 175): Given a quantum system satisfying
the above assumptions (a)-(c), it is reasonable to expect that small changes in x only lead to small changes in
the associated ground state ⇢(x). Spectral flow makes this intuition precise. Let the spectral gap of H(x) be
lower bounded by a constant � over [�1, 1]m. Then, the directional derivative of an associated ground state,
in the direction defined by the parameter unit vector û, obeys

@⇢

@û
(x) = i[Dû(x), ⇢(x)] where Dû(x) =

Z
1

�1

W�(t)eitH(x)
@H

@û
(x)e�itH(x)dt. (S103)

Here, W�(t) is a fast decaying weight function that obeys supt |W�(t)| = 1/2 and only depends on the spectral
gap. More precisely,

|W�(t)| 

(
1

2
0  �|t|  ✓,

35e2(�|t|)4e
�

2
7

�|t|
log(�|t|)2 �|t| > ✓.

(S104)

The constant ✓ is chosen to be the largest real solution of 35e2✓4 exp(� 2

7

✓
log(✓)2

) = 1/2.
Lieb-Robinson bounds for local Hamiltonians/observables (174, 176): Let supp(X) denote the sites on which

a many-body operator X acts nontrivially. Furthermore, for any two operators X1, X2, we define the distance
�(X1, X2) to be the minimum distance between all pairs of sites acted on by X1 and X2, respectively, in the
d-dimensional space. We also consider the number of local terms in a ball of radius r. For any operator X
acting on a single site, this ball contains O(rd) local terms in d-dimensional space,

X

j:�(X,hj)r

1  bd + cdr
d, 8r � 0, (S105)

where we recall the definition that H =
P

j hj is a sum of local terms hj . The bound on the number of local
terms in a ball of radius r implies the existence of a Lieb-Robinson bound (176 , 177 ). It states that for any
two operator X1, X2 and any t 2 R, we have

k[exp(itH(x))X1 exp(�itH(x)), X2]k1  clr kX1k1 kX2k1 |supp(X1)|e
�alr(�(X1,X2)�vlr|t|), (S106)

for some constants alr, clr, vlr = ⇥(1).
Apart from these two concepts, we will also need a bound on integrals of certain fast-decaying functions.

Lemma 5 (Lemma 2.5 in (54 )). Fix a > 0 and define the function ua(x) = exp(�ax/ log(x)2) on the domain
x 2 (1, 1). Then,

Z
1

t
xkua(x)dx 

2k + 3

a
t2k+2ua(t) for all t > e4 and k 2 N that obey 2k + 2 

at

log(t)2
. (S107)
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Proof of Lemma 4. Fix an input x 2 [�1, 1]n and a unit vector û 2 R
n (direction). We may then rewrite the

associated directional derivative of ⇢(x) in two ways, namely

@⇢

@û
(x) = û · rx⇢(x), and (S108a)

@⇢

@û
(x) = �i [Dû(x), ⇢(x)] with Dû(x) =

Z
1

�1

dtW�(t)eitH(x)
@H

@û
(x)e�itH(x). (S108b)

When evaluated on an observable O, this establishes the following correspondence:

û · rx tr(O⇢(x)) = tr (O [Dû(x), ⇢(x)]) = tr ([O, Dû(x)] ⇢(x)) , (S109)

for any û. Choosing û = û(x, O) = rx tr(O⇢(x))

krx tr(O⇢(x))k2
implies

krx tr(O⇢(x))k2

2
=
��tr([O, Dû(x,O)(x)]⇢(x))

��2 . (S110)

The left hand side is the magnitude of steepest slope in a phase for the particular observable O. The average
slope over the entire domain [�1, 1]m is thus given as

E
x⇠[�1,1]m

krx tr(O⇢(x))k2

2
=

1

2m

Z

[�1,1]m

��tr([O, Dû(x,O)(x)]⇢(x))
��2 dmx. (S111)

Intuitively, thermodynamic observables should not change too rapidly within a phase. Making this intuition
precise will allow us to upper bound the average slope by a constant C.

We first expand Dû(x) and apply a triangle inequality to obtain

| tr([O, Dû(x)]⇢(x))| 

X

i

Z
1

�1

W�(t)
X

j

����


Oi, e

itH(x)
@hj

@û
(x)e�itH(x)

�����
1

dt. (S112)

For fixed t, we can separate local Hamiltonian terms into two groups, defines using the constants in the Lieb-
Robinson bound (S106). The first group contains all terms hj that obey �(Oi, hj)  vlr|t|. The second group
contains all hj that obey �(Oi, hj) > vlr|t| instead. Equation (S105) above provides a useful bound on the size
of the first group. It contains at most |supp(Oi)|(bd + cd(vlr|t|)d)  cO(bd + cd(vlr|t|)d) local terms hj , for some
constant cO  supp(O). We can bound the summation over these terms using k[A, B]k

1
 2 kAk

1
kBk

1
to

obtain
X

j:�(Oi,hj)vlrt

����


Oi, e

itH(x)
@hj

@û
(x)e�itH(x)

�����
1

 cO(bd + cd(vlr|t|)
d) ⇥ 2 kOik1

����
@hj

@û

����
1

(S113a)

 2cO kOik1 (bd + cd(vlr|t|)
d). (S113b)

The second inequality follows from technical assumption (b): k@hj/@ûk
1

 1.
The contributions from the second group can be controlled via the Lieb-Robinson bound from Eq. (S106).

For every hj that obeys �(Oi, hj) > vlr|t|, we have
����


Oi, e

itH(x)
@hj

@û
(x)e�itH(x)

�����
1

 clr kOik1 k@hj/@ûk
1

|supp(hj)|e
�alr(�(Oi,hj)�vlr|t|) (S114a)

 clrch kOik1 e�alr(�(Oi,hj)�vlr|t|). (S114b)

Reusing Eq. (S105), we conclude that there are at most |supp(Oi)|(bd + cd(vlr|t| + r + 1)d) local terms hj with
�(Oi, hj) 2 [vlr|t| + r, vlr|t| + r + 1]. This ensures

X

j:�(Oi,hj)>vlr|t|

����


Oi, e

itH(x)
@hj

@û
(x)e�itH(x)

�����
1



1X

r=0

X

j:�(Oi,hj)2[vlr|t|+r,vlr|t|+r+1]

����


Oi, e

itH(x)
@hj

@û
(x)e�itH(x)

�����
1

(S115a)



Z
1

r=0

drclrch kOik1 e�alrr ⇥ supp(Oi)(bd + cd(vlr|t| + r + 1)d) (S115b)

 clrchcO kOik1

Z
1

r=0

dre�alrr(bd + cd(vlr|t| + r + 1)d) (S115c)
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 clrchcO kOik1

 
bd

alr

+ cd

dX

p=0

d!

p!ad�p+1

lr

(vlr|t| + 1)p

!
. (S115d)

We can now combine the two bounds into a single statement:

X

j

����


Oi, e

itH(x)
@hj

@û
(x)e�itH(x)

�����
1

 kOik1

dX

p=0

Cp|t|
p. (S116)

Here, we have implicitly defined a new set of constants Cp that depend on the constants cO, ch, clr, cd, alr, vlr, d
that had already featured before. Plugging the above into Eq. (S112) and substituting the spectral flow
weight function W (S104) for its absolute value allows us to bound the maximum slope of tr(O⇢(x)) when the
Hamiltonian moves from H(x) to H(x + dû). Indeed,

| tr([O, Dû(x)]⇢(x))| 

⇣X

i

kOik1

⌘ dX

p=0

Cp

Z
1

�1

|W�(t)||t|pdt . (S117)

To bound the resulting integral, we recall that W�(t) obeys supt |W�(t)| = 1/2, define t⇤ = max(e4, 7(d+5), ✓)/�,
and split up the integration into two parts, t 2 [�t⇤, t⇤] and t /2 [�t⇤, t⇤]. Symmetry then ensures

Z
1

�1

dt|W�(t)||t|p 
1

2

Z t⇤

�t⇤
dt|t|p + 2

Z
1

t⇤
dt 35e2(�t)4e

�
2
7

�t

log(�t)2 tp (S118a)

=

Z t⇤

0

dt tp + 70e2��p�1

Z
1

x=�t⇤
dx xp+4e

�
2
7

x
log(x)2 . (S118b)

The first integral is straightforward, and the second integral can be bounded using Lemma 5. Set a = 2/7,
k = p + 4 and note that we have chosen t⇤ such that all assumptions are valid. Applying Lemma 5 ensures

Z
1

�1

dt|W�(t)||t|pdt 
|t⇤|p+1

p + 1
+ 70e2��p�1

2k + 3

a
(�t⇤)2k+2e

�
2�t⇤

7 log(�t⇤)2 (S119a)

=
|t⇤|p+1

p + 1
+ 35e2��p�17(2p + 11)(�t⇤)2p+10e

�
2�t⇤

7 log(�t⇤)2 , (S119b)

for any integer 0  p  d. Inserting these bounds into the sum (S116) implies

| tr([O, Dû(x)]⇢(x))| 

⇣X

i

kOik1

⌘ dX

p=0

Cp

✓
|t⇤|p+1

p + 1
+ 35e2��p�17(2p + 11)(�t⇤)2p+10e

�
2�t⇤

7 log(�t⇤)2

◆
. (S120)

Recall that t⇤ = max(e4, 7(d + 5), ✓)/� is a constant that only depends on d and �, and the Cp’s are also
constants that depend on on cO, ch, clr, cd, alr, vlr, d. We may subsume all of these constant contributions in a
new constant call and conclude

| tr([O, Dû(x)]⇢(x))|  call

⇣X

i

kOik1

⌘
. (S121)

Inserting this uniform upper bound into Eq. (S111) completes the proof of Lemma 4.

7. SAMPLE COMPLEXITY LOWER BOUND FOR PREDICTING GROUND STATES

This section establishes an information-theoretic lower bound for the task of predicting ground state approx-
imations. It highlights that, without further assumptions on the Hamiltonians, the training data size required
in Theorem 4 is essentially tight.

Theorem 5. Fix a prediction error tolerance ✏, a number m of parameters, as well as constants C, B > 0 such
that C/(9✏)  m0.99. Consider a quantum ML model that learns from quantum data {x` ! ⇢(x`)}N

`=1
of size

N to generate ground state predictions �̂(x), where x 2 [�1, 1]m. Suppose the quantum ML model can achieve

E
x⇠[�1,1]m

| tr(O�̂(x)) � tr(O⇢(x))|2  ✏, (S122)
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with high probability, for every class of Hamiltonians H(x) and for every observable O given as a sum of local
observables

P
i Oi that obey

E
x⇠[�1,1]m

krx tr(O⇢(x))k2

2
 C (smoothness condition), (S123a)

X

i

kOik  B (bounded norm). (S123b)

Then, the (quantum) training data size must obey

N � B2m⌦(C/✏)/ log(B). (S124)

This is also a lower bound on quantum computational time associated with the quantum ML model.

The assumption C/(9✏)  m0.99 is required for technical reasons outlined below. It is equivalent to demand-
ing that the prediction error tolerance is large enough compared to the inverse of m, i.e., ✏ � C/(9m0.99).
If the quantum ML model can achieve an even smaller prediction error, such that Ex⇠[�1,1]m | tr(O�̂(x)) �

tr(O⇢(x))|2 < C/(9m0.99), then we choose ✏ = C/(9m0.99). For such a choice of ✏, the training data size lower
bound becomes N � B2m⌦(m0.99

)/ log(B), which is exponential in m0.99. Hence, in all cases, we need ✏ to be a
constant for any (quantum or classical) machine learning algorithm to obtain a sample complexity that scales
polynomially in m.

We prove Theorem 5 by means of an information-theoretic analysis. Conceptually, it resembles arguments
developed in prior work (178 ) (sample complexity lower bound for general quantum machine learning models).
Section 7 7.1 formulates a learning problem that involves predicting ground state properties of a certain class of
Hamiltonians. Subsequently, Section 7 7.2 incorporates a hypothetical (quantum ML) solution to this learning
problem as a decoding procedure in a communication protocol. Information-theoretic bottlenecks then beget
fundamental restrictions on the sample complexity of any ML model that solves the learning problem, see
Section 7 7.3.

7.1. Learning problem formulation

We consider a family of single-qubit Hamiltonians, i.e. n = 1, that is parametrized by m degrees of freedom.
We first map x 2 [�1, 1]m to a real number by evaluating a truncated Fourier series fa. Fix a cutoff ⇤ =p

C/(9✏) and let

K⇤ =
���
n

k 2 Z
m : kkk

2
 ⇤ =

p
C/(9✏)

o��� (S125)

denote the number of n-dimensional wave-vectors with Euclidean norm at most ⇤. We equip each of these wave
vectors k with a sign ak 2 {±1} and define the function

fa(x) =

r
9✏

K⇤

X

k2Zm,kkk2⇤

ak cos (⇡k · x) , where a 2 {±1}
K⇤ , (S126)

subsumes all sign choices involved. We use this function to define a single-qubit Hamiltonian. For Pauli matrices
X and Z, we set

Ha(x) = exp
�
+ i

2
arcsin (fa(x)/B) X

�
(�Z) exp

�
�

i

2
arcsin (fa(x)/B) X

�
, (S127)

where B is a constant that will reflect the size of the target observable, see Eq. (S123b). To summarize,
each choice of a 2 {±1}

K⇤ yields an entire class of single-qubit Hamiltonians Ha(x) that is parametrized
by m-dimensional inputs x 2 [�1, 1]m. These stylized Hamiltonians are simple enough to compute their
(nondegenerate) ground state explicitly:

⇢a(x) = | a(x)ih a(x)| with | a(x)i =

✓
cos

�
1

2
arcsin(fa(x)/B)

�

i sin
�

1

2
arcsin(fa(x)/B)

�
◆

2 C
2. (S128)

Finally, we fix the single-qubit observable O to be a scaled version of Pauli Y . Setting O = BY yields a 1-local
observable. And, more importantly,

tr (O⇢a(x)) = Bh a|Y | ai = B
⇣
�ih0| a(x)ih1| a(x)i + ih0| a(x)ih1| a(x)i

⌘
(S129a)

= 2B cos
�

1

2
arcsin (fa(x)/B)

�
sin

�
1

2
arcsin (fa(x)/B)

�
(S129b)
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= B sin (arcsin (fa(x)/B)) = fa(x). (S129c)

By construction, the expectation value tr (O⇢a(x)) exactly reproduces the function fa(x) defined in Eq. (S126).
Being able to accurately predict it will be equivalent to accurately learning this function – regardless of the
underlying sign parameter a 2 {±1}

K⇤ .
To complete the formulation of the learning problem, we recall that the training parameters are sampled

from the uniform distribution over the hypercube, Unif [�1, 1]m, and that we will evaluate the expectation E

over x with respect to this distribution from now on. This choice of distribution implies a nice closed-form
expression for the average squared distance of two functions fa, fb. For a, b 2 {±1}

K⇤ ,

E
x

|fa(x) � fb(x)|2 =
9✏

K⇤

X

k,l2Zm,kkk2,klk2⇤

(ak � bk)(al � bl)

Z

[�1,1]m
cos (⇡k · x) cos (⇡l · x) dmx (S130a)

=
9✏

K⇤

X

k2Zm,kkk2⇤

(ak � bk)2 (S130b)

=
9✏

K⇤

X

k2Zm,kkk2⇤

4 ⇥ 1 {ak 6= bk} (S130c)

=
36✏

K⇤

dH(a, b) , (S130d)

where we have used orthonormality of the Fourier basis cos(⇡k · x), and dH(a, b) =
P

k 1 {ak 6= bk} is the
Hamming distance on {±1}

K⇤ .
We conclude this expository section by examining whether the construction fulfills the requirement stated in

the theorem and presenting a technical lemma. First of all, we have

kOk = B kY k = B, (S131)

which satisfies the bounded norm constraint in Eq. (S123b). Furthermore, we can use the orthonormality of
cos(⇡k · t) to find that

E
x⇠[�1,1]m

krx tr(O⇢a(x))k2

2
=

9✏

K⇤

X

k2Zm:kkk2⇤

kkk
2

2
|ak|

2


9✏

K⇤

K⇤⇤2 = C. (S132)

Thus the smoothness condition in Eq. (S123a) is also satisfied. Now, we turn our attention to the ground
state (S128). The following technical lemma exposes the function fa(x)/B directly in the amplitudes of ground
states.

Lemma 6. Let | a(x)i be the ground state of Hamiltonian Ha defined in Eq. (S128). Then,

⇢a(x) = | a(x)ih a(x)| = 1

2

✓
1 +

p
1 � (fa(x)/B)2 �ifa(x)/B
ifa(x)/B 1 �

p
1 � (fa(x)/B)2

◆
. (S133)

Proof. The proof is based on double-angle and half-angle trigonometric identities. Suppressing x dependence,
the first diagonal entry becomes

h0|⇢a|0i = |h0| ai|
2 = cos2

�
1

2
arcsin (fa/B)

�
= 1

2
(1 + cos (arcsin (fa/B))) (S134a)

= 1

2

✓
1 +

q
1 � sin2 (arcsin (fa/B))

◆
= 1

2

⇣
1 +

p
1 � (fa/B)2

⌘
, (S134b)

and normalization implies that h1|⇢a|1i = 1 � h0|⇢a|0i. The off-diagonal entries are

h1|⇢a|0i = h0|⇢a|1i = h0| aih a|1i = �i cos
�

1

2
arcsin (fa/B)

�
sin

�
1

2
arcsin (fa/B)

�
(S135a)

= �
i

2
sin (arcsin (fa/B)) = �

i

2
fa/B . (S135b)

7.2. Communication protocol

Consider the learning problem introduced in the previous section. Suppose that a quantum ML model can
use training data T = {x`, ⇢a(x`)}

N
`=1

to learn a function fQ(x) that (on average) predicts tr (O⇢a(x)) = fa(x)

for a particular unknown a 2 {±1}
K⇤ , up to some accuracy ✏,

E
x

��fQ(x) � fa(x)
��2  ✏ . (S136)
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Such a model will not fare as well in estimating the expectation value associated with b 6= a, whenever b is
sufficiently far away from a. Using the triangle inequality and Eq. (S130),

E
x

��fQ(x) � fb(x)
��2 � E

x
|fa(x) � fb(x)|2 � E

x

��fQ(x) � fa(x)
��2 �

36✏

K⇤

dH(a, b) � ✏ . (S137)

The model’s accuracy significantly worsens at dH(a, b) > K⇤/18, where we recall K⇤ = |{k 2 Z
m : kkk

2
 ⇤}|

from Eq. (S125). In other words, a good quantum ML model would allow us to use training data T in order to
recover the underlying parameter a 2 {±1}

K⇤ up to resolution K⇤/18 in Hamming distance.
We can use this assertion as an effective decoding procedure in a two-way communication protocol involving

Alice and Bob. To accommodate imperfect resolution, Alice and Bob agree on a dictionary of sign vectors�
a(1), . . . , a(M)

 
⇢ {±1}

K⇤ whose pairwise Hamming distance is large enough: dH(ai, aj) > K⇤/18 for all
i 6= j. Let M denote the cardinality of this dictionary. Alice and Bob use this dictionary and the ML procedure
to transmit integers up to size M over a quantum channel. Alice samples an integer j 2 {1, . . . , M} and sets
a = a(j)

2 {±1}
K⇤ . Subsequently, she uses a to generate (quantum) training data T = {(x`, ⇢a(x`))}

N
`=1

with
x1, . . . , xN ⇠ Unif [�1, 1]m which she passes on to Bob. Subsequently, Bob uses T to train a quantum ML
model to predict the underlying function tr (O⇢a(x)) = fa(x). By checking Ex

��fā(x) � fQ(x)
��2  ✏ for every

possible dictionary element ā, he will retrieve the correct message with high probability, i.e., ā = a.
This is a protocol that conveys classical information via a quantum dataset. It is subject to fundamental

constraints from information theory. These will allow us to deduce a lower bound on the required training data
size N = |T |. An important figure of merit in this argument is the cardinality M of the dictionary. That is, the
number of different integers that can be communicated. The larger M , the more powerful the communication
protocol, and following result, sometimes attributed to Gilbert and Varshamov (179 ), is a lower bound on how
many bits one can “pack” into the space of L-bit strings while maintaining the required distance.

Lemma 7 (Lemma 5.12 in (180 )). There exists a dictionary
�
a(1), . . . , a(M)

 
2 {±1}

K⇤ of cardinality M �

bexp (K⇤/32)c that achieves dH

�
a(i), a(j)

�
� K⇤/4 whenever i 6= j.

7.3. Information-theoretic analysis

Let us now take a closer look at the communication protocol introduced above by bounding the correlation
between Alice’s original randomly chosen message a and Bob’s decoded signal ā. Up to now, we have stablished
the following. Per the bound in Lemma 7, the dictionary of available a’s can be chosen to be rather large:
M = bexp (K⇤/32)c. Moreover, the existence of a good quantum ML procedure, in the sense of Proposition 5,
ensures that ā = a with high probability.

Correlations between Alice’s and Bob’s variables are quantified by the (classical) mutual information

I(a : ā) � ⌦ (log(M)) = ⌦(K⇤), (S138)

which we have bounded from below using Fano’s inequality (181 ). Our task now is to provide an upper bound
on I(a : ā), in terms of N, B and ✏, in order to relate those parameters to K⇤ and obtain the desired result in
Theorem 5.

Since the parameters x1, . . . , xN are sampled independently from a, we have I(a : x1, . . . , xN ) = 0 and
a|x1,...,xN = a. Therefore, we can upper bound the mutual information as follows,

I (a : ā)  I (a : ā, x1, . . . , xN ) (S139a)
= I (a : x1, . . . , xN ) + I (a : ā|x1, . . . , xN ) (S139b)
= I (a : ā|x1, . . . , xN ) (S139c)
= E

x1,...,xN

I (a|x1,...,xN : ā|x1,...,xN ) (S139d)

= E
x1,...,xN

I (a : ā|x1,...,xN ) , (S139e)

where Q|x denotes the random variable Q conditioned on the random variable x.
Next, recall that Bob reconstructs the classical ā by performing quantum operations on the training data

T = {(x`, ⇢a(x`)}
N
`=1

. For each instance of randomly chosen parameters x1, . . . , xN ⇠ Unif[�1, 1]m, Bob
performs a quantum measurement on the state

NN
`=1

⇢a(x`) and uses the measurement outcomes to reconstruct
ā. Bob’s procedure is equivalent to performing the quantum ML algorithm that we have been promised in
Sec. 7 7.2. Thus we can use Holevo’s theorem (182 )[183 , Sec. 11.6.1] to write

I (a : ā|x1,...,xN )  �

 
a :

NO

`=1

⇢a (x`)
���
x1,...,xN

!
, (S140)
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where the Holevo information � quantifies correlations between a random variable z and a quantum state ⇢z,

�(z : ⇢z) = S
⇣
E
z
⇢z

⌘
� E

z
S(⇢z) , (S141)

and S(⇢) = � tr(⇢ log ⇢) is the von Neumann entropy. In other words, for each instance of parameters, the
correlation between a and ā is bounded by the Holevo information of Bob’s ensemble of quantum states.

Next, we use the subadditivity of von Neumann entropy, S(Ez ⇢z ⌦ �z)  S(Ez ⇢z) + S(Ez �z), and the
additivity of entropy for independent systems, S(⇢⌦ �) = S(⇢) + S(�), to obtain

�

 
a :

NO

`=1

⇢a (x`)
���
x1,...,xN

!


NX

`=1

�
⇣
a : ⇢a (x`)

��
x1,··· ,xN

⌘
. (S142)

Plugging Eqs. (S140) and (S142) into Eq. (S139) and using the fact that ⇢a(x`) is independent to x`0 for any
`0 6= `, we obtain

I (a : ā) 

NX

`=1

E
x1,··· ,xN

�
⇣
a : ⇢a (x`)

��
x1,··· ,xN

⌘
(S143a)

=
NX

`=1

E
x`

�
⇣
a : ⇢a (x`)

��
x`

⌘
(S143b)

= N E
x
� (a : ⇢a (x)) . (S143c)

The last equality follows from the fact that each (x`, ⇢a(x`)) is generated independently and in an identical
fashion for all ` = 1, . . . , N .

We have thus reduced the problem of bounding the correlations between classical variables a and ā to that
of bounding the Holevo information of the ensemble of states ⇢a — a much simpler problem because ⇢a is a
two-by-two matrix. In Lemma 8 at the end of section, we obtain the bound

E
x
� (a : ⇢a(x)) 

9✏

4B2
log

✓
4eB2

9✏

◆
. (S144)

Using this bound, the first claim in Theorem 5 readily follows, provided that we are allowed to choose

K⇤ = m⌦(C/✏) . (S145)

This assumption, combined with Eqs. (S138-S144) ensures that

N
9✏

4B2
log

✓
4eB2

9✏

◆
� ⌦(K⇤) = m⌦(C/✏) which implies N �

B2m⌦(C/✏)

log(B)
. (S146)

Because the quantum ML has to process quantum training data of size N �
B2m⌦(C/✏)

log(B)
, the runtime of the

quantum ML has to be lower bounded by that amount as well.
Let us now verify the assumption (S145) on the number of Fourier modes K⇤ available for estimating the

quantum state. While we have already determined that K⇤  mO(C/✏) in Eq. (S93), here we need a lower bound.
We utilize the assumption that C/(9✏)  m0.99, which implies bC/(9✏)c  m0.99. To establish Eq. (S145), we
restrict our attention to binary wavevectors k 2 {0, 1}

m, such that the number of ones is exactly equal to
bC/(9✏)c. Clearly, every such wavevector obeys kkk

2


p
C/(9✏), so the number of such wavevectors lower

bounds K⇤. This observation, along with some combinatorics, yields

K⇤ �

���
�
k 2 {0, 1}

m :
mX

j=1

kj = bC/(9✏)c
 ��� (S147a)

=

✓
m

bC/(9✏)c

◆
�

mbC/(9✏)c

(bC/9✏c)bC/(9✏)c
(S147b)

= mbC/(9✏)c�(bC/9✏c) log(bC/(9✏)c)/ log(m)
� m0.01bC/(9✏)c = m⌦(C/✏). (S147c)

We now prove the upper bound (S144) on the mutual information. It follows from analyzing the ground state
representations provided by Lemma 6.

Lemma 8. The learning problem from Section 7 7.1 is set up to obey

E
x⇠Unif[�1,1]m

� (a : ⇢a(x)) 
9✏

4B2
log

✓
4eB2

9✏

◆
. (S148)
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Proof. Using the definition (S141) of the Holevo information and the von Neumann entropy,

E
x⇠Unif[�1,1]m

� (a : ⇢a(x)) = E
x

h
E
a
[tr(⇢a(x) log ⇢a(x))] � tr

⇣⇣
E
a
⇢a(x)

⌘
log

⇣
E
a
⇢a(x)

⌘⌘i
(S149a)

= �E
x

tr
h⇣

E
a
⇢a(x)

⌘
log

⇣
E
a
⇢a(x)

⌘i
. (S149b)

The second equality follows from the fact that ⇢a(x) is a pure state, so we have tr(⇢a(x) log ⇢a(x)) = 0. We
also consider Ex to be Ex⇠Unif[�1,1]m . Recalling Lemma 6 yields

E
a
⇢a(x) =

1

2
E
a

✓
1 +

p
1 � (fa(x)/B)2 �ifa(x)/B
ifa(x)/B 1 �

p
1 � (fa(x)/B)2

◆
. (S150)

The eigenvalues �± of Ea ⇢a(x), like those of any two-by-two matrix, can be expressed in terms of the trace
and determinant. Using the formula for the eigenvalues and evaluating the trace and determinant yield

�± =
1

2
tr
h
E
a
⇢a(x)

i
±

1

2

r⇣
tr
h
E
a
⇢a(x)

i⌘2

� 4 det
h
E
a
⇢a(x)

i
(S151a)

=
1

2
±

1

2

r⇣
E
a

fa(x)
⌘2

/B2 +
⇣
E
a

p
1 � fa(x)2/B2

⌘2

. (S151b)

We will use following lower bound for �+

�+ �
1

2
+

1

2
E
a

p
1 � fa(x)2/B2 (S152a)

�
1

2
+

1

2
(1 � E

a
fa(x)2/B2) (S152b)

= 1 �
1

2
E
a

fa(x)2/B2
�

1

2
. (S152c)

The first inequality follows from dropping the term (Ea fa(x))2/B2. The second inequality follows from the
fact that

p
1 � z � 1 � z for all z 2 [0, 1].

We now proceed to bounding the von Neumann entropy of Ea ⇢a(x),

� tr
⇣⇣

E
a
⇢a(x)

⌘
log

⇣
E
a
⇢a(x)

⌘⌘
= ��+ log �+ � �� log �� = H(�+) (S153a)

 H

✓
1 �

1

2
E
a

fa(x)2/B2

◆
(S153b)

= H

✓
1

2
E
a

fa(x)2/B2

◆
(S153c)

⌘ H(g(x))  g(x) log(e/g(x)) , (S153d)

where H(x) = �x log x � (1 � x) log(1 � x) is the binary entropy, and g(x) = 1

2
Ea fa(x)2/B2. The first

inequality follows from the fact that H(x)  H(x0) for all 1/2  x0
 x. Going back to Eq. (S149),

E
x
� (a : ⇢a(x)|x) = �E

x
tr
h⇣

E
a
⇢a(x)

⌘
log

⇣
E
a
⇢a(x)

⌘i
(S154a)

 E
x
[g(x) log(e/g(x))] (S154b)



⇣
E
x

g(x)
⌘

log

✓
e

Ex g(x)

◆
(S154c)

=
Ex,a fa(x)2

2B2
log

✓
2eB2

Ex,a fa(x)2

◆
. (S154d)

The first inequality follows from Eq. (S153). The second inequality follows Jensen’s inequality and the fact that
z log(e/z) is concave for all z � 0. Orthogonality of the cos(⇡k · x) terms in fa (S126) yields

E
x,a

fa(x)2 =
1

2
⇥

9✏

L

X

k2Zm,kkk2⇤

E
a

|ak|
2 =

9✏

2
. (S155)

Plugging the above into Eq. (S154d), we obtain the advertised bound.
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Figure S7: Reduction of planar rectilinear 3SAT (left) to a qubit Hamiltonian on a 2D grid (right). Each pair
(i, j) of nearby grid points on a path (originating from variable X,Y, Z, S, T,W ) contains a two-body local term �ZiZj

(illustrated by boxes with gray stroke). Each clause (C,D,E, F ) corresponds to a three-body local term that imposes
the Boolean constraint, e.g., X _Z _S would correspond to �

P
x,z,s2{0,1} 1[x_ z _ s = 1] · |xihx|⌦ |zihz|⌦ |sihs|. Every

empty grid point (the irrelevant qubits) contain a single body term �Zi.

8. COMPUTATIONAL HARDNESS FOR NON-ML ALGORITHMS TO PREDICT GROUND
STATES

8.1. NP-hardness for estimating one-body observables in the ground state of 2D Hamiltonians

We begin by showing that the task of estimating one-body observables in the ground state of any smooth
class of two-dimensional Hamiltonians with a constant spectral gap is NP-hard. The task is hard even if we
consider the computation to yield a small error averaged over the smooth class of Hamiltonians.

Proposition 3 (Detailed restatement of Proposition 1; a variant of Lemma 1.4 in (184 )). Consider a random-
ized polynomial-time classical algorithm A(H, i, r) whose inputs are the description of a Hamiltonian H, an
index i that enumerates the qubits in the Hamiltonian, and a random bit string r. Suppose that for any smooth
class of Hamiltonians on a two-dimensional grid with a spectral gap � 1 and a unique ground state,

H(x) =
X

a

ha(x) with ⇢(x) : the ground state of H(x), (S156)

where x 2 [�1, 1]m is a parameter and ha(x) is a three-qubit geometrically-local observable, and for each one-
body Pauli-Z observable Zi, the randomized classical algorithm A outputs A(H, i, r) that approximates tr(Zi⇢(x))
up to an average error Ex⇠[�1,1]m |Er A(H, i, r) � tr(Zi⇢(x))|  1/4. Then RP = NP.

Proof. From standard results in complexity theory (55 , 56 , 185 ), it is known that if there is a randomized
polynomial-time classical algorithm that can find the solution for any planar rectilinear 3SAT problem with
a unique solution with probability at least 1/2, then RP = NP. (RP, also known as Randomized Polynomial
Time, is the class of decision problems such that there is a polynomial-time randomized classical algorithm that
outputs YES with probability at least 1/2 when the correct answer is YES, and outputs NO with probability
one when the correct answer is NO. RP is contained in BPP, the class of decision problems that can be solved
efficiently by a randomized classical computer.) The planar rectilinear 3SAT problem is a constrained version
of 3SAT, where all the Boolean variables x1, . . . , xn are vertices on the x-axis and all the clauses containing
three variables are vertices that lie above or below the x-axis. Each clause is connected by an edge to each of
the the variables that the clause contains. The vertices and the edges form a planar graph; see Fig. S7 (left)
for an illustration.

We can embed such a planar graph in a two-dimensional grid with a single qubit on each grid point; see
Fig. S7 (right) for an illustration of the embedding. First, we distinguish between the variable vertices and the
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clause vertices in the planar graph. Variable vertices lie on the x-axis of the two-dimensional qubit grid, and
clause vertices lie above or below the x-axis. Edges of the planar graph become embedded paths on the the 2D
grid connecting clause vertices to variable vertices. Because the original graph is planar, we can ensure that the
paths corresponding to each edge on the planar graph do not overlap (except when they terminate at the same
variable) by choosing a large enough spacing between the variable vertices on the x-axis. For each path on the
2D grid, we add a �ZiZj term to the Hamiltonian for every pair of nearest neighbors along the path. The two
body �ZiZj term ensures that, in the unique ground state, the qubits on the path must be either all |0i’s or all
|1i’s. Then, for every clause vertex on the planar graph, we add a three-body geometrically-local term (diagonal
in the Z-basis) to the Hamiltonian enforcing that in the ground state the endpoints of the three corresponding
paths satisfy the Boolean constraint of the corresponding clause. For example, the Boolean clause X _ Z _ S
would correspond to the three body local term �

P
x,z,s2{0,1} 1[x_ z _ s = 1] · |xihx|⌦ |zihz|⌦ |sihs|, where 1[A]

is 1 if A is true and 0 otherwise. The qubits on paths are called the “relevant” qubits, and the rest of the qubits
are called “irrelevant.” We add a �Zi term to the Hamiltonian for all the irrelevant qubits, fixing these qubits
to be |0i in the ground state.

Moreover, the eigenstates of the Hamiltonian are computational basis states, because all the local terms are
diagonal in the Z-basis. We can also see that there are no terms connecting the relevant and irrelevant qubits,
hence the ground state space of the constructed Hamiltonian must be the tensor product of the ground state
space for the relevant qubits and the ground state space for the irrelevant qubits. The unique ground state
for the irrelevant qubits is the all-zero state |0i ⌦ · · · ⌦ |0i due to the �Zi term. Because the original planar
rectilinear 3SAT problem has a unique solution, the ground state for the relevant qubits is also unique. We
denote the ground state by |bihb|, b 2 {0, 1}

n, where n is the total number of qubits in the two dimensional grid.
In this ground state, all variable vertices are fixed at the values that solve the 3SAT problem. Furthermore,
because all eigenvalues of the Hamiltonian are integers, the spectral gap is at least one.

Let us define
P

a ha to be the Hamiltonian constructed from a planar rectilinear 3SAT problem. Note that
ha is diagonal in the Z-basis and acts on at most three geometrically-local qubits. We define a trivial class of
two-dimensional Hamiltonians with a spectral gap � 1,

H(x) =
X

a

ha(x) =
X

a

ha = H, (S157)

where x 2 [�1, 1]m is the parameter, and H(x) does not depend on x. Let ⇢(x) be the unique ground state of
H(x). We have ⇢(x) = |bihb|, b 2 {0, 1}

n, where b encodes the solution to the planar rectilinear 3SAT problem.
We apply the randomized classical algorithm to provide estimates for all the expectation values of Pauli-Z

observables in the ground state space ⇢(x) of H(x). Let A be the randomized classical algorithm. By the
assumption that the randomized classical algorithm could output an estimate of tr(Zi⇢(x)) up to an additive
error 1/4 averaged uniformly over x 2 [�1, 1]m, we have

E
x⇠[�1,1]m

���E
r

A(H(x), i, r) � tr(Zi⇢(x))
���  1/4, 8i = 1, . . . , n. (S158)

Using Jensen’s inequality, we have the following bound,
���� E
x⇠[�1,1]m

E
r

A(H(x), i, r) � E
x⇠[�1,1]m

tr(Zi⇢(x))

����  1/4, 8i = 1, . . . , n. (S159)

We can see that Ex⇠[�1,1]m tr(Zi⇢(x)) = hbi| Zi |bii , where bi is the i-th bit in the n-bit string b that encodes
the solution to the planar rectilinear 3SAT problem.

We sample random x uniformly from [�1, 1]m and sample the random string r, obtaining the output value
A(H(x), i, r) using the randomized classical algorithm A. As a result of the above analysis, by sampling
O(log(n)) times and computing the average over the output A(H(x), i, r), we can obtain an estimate for
hbi| Zi |bii up to an additive error 1/2 with probability at least 1 �

1

2n , where n is the total number of qubits in
the 2D grid. Because hbi| Zi |bii 2 {�1, 1}, an estimate for hbi| Zi |bii up to an additive error 1/2 allows us to
obtain bi 2 {0, 1}. Using the union bound, with probability at least 1/2, we can obtain bi, for all i = 1, . . . , n.
This implies that we can obtain the bit string b with probability at least 1/2. Hence, we can use the randomized
classical algorithm A to find the unique solution for the planar rectilinear 3SAT problem with probability at
least 1/2. Therefore, RP=NP if such an algorithm exists.

We remark that a similar argument still applies if we replace the constant Hamiltonian H(x) considered
above by a suitably chosen class of Hamiltonians {H(x) = H : x 2 [�1, 1]m} with nontrivial dependence on
x. For example, we can consider H(x) =

P
a ha(x) =

P
a (U1(x1) ⌦ . . . ⌦ Un(xn)) ha (U1(x1) ⌦ . . . ⌦ Un(xn))†,

where n is the number of qubits in the Hamiltonian, Ui(xi) = exp(�i(⇡/4)Xixi) is a single-qubit rotation, Xi

is the Pauli-X matrix on the i-th qubit, and m = n. It is not hard to see that ha(x) still acts on at most
three geometrically-local qubits. Furthermore, one can adapt the proof to show that predicting ground state
properties averaged over x for this nonconstant class of Hamiltonians is still hard.
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8.2. Computational hardness for a class of Hamiltonians based on factoring

Theorem 1 and Proposition 3 together implies that an NP-hard problem could be solved by performing single-
qubit measurements on a modest number of copies of the ground state of a two-dimensional local Hamiltonian,
and then performing an efficient classical computation with the measurement outcomes as input. We may
therefore conclude that, in hard instances, the preparation of the ground state is itself an NP-hard task.
Because we do not expect any NP-hard task to be performed efficiently in the physics lab, or in any other
physically realizable process, Proposition 3 does not usefully characterize the computational power of data
under realistic conditions.

In contrast, it is reasonable to expect that simple measurements performed on quantum states that are
efficiently prepared by quantum computers, combined with classical processing, suffice for solving computational
problems that are beyond the reach of classical processing alone. Indeed, proposals for using variation quantum
eigensolvers to study quantum chemistry and materials (186 , 187 ) are motivated by this expectation. Theorem 1
is of potential practical interest for a class of Hamiltonians {H(x)} such that the ground state of H(x) can be
prepared efficiently by a feasible quantum process, yet cannot be efficiently prepared classically.

The rest of this subsection outlines a stylized example that illustrates this idea. Leveraging the efficient
quantum algorithm for factoring large numbers, and the assumption that factoring is classically hard, we
construct a smooth class of local Hamiltonians whose ground states are easy to prepare quantumly, such that
expectation values of one-local observables can be learned efficiently from training data, yet are hard to learn
by any classical procedure without access to data.

The first step is to construct two-dimensional Hamiltonians such that computing expectation values of one-
local observables in the ground state is equivalent to solving a factoring problem. This can be done by noting
a series of well-known facts in complexity theory.

1. The following task is expected to be hard for classical computers. Given a n-bit number R guaranteed to
be a product of two prime numbers p < q, find p, q. When R is large, all known classical algorithms scale
superpolynomially with n. Solving this problem suffices to break the RSA encryption (188 ).

2. We can represent p, q using at most 2n binary variables (bits), and we can write down a propositional
formula for these 2n variables, which corresponds to a logical circuit that computes the multiplication of
p, q and checks if the product equals R. The propositional formula can be written without any additional
Boolean variable. This yields a SAT problem with 2n Boolean variables whose unique solution is equal
to the two prime numbers p, q.

3. A SAT problem with a unique solution can be efficiently mapped to a 3SAT problem with a unique
solution; see (189 ).

4. A 3SAT problem with a unique solution can be efficiently mapped to a planar rectilinear 3SAT problem
with a unique solution; see (55 , 185 ).

5. A planar rectilinear 3SAT problem with a unique solution can be efficiently mapped to a two-dimensional
3-local Hamiltonian with a spectral gap of one and a unique ground state, such that estimating one-
local observables in the ground state of the Hamiltonian to a constant error with a constant probability is
sufficient to find the unique solution for the planar rectilinear 3SAT problem; see the proof of Proposition 3.

We now focus on any smooth class of two-dimensional Hamiltonians HRSA(x) with a constant spectral gap such
that there exists xRSA

2 [�1, 1]m such that HRSA(xRSA) can be written as a two-dimensional Hamiltonian that
is mapped from a factoring problem. We refer to such a class of Hamiltonians as an RSA-based two-dimensional
gapped Hamiltonian class.

For any RSA-based Hamiltonian class HRSA, we can efficiently obtain the training data from a quantum
experiment. We first prepare the ground state for HRSA(xRSA) by applying Shor’s algorithm. Then we can
adiabatically evolve the ground state for HRSA(xRSA) to obtain the ground state for HRSA(x), 8x 2 [�1, 1] due
to the existence of a constant spectral gap (190 , 191 ). Hence, according to Theorem 1, for any RSA-based
Hamiltonian class, a classical ML algorithm trained from data obtained in quantum experiments can predict
efficiently expectation values of one-local observables in the ground state. In contrast, a classical algorithm
that does not learn from training data is unable to efficiently estimate 1-body observables in the ground state,
assuming that RSA encryption can not be broken by classical computers.

9. NO OBSERVABLE CAN CLASSIFY TOPOLOGICAL PHASES

Recall that ground states of two Hamiltonians are in the same topological phase if there exists a constant-
depth geometrically-local quantum circuit that can transform one state to another (192 ). The goal of this
section is to establish the following proposition.
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Proposition 4. Consider two distinct topological phases A and B (one of the phases could be the trivial phase).
No observable O exists such that

tr(O⇢) > 0, 8⇢ 2 phase A, tr(O⇢)  0, 8⇢ 2 phase B. (S160)

Proof. We consider depth-1 quantum circuits consisting of single-qubit unitaries U1, . . . , Un. We let | Ai , | Bi

be the signature quantum state for phase A and B. Suppose there is an observable such that

tr(O⇢) > 0, 8⇢ 2 phase A, tr(O⇢)  0, 8⇢ 2 phase B. (S161)

Then, by definition, we have

h A| (U †

1
⌦ . . . ⌦ U†

n)O(U1 ⌦ . . . ⌦ Un) | Ai > 0, 8U1, . . . , Un 2 U(2), (S162a)

h B | (U†

1
⌦ . . . ⌦ U †

n)O(U1 ⌦ . . . ⌦ Un) | Bi  0, 8U1, . . . , Un 2 U(2), (S162b)

However, from Lemma 9, no such observable exists. Hence no observable exists that can be used to classify two
topologically ordered phases.

The key lemma utilized in the above proof is the following.

Lemma 9. For any two n-qubit states | 1i , | 2i, no observable O exists such that

h 1| (U
†

1
⌦ . . . ⌦ U †

n)O(U1 ⌦ . . . ⌦ Un) | 1i > 0, 8U1, . . . , Un 2 U(2), (S163a)

h 2| (U
†

1
⌦ . . . ⌦ U †

n)O(U1 ⌦ . . . ⌦ Un) | 2i  0, 8U1, . . . , Un 2 U(2), (S163b)

where U(2) is the unitary group of 2 ⇥ 2 unitary matrices.

Proof. We will prove this result by contradiction. Assume the existence of an observable O such that
Eq. (S163a) and (S163b) both hold. Consider U1, . . . , Un to be independent random matrices that follows
the Haar measure on the unitary group U(2). Then using the identity for the first order moment of Haar
integration,

E
U⇠Haar(U(d))

UXU † = tr(X)
I

d
, (S164)

we can obtain the following identity,

E
U1,...,Un⇠Haar(U(2))

h
(U1 ⌦ . . . ⌦ Un)| 1ih 1|(U

†

1
⌦ . . . ⌦ U†

n)
i

= tr(| 1ih 1|)
I

2n
=

I

2n
. (S165)

The key property is the compactness of the unitary group U(2). Consider the following infimum,

o1 = inf
U1,...,Un2U(2)

h 1| (U
†

1
⌦ . . . ⌦ U†

n)O(U1 ⌦ . . . ⌦ Un) | 1i . (S166)

Because the infimum is always attained by an element in the compact set, 9U inf

1
, . . . , U inf

n 2 U(2) such that

o1 = h 1| ((U
inf

1
)† ⌦ . . . ⌦ (U inf

n )†)O(U inf

1
⌦ . . . ⌦ U inf

n ) | 1i . (S167)

Therefore, we have o1 > 0 from Eq. (S163a). Using the property of infimum, we have

h 1| (U
†

1
⌦ . . . ⌦ U†

n)O(U1 ⌦ . . . ⌦ Un) | 1i � o1, 8U1, . . . , Un 2 U(2), (S168)

we have the following inequality,

E
U1,...,Un⇠Haar(U(2))

h 1| (U
†

1
⌦ . . . ⌦ U †

n)O(U1 ⌦ . . . ⌦ Un) | 1i � o1 > 0. (S169)

By the linearity of expectation and Eq. (S165), we have

E
U1,...,Un⇠Haar(U(2))

h 1| (U
†

1
⌦ . . . ⌦ U †

n)O(U1 ⌦ . . . ⌦ Un) | 1i (S170)

= tr

✓
O E

U1,...,Un⇠Haar(U(2))

h
(U1 ⌦ . . . ⌦ Un)| 1ih 1|(U

†

1
⌦ . . . ⌦ U †

n)
i◆

=
tr(O)

2n
.
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Together, we have

tr(O)

2n
� o1 > 0. (S171)

The argument for | 2i is slightly simpler. Consider the following supremum,

o2 = sup
U1,...,Un2U(2)

h 2| (U
†

1
⌦ . . . ⌦ U†

n)O(U1 ⌦ . . . ⌦ Un) | 2i . (S172)

From Eq. (S163b), we have o2  0. Using the fact that

h 2| (U
†

1
⌦ . . . ⌦ U†

n)O(U1 ⌦ . . . ⌦ Un) | 2i  o2, 8U1, . . . , Un 2 U(2), (S173)

we have the following inequality,

E
U1,...,Un⇠Haar(U(2))

h 2| (U
†

1
⌦ . . . ⌦ U†

n)O(U1 ⌦ . . . ⌦ Un) | 2i  o2  0. (S174)

By the linearity of expectation and Eq. (S165), we have

E
U1,...,Un⇠Haar(U(2))

h 2| (U
†

1
⌦ . . . ⌦ U †

n)O(U1 ⌦ . . . ⌦ Un) | 2i (S175)

= tr

✓
O E

U1,...,Un⇠Haar(U(2))

h
(U1 ⌦ . . . ⌦ Un)| 2ih 2|(U

†

1
⌦ . . . ⌦ U †

n)
i◆

=
tr(O)

2n
.

Together, we have

tr(O)

2n
 o2  0. (S176)

From Eq. (S171) and (S176), we have derived the following result

tr(O)

2n
 o2  0 < o1 

tr(O)

2n
, (S177)

which is a contradiction. Therefore, no such observable O exists.

10. PROOF OF EFFICIENCY FOR CLASSIFYING PHASES OF MATTER

This section contains a detailed proof for another one of our main contributions. Namely, a rigorous perfor-
mance guarantee for learning to predict quantum phases of matter.

10.1. Training support vector machines

Let us start by reviewing the textbook framework for reasoning about supervised learning tasks: support
vector machines (SVMs). The underlying idea is simple and intuitive. Suppose that we have N data points
x` 2 R

D with binary labels y` 2 {±1} that form two well separated clusters. Then, we may try to separate
these training clusters with a linear hyperplane H↵ =

�
x 2 R

D : h↵,xi = 0
 

⇢ R
D, defined using any vector

↵ that is perpendicular to all vectors in the hyperplane. Here, we implicitly assume that the hyperplane H↵

must contain the origin 0 2 R
D. This simplifies exposition and will suffice for our purposes, but also constitutes

an actual restriction (linear SVMs typically also allow for affine shifts). Such a hyperplane divides R
D up into

two half-spaces. For linear classification, we want that these half-spaces perfectly capture the labels of training
data: h↵,x`i > 0 whenever y` = +1 and h↵,x`i < 0 whenever y` = �1. The hope is that this simple linear
classification strategy generalizes to data we haven’t yet seen. When we get a new data point, we simply check
which halfspace it belongs to and assign the label accordingly. In the training stage, the main question is: how
do we find a suitable hyperplane? Several strategies are known in the literature. One of them is the soft margin
problem:

minimize
↵2RD

NX

`=1

max {0, 1 � y`h↵,x`i} (S178a)

subject to h↵,↵i  ⇤2. (S178b)
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Figure S8: (a) Geometric intuition behind support vector machines (SVMs). The idea is to separate clusters
of labeled data with a linear hyperplane. The separation margin (yellow) is inversely proportional to the length

p
h↵,↵i

of the hyperplane normal vector. During the training stage we try to find a hyperplane that separates points with label
+1 (blue) from points with label -1 (red) such that the margin is as large as possible (left). This hyperplane separates
the data space into two halfspaces. In order to predict the label of a new data point, we simply check which halfspace
it belongs to. (b) Geometric intuition behind the representer theorem. When trying to find a separating
hyperplane, the total dimension of the data space does not matter. We can without loss restrict our attention to the
smallest subspace that contains all the data points. This is because orthogonal directions don’t matter during training
and has two implications: (i) the cost of finding a separating hyperplane depends on the training data size N , not feature
space dimension and (ii) we can express the hyperplane vector as a linear combination of training data points.

For both label values, a positive product y`h↵,x`i is theoretically sufficient. However, numerical precision
considerations warrant a nonzero separation between the clusters, so the product is optimized to be at least
as large as a positive number (here, 1). Otherwise, a hyperplane defined by ↵ does not perfectly classify the
data, yielding the training error Etr(↵) =

PN
`=1

max {0, 1 � y`h↵,x`i}. The task is to find ↵] that achieves the
smallest training error: Etr(↵])  Etr(↵) for all vectors that obey h↵,↵i  ⇤2. This is a convex optimization
problem that can be solved in polynomial time and we refer to Fig. S8 for a visual illustration. The most
interesting situation occurs if we manage to achieve an optimal objective value of 0. This corresponds to zero
training error. In this case, we have found a hyperplane H↵] that perfectly separates training data. What is
more, the constraint h↵],↵]i  ⇤2 ensures that the margin of separation is strictly positive. Let ↵̂ = ↵/k↵k

be the unit vector that characterizes a hyperplane. Then, zero training error implies h↵̂,x`i � 1/k↵k � 1/⇤
for all x` with y` = +1 and h↵̂,x`i < �1/⇤ for all x` with y` = �1. In turn, the minimal margin amounts to
2/⇤.

However, it should not come as a surprise that such linear classification strategies are often inadequate.
Most labeled collections of data simply cannot be separated by a linear hyperplane. However, it has been
observed that this drawback can be overcome by first transforming data into a (usually much larger) feature
space x` 7! �(x`) and trying to find a separating hyperplane there. This transformation is typically nonlinear
and increases the expressiveness of hyperplane classification. Although the separating hyperplane is linear in
feature space, it may be highly nonlinear in the original data space. Denote the feature space by F and suppose
that it comes with an inner product h·, ·iF and dual space F

⇤. We can then formally phrase the search for a
linear classifier in feature space as

minimize
↵2F⇤

NX

`=1

max {0, 1 � y`h↵,�(x`)iF} (S179a)

subject to h↵,↵iF  ⇤2. (S179b)

This problem looks more daunting than its linear counterpart, especially because the feature space F may
have an exceedingly large – perhaps even infinite – dimension. But we are still interested in identifying a
hyperplane that separates a total of N transformed data points �(x1), . . . ,�(xN ) 2 F in a linear fashion:
h↵,�(x`)iF > 0 if y` = +1 and h↵,�(x`)iF < 0 else if y` = �1. And in order to achieve this, we can
without loss restrict ourselves to the N -dimensional subspace span {�(x1), . . . ,�(xN )} ⇢ F that is spanned by
the data points themselves (all other directions are orthogonal to all data points and do not play a role for
classification). For finite dimensional feature spaces (F , h·, ·iF ), this is an intuitive observation that follows from
basic orthogonality arguments. We refer to Fig. S8 for a visual illustration. For infinite-dimensional feature
spaces it is the content of the celebrated generalized representer theorem (193 ). More formally, this insight
allows us to decompose every (relevant) hyperplane normal vector ↵ in the optimization problem (S179a) as
↵ =

PN
`=1

↵`�(x`). Linearity then ensures h↵,�(x`0)iF =
PN

`=1
↵`h�(x`),�(x`0)iF for each `0 2 {1, . . . , N}
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and also h↵,↵iF =
PN

`,`0=1
↵`↵`0h�(x`),�(x`0)iF . These expressions only depend on the elements of a N ⇥ N

Gram matrix in feature space:

[K]``0 = h�(x`),�(x`0)iF =: k (x`,x`0) for `, `0 2 {1, . . . , N}. (S180)

The expression k(x`,x`0) is called the kernel associated with the feature map � and the matrix K is the kernel
matrix. Kernels are a measure of similarity between (training) data points that is often easier to compute than
performing the underlying feature map � : R

D
! F . But, for linear classification (in feature space), both

contain exactly the same amount of information. Indeed, we may re-express the optimization problem (S179a)
as

minimize
↵2RN

NX

`=1

max
�
0, 1 � y`↵

TKe`

 
(S181a)

subject to ↵TK↵  ⇤2. (S181b)

We can also collect the classification labels in a diagonal matrix Y = diag (y1, . . . , yN ) of compatible dimension
and linearize the loss function by means of an entry-wise nonnegative slack variable � � 0. Let 1 = (1, . . . , 1)T

denote the vector of ones. Then, problem (S181a) is equivalent to solving

minimize
↵,�2RN

h1,�i (S182a)

subject to � � 1 � YK↵ (S182b)
� � 0, ↵⇤K↵  ⇤2. (S182c)

Similar to before, the optimal function value denotes the minimal training error Etr(↵]) = h1,�]i. Apart
from a single quadratic constraint (↵⇤K↵  ⇤2), this optimization problem looks like a linear program in
2N dimensions. It is a convex instance of a quadratically constrained quadratic program (QCQP) and can be
solved in time at most polynomial in the training data size N (194 ). In practice, one could use existing software
packages, such as scikit-learn (161 ) or LIBSVM (52 ). If the time to compute the kernel function k(x`,x`0) is
tkernel, then the time complexity for training a support vector machine is given by

O(tkernelN
2 + poly(N)) (training time). (S183)

Hence, for support vector machines with efficiently computable kernel functions k(x`,x`0), small training data
sizes N directly ensure a short training time. The polynomial scaling in training data size depends on the type
of algorithm. Dedicated solvers for the soft margin problem (52 , 195 , 196 ) require (at most) O

�
N3 + ⇤2N/✏2

�

arithmetic operations to produce a solution ↵],✏ that is ✏-close to optimal: Etr(↵],✏)  Etr(↵]) + ✏. For the
concrete training problems considered here, such an approximation is good enough and the associated runtime
bound simplifies to O

�
tkernelN2 + N3

�
. Interior point methods offer an alternative that scale worse in training

data size, but much better in the approximation error ✏, see e.g. (194 ).

10.2. Prediction using support vector machines

In the last section, we have explained how feature maps and kernels can considerably boost the expressiveness
of initially linear classifiers. We have also explained how to use labeled training data of size N to find a
separating hyperplane in feature space by solving a quadratic program (S182a) that depends on the kernel
matrix (S180). Ideally, Etr(↵]) = 0 (zero training error) and the optimal solution ↵] 2 R

N parametrizes a
separating hyperplane with minimal margin 2/⇤ in feature space:

h](x`0) =
NX

`=1

[↵]]` h�(x`),�(x`0)iF =
NX

`=1

[↵]]` k (x`,x`0)

(
> +1/⇤ if y`0 = +1,

< �1/⇤ else if y`0 = �1,
(S184)

for all (labeled) training data points (x1, y1), . . . , (xN , yN ).The sign of this classifier, in turn, correctly repro-
duces training labels:

y](x`0) := sign (h](x`0)) = y`0 for each ` 2 {1, . . . , N}. (S185)

In the prediction stage, we use this function to assign a label y](x) 2 {±1} to a new (and unlabeled) data
point x. The cost of evaluating y](x`0) is dominated by the cost of evaluating N kernel functions. If the time
to compute the kernel function is tkernel, then the prediction time for a new input vector x is bounded by

O(tkernelN) (prediction time). (S186)
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Similar to the training time (S183), a small training data size N translates into a fast prediction time.
The hope is that training with an adequate kernel uncovers latent structure that generalizes beyond training

data. Typically, larger training data sizes N also increase the chance for learning good classifiers (S185). But
generalization beyond training data often only makes sense if the new data point x is somewhat related to the
training data (e.g. training a SVM on labeled cat-vs-dog images does not necessarily produce a classifier that
can distinguish apples from oranges). Extra assumptions that address similarity of training and prediction data
are important when one aims at establishing rigorous bounds on the probability of making a wrong prediction,
i.e. y](x) = �y(x). A common assumption is that both the training data and new data points are generated
independently from the same distribution: (x1, y1), . . . , (xN , yN ), (x, y) ⇠ D. The data distribution D is a
joint distribution over both the input vector x and the label y. Such an assumption encompasses the intuition
that the label y is correlated with the input vector x, but is not necessarily a function of x. Flexibility of
this form is useful for describing situations where the data points x are corrupted by noise. This is often the
case in quantum mechanics due to the inherent randomness in quantum measurements. The underlying data
distribution should be taken into account when reasoning about false predictions, motivating the probability

Pr(x,y)⇠D [y](x) 6= y] 2 [0, 1] (average-case prediction error) (S187)

as a good figure of merit. Noting that there are in general many approaches to bounding the prediction error,
we present a user-friendly theorem that bounds the average-case prediction error in terms of the training error
Etr(↵]) and training data size N .

Theorem 6 (Prediction error for support vector machines). Fix a data distribution (x, y) ⇠ D, a kernel
function k(·, ·), a minimal margin 2/⇤ and a training data size N . Assume k(x,x)  R2 almost surely. Then,
with probability (at least) 1 � �,

Pr(x,y)⇠D [y](x) 6= y] 
1

N
Etr(↵]) + 7(⇤R + 1)

r
log(2/�)

N
, (S188)

where y](x) is the classifier (S185) obtained from solving the training problem (S182a) on independently sampled
training data (x1, y1) , . . . , (xN , yN ) ⇠ D, and Etr denotes the associated training error.

This rigorous statement bounds the average prediction error in terms of the training error plus an error term
that decays as 1/

p
N in training data size. The core assumption is that training and prediction data is sampled

in an independent and identically distributed (iid) fashion. The proof is based on specializing a standard result
from high dimensional probability theory to the task at hand.

Theorem 7 (Theorem 3.3 in (197 )). Fix a probability distribution D over elements in a set X, a family of
functions G from X to the interval [0, �max], as well as � 2 (0, 1) and N 2 N. Then, with probability 1 � �, the
following bound is valid for all functions g 2 G simultaneously:

E
x⇠D

[g(x)] 
1

N

NX

`=1

g(x`) + 3�max

r
log(2/�)

2N
+

2
p

N
E

"1,...,"N

"
sup
g2G

1
p

N

NX

`=1

"`g(x`)

#
. (S189)

Here, x1, . . . , xN
iid
⇠ D are sampled from X and "1, . . . , "N

iid
⇠ {±1} are Rademacher random variables (the

failure probability  � addresses these random selections).

The right hand side of this upper bound contains three qualitatively different contributions. The first term
describes an empirical average over N independent samples. It approximates the true expectation value by
Monte Carlo sampling, and can underestimate the true average. As N increases, the approximation accuracy
becomes better and, simultaneously, the probability of sampling a poor approximation diminishes exponentially.
This is precisely the content of the second term. Larger sampling rates N suppress it and also allow for insisting
on ever smaller failure probabilities �. However, these two terms are still not enough for an upper bound because
we would like to have a bound for all functions g 2 G. This is where the third term comes into play. It contains
the empirical width, a statistical summary parameter for the extent of the function set G, see e.g. (198 ).
Suppose, for instance, that G = {g} contains only a single function. Then, we can ignore the supremum (over
a single element) and the contribution vanishes entirely (Rademacher random variables have zero expectation).
The empirical width parameter can, however, grow with the size of the function set g 2 G.

In the context of bounding the performance of support vector machines, the domain variable x becomes
(x, y), and the function family consists of the training error g↵ from Eq. (S179a), indexed by ↵. The third
term in Theorem 7 can then be bounded by the largest norm of the feature vectors.

Lemma 10. Fix a feature map � : RD
⇥{±1} ! F and define g↵(x, y) = max {0, 1 � yh↵,�(x)iF} for ↵ 2 F

⇤.
Then,

E
"1,...,"N

"
sup

h↵,↵iF⇤2

1
p

N

NX

`=1

"`g↵ (x`, y`)

#
 ⇤ max

1`N

p
h�(x`),�(x`)iF (S190)
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for any collection (x1, y1) , . . . , (xN , yN ) 2 R
D

⇥ {±1}.

Proof. Let us abbreviate the expectation over all N Rademacher random variables by E". Note that the
empirical width is invariant under a constant shift of the hinge loss function: max {0, 1 � z} 7! max {0, 1 � z}�

1. In turn, the shifted loss function L(z) = max {0, 1 � z} � 1 describes a contraction, i.e. L(0) = 0 and
|L(z1) � L(z2)|  |z1 � z2| for all z1, z2 2 R. Such contractions can only decrease the empirical width. More
precisely, the Rademacher comparison principle (199 , Eq. (4.20)) asserts

E
"

"
sup

h↵,↵iF⇤2

1
p

N

NX

`=1

"`g↵(x`, y`)

#
= E

"

"
sup

h↵,↵iF⇤2

1
p

N

NX

`=1

"` (max {0, 1 � y`h↵,�(x`)iF} � 1)

#
(S191a)

 E
"

"
sup

h↵,↵iF⇤2

1
p

N

NX

`=1

"`y`h↵,�(x`)iF

#
(S191b)

= E
"

"
sup

h↵,↵iF⇤2

h↵, h"iF

#
. (S191c)

In the last step, we have introduced the short-hand notation h" = 1
p

N

PN
`=1

"`y`�(x`) 2 F . Applying a Cauchy-
Schwarz inequality in feature space allows us to separate the supremum from the Rademacher randomness:

E
"

"
sup

h↵,↵iF⇤2

h↵, h"iF

#
 sup

h↵,↵iF⇤2

p
h↵,↵iF E

"

hp
hh", h"iF

i
 ⇤

q
E
"
hh", h"iF . (S192)

The last inequality is Jensen’s. We complete the argument using E" ["`"`0 ] = �`,`0 and y2

` = 1:

E
"
hh", h"iF =

1

N

NX

`,`0=1

E
"

["`"`0 ] y`y`0h�(x`),�(x`0)iF =
1

N

NX

`=1

h�(x`),�(x`)iF  max
1`N

h�(x`),�(x`)iF . (S193)

We are now ready to prove the general connection between average prediction (S187) and training error.

Proof of Theorem 6. We consider functions y↵(x) = sign (h↵,� (x)iF ) 2 {±1}, such that ↵ 2 F
⇤ obeys

h↵,↵iF  ⇤2. This family of functions includes all classifiers that are feasible points in the training
stage (S182a) of our support vector machine. For ↵ fixed, but otherwise arbitrary, we want to compare
the corresponding classifier y↵ (x) to the true data label y 2 {±1}. Elementary reformulations then allow us
to re-express the failure probability as

Pr(x,y)⇠D [y↵(x) 6= y] = Pr(x,y)⇠D [sign (h↵,�(x)iF ) 6= y] = Pr(x,y)⇠D [yh↵,�(x)iF < 0] , (S194)

because the sign is negative if and only if the number itself is. Next, we rewrite this probability as the expectation
value of the associated indicator function and use 1 {z  0}  max {0, 1 � z} for all z 2 R to obtain

Pr(x,y)⇠D [yh↵,�(x)iF < 0] = E
(x,y)⇠D

[1 {yh↵,�(x`)iF < 0}]  E
(x,y)⇠D

[max {0, 1 � yh↵,�(x)iF}] . (S195)

This upper bound is the expected value of a certain hinge loss function

g↵ (x, y) = max {0, 1 � yh↵,�(x)iF} with h↵,↵iF  ⇤2. (S196)

The function is a specific element of an entire family, namely

G =
�
g↵(·, ·) : h↵,↵iF  ⇤2

 
: RD

⇥ {±1} ! [0, 1) . (S197)

The associated function values are always nonnegative and bounded. Indeed, the Cauchy-Schwarz inequality
in feature space asserts

g↵(x, y)  |yh↵,�(x)iF | + 1 

p
h↵,↵iF h�(x),�(x)iF + 1  ⇤

p
k(x,x) + 1  ⇤R + 1 =: �max. (S198)

We are now in a position to use Theorem 7. With probability (at least) 1 � �,

E
(x,y)⇠D

[g↵(x, y)] 
1

N

NX

`=1

g↵(x`, y`) + 3�max

r
log(2/�)

2N
+

2
p

N
E
"

"
sup

h↵,↵iF⇤2

1
p

N

NX

`=1

"`g↵(x`, y`)

#
, (S199)
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is true for all dual vectors ↵ 2 F
⇤ that obey h↵,↵iF  ⇤2. Here, (x1, y1) , . . . , (xN , yN ) ⇠ D is a randomly

sampled (but fixed) collection of labeled data points. We now use
p

k(x`,x`)  R almost surely to apply
Lemma 10 and control the empirical width term:

E
(x,y)⇠D

[g↵(x, y)] 
1

N

NX

`=1

g↵(x`, y`) + 3(⇤R + 1)

r
log(2/�)

2N
+

2⇤R
p

N
(S200a)


1

N

NX

`=1

g↵(x`, y`) + 7(⇤R + 1)

r
log(2/�)

N
. (S200b)

With probability (at least) 1 � �, this bound is valid for all hyperplane vectors ↵ 2 F . The tightest bound is
achieved for minimizing the right hand side. This is precisely what training a support vector machine does,
as the first term is precisely the training error that is minimized in the training stage (S182a). The optimal
solution ↵] to this problem simultaneously produces the actual classifier y](x) on the left hand side and the
(minimal) training error on the right hand side.

10.3. Kernel functions for classical shadows

We have reviewed the classical shadow formalism in Section 1. For randomized single-qubit Pauli measure-
ments, a classical shadow approximates a n-qubit state ⇢ by means of T elementary tensor products. Each
shadow raw data corresponds to a two-dimensional array

ST (⇢) = ST (⇢) =
n

|s(t)
i i : i 2 {1, . . . , n}, t 2 {1, . . . , T}

o
2 {|0i, |1i, |+i, |�i, |i+i, |i�i}

n⇥T (S201)

and is combined into an approximator of the state as

�T (⇢) =
1

T

TX

t=1

⇣
3|s(t)

1
ihs(t)

1
| � I

⌘
⌦ · · · ⌦

⇣
3|s(t)

n ihs(t)
n | � I

⌘
=

1

T

TX

t=1

�(t)
1

⌦ · · · ⌦ �(t)
n , (S202)

where we have introduced the short-hand notation �(t)
i = 3|s(t)

i ihs(t)
i | � I. For these quantum state representa-

tions, we fix parameters ⌧, � > 0 and introduce a suggestive, yet finite-dimensional feature map. For large, but
finite, integers D, R > 0 we define

�(finite) (ST (⇢)) =
DM

d=0

r
⌧d

d!

⇣ RM

r=0

r
1

r!

⇣�
n

⌘r rM

i1=1

· · ·

rM

ir=1

1

T

TX

t=1

vec
⇣
�(t)

i1

⌘
⌦ · · · ⌦ vec

⇣
�(t)

ir

⌘⌘⌦d
, (S203)

Here, vec(·) denotes an appropriate vectorization operation that maps the real-valued vector space H2 of
Hermitian 2 ⇥ 2 matrices to R

4 such that the Hilbert-Schmidt inner product is preserved: hvec(A), vec(B)i =
tr(AB).

This feature map embeds classical shadows in a very large-dimensional, real-valued feature space F
(finite).

This feature space arises from taking direct sums and tensor products of vec(H2) ' R
4. We can extend the

standard inner product h·, ·i on R
4 to this feature space by setting hx1 �x2, y1 � y2i = hx1, y1i+ hx2, y2i (direct

sums), as well as hx1 ⌦ x2, y1 ⌦ y2i = hx1, y1ihx2, y2i (tensor products) and extend these definitions linearly.
Doing so equips the feature space F

(finite) with a well-defined inner product h·, ·iF(finite) . The inner product and
feature map induce a kernel function on pairs of classical shadows of equal size T :

k(finite)
⇣
ST (⇢1), S̃T (⇢2)

⌘
=
D
�(finite)�ST (⇢1)

�
,�(finite)�S̃T (⇢2)

�E

F(finite)
(S204a)
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This kernel function sill looks somewhat complicated, but it simplifies considerably if we first take R ! 1 and
then D ! 1:

k(shadow)

⇣
ST (⇢1), S̃T (⇢2)

⌘
:= lim

D!1

lim
R!1

k(finite)
⇣
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(S205a)

= lim
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= exp
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@ ⌧
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⇣
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i
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1

A (S205c)

We call this kernel function a shadow kernel. In contrast to its finite approximations, this kernel function can
be computed very efficiently. Trace inner products between single-qubit shadow constituents assume one out
of 3 values only:

tr
⇣
�(t)

i �̃(t)
i

⌘
=tr

⇣
(3|s(t)

i ihs(t)
i | � I)(3|s̃(t)

i ihs̃(t)
i | � I)

⌘
= 9

���hs(t)
i |s̃(t)

i i

���
2

� 4 2 {�4, 1/2, 5} . (S206)

And we need to compute exactly nT 2 of them to unambiguously characterize the shadow kernel (S205a). The
total cost for evaluating shadow kernels also amounts to

O
�
nT 2

�
(shadow kernel evaluation cost) (S207)

arithmetic operations. As long as T is not too large, this is extremely efficient, given that we combine classical
approximations of n-qubit quantum states ⇢1, ⇢2 which way well have (4n

� 1) degrees of freedom. Eq. (S206)
also ensures that shadow kernels remain bounded functions:

0  k(shadow)

⇣
ST (⇢1), S̃T (⇢2)

⌘
 exp (⌧ exp (5�)) , (S208)

because exponential functions are nonnegative and monotonic.
While easy to evaluate and conceptually appealing, the shadow kernel does have its downsides. By con-

struction, the associated feature space is not finite-dimensional anymore. This can complicate a thorough
analysis of support vector machines substantially. In particular, it is a priori not clear if powerful results,
like Theorem 6, cover the shadow kernel as well. Fortunately, we can bypass such mathematical subtleties
by approximating k(shadow)(·, ·) with k(finite)(·, ·), where D and R are large, but finite, numbers. This incurs
an additional approximation error, but allows us to formulate theoretical prediction and training guarantees
exclusively for finite-dimensional feature spaces. What is more, elementary approximation results from calculus
ensure that we can make this additional approximation error arbitrarily small by making the cutoffs sufficiently
large. Taylor’s approximation theorem, for instance, shows that D = e2⌧ exp(5�) + log(1/⌘) � 1, as well as
R = 5e2� + ⌧ exp(5�) + log(⌧/⌘) � 1 ensure

���k(shadow)

⇣
ST (⇢1), S̃T (⇢2)

⌘
� k(finite)

⇣
ST (⇢1), S̃T (⇢2)

⌘���  2⌘ (S209)

for all pairs of classical shadows with compatible size T . Properly tuning � and ⌧ would yield better prediction
performance in practice. Nevertheless, for simplicity, we will assume � = ⌧ = 1 in the following theoretical
analysis.

Finite-dimensional feature space approximations also allow us to highlight the expressiveness behind the
shadow kernel (S205a). It describes (the limit of) a feature map that extracts all tensor powers of all subsystem
operators XA = tr¬A(X) 2 H

⌦|A|

2
, where A ⇢ [n] = {1, . . . , n}. In particular, any function that can be written

as a finite power series, of degree at most dp, in reduced subsystem operators, of size at most r, becomes a
linear function in feature space, represented by the dual vector ↵f :

f (ST (⇢)) =

dpX

d=0

1

d!

X

A1...Ad⇢{1,...,n},|Ai|r

tr (OA1,...,Adtr¬A1 (�T (⇢)) ⌦ · · · ⌦ tr¬Ad (�T (⇢))) (S210a)

= h↵f ,�(finite)(ST (⇢))iF(finite) , (S210b)



47

provided that dp  D, r  R. The (extended) Euclidean norm of ↵f is also bounded. Use Eq. (S203) (with
tuning parameters �, ⌧ = 1) to compute

h↵f ,↵f iF(finite) 

dpX

d=0

(r!nr)d

d!

X

A1,...,Ad⇢{1,...,n},|Ai|r

tr
�
O2

A1,...,Ad

�
(S211a)



dpX

d=0

(r!nr)d

d!

X

A1,...,Ad⇢{1,...,n},|Ai|r

2rd
kOA1,...,Adk

2

1
(S211b)

 (2nr)rdp max
ddp,A1,...,Ad

⇢{1,...,n},|Ai|r

kOA1,...,Adk1

dpX

d=0

1

d!

X

A1,...,Ad⇢{1,...,n},|Ai|r

kOA1,...,Adk1 (S211c)

 (2nr)rdp ddp
p

0

@
dpX

d=0

1

d!

X

A1,...,Ad⇢{1,...,n},|Ai|r

kOA1,...,Adk1

1

A
2

(S211d)

Here, we have used the fundamental Schatten-p norm relation kXk2 
p

dim(X)kXk1, as well as the as-
sumption that each OA1,...,Ad is supported on a total tensor product space with dimension 2rd (a tensor prod-
uct of d subsystems comprised of at most r qubits each). The second to last inequality follow from usingP

i x2

i  maxi |xi|
P

i |xi|, and Stirling’s formula. The final simplifications uses Stirling’s formula again as well
as the fact that

P
i |xi| � maxi |xi|.

10.4. Physical assumptions about classifying quantum phases of matter

We want to learn how to classify two phases of n-qubit states: either ⇢ belongs to phase A (y(⇢) = +1)
or ⇢ belongs to phase B (y(⇢) = �1). We assume that we have access to labeled classical shadows:��

ST (⇢`), y(⇢`)
�

: ` 2 {1, . . . , N}
 
, where each ST (⇢`) is classical shadow data obtained from performing T

randomized single-qubit measurements on independent copies of ⇢`. We can use this raw data to form classical
representations �T (⇢`) of the underlying quantum state ⇢`, see Eq. (1). The number T determines the resolution
of these approximations. Note that �T (⇢`) ⇡ ⇢` can only become exact for T � exp (⌦(n)) (98 , 100 ). This
would be far too costly for experimental implementations and efficient data processing. For instance, recall
from Eq. (S207) that a single shadow kernel evaluation scales quadratically in T . In this section, we show that
we can choose much coarser resolutions if the underlying phase can be classified by a nice analytic function on
reduced density matrices.

Assumption 1 (well-conditioned phase separation). Consider two phases among n-qubit states. For ✏ > 0, we
assume that there exists a function f on reduced r-body density matrices ⇢A = tr¬A(⇢) that can distinguish the
two phases in question. In particular,

f(⇢) = f ({⇢A : A ⇢ {1, . . . , n}, |A|  r}) satisfies (S212a)

f(⇢)

(
> +1 for all ⇢ that belong to phase A (y(⇢) = +1),
< �1 for all ⇢ that belong to phase B (y(⇢) = �1).

(S212b)

Moreover, we assume that f(⇢) can be approximated by a truncated power series

f (dp)(⇢) =

dpX

d=0

1

d!

X

A1,...,Ad⇢{1,...,n},|Ai|r

tr (OA1,...,Ad⇢A1 ⌦ · · · ⌦ ⇢Ad) , (S213)

up to constant accuracy:
��f(⇢) � f (dp)(⇢)

��  0.25 for all n-qubit quantum states ⇢. We refer to dp as the
truncation degree and define the normalization constant

C =

dpX

d=0

1

d!

⇣ X

A1,...,Ad⇢{1,...,n},|Ai|r

kOA1,...,Adk1

⌘
. (S214)

We don’t need to know the normalization constant exactly. An upper bound is fully adequate for the
theoretical analysis presented in this section.

Morally, the second part of Assumption 1 requires that the phase classication function can be well-
approximated by a degree-dp-polynomial in reduced density matrices. The actual formulation is general enough
to encompass most physically relevant functions. Let us illustrate this by means of three popular examples.
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Subsystem purity: Fix a subsystem A ⇢ {1, . . . , n} comprised of |A| = r qubits and let ⇢A = tr¬A(⇢) be
the associated r-body density matrix. The subsystem purity f(⇢) = tr(⇢2

A) is a quadratic polynomial in this
reduced density matrix. We can rewrite this as f (2)(⇢) = tr(SA⇢A ⌦ ⇢A), where SA denotes the swap operator
between two copies of the subsystem A. This reformulation is also an exact approximation of f(⇢) with degree
dp = 2 and normalization constant C = 1

2!
kSAk1 = 1

2
. These arguments readily extend to averages of multiple

subsystem purities.
Subsystem Rényi entropy: Let us consider the subsystem Rényi entropy of order two H2(⇢A) = � log

�
tr(⇢2

A)
�

(the argument will generalize straightforwardly to higher order entropies). This function is closely related to the
subsystem purity, but also features a logarithm. And, although the logarithm is not a polynomial, � log(1�x)
can be accurately approximated by the truncated Mercator series. A crude, but sufficient, bound ensures

l(dp)(x) =

dpX

d=1

1

d
xd obeys

���l(dp)(x) � log(1 � x)
���  xdp log (1/(1 � x)) for x 2 (�1, 1). (S215)

We can now approximate H2(⇢A) = � log
�
1 � (1 � tr(⇢2

A))
�

by l(dp)(1�tr(⇢2

A)). Subsystem purities necessarily
obey tr(⇢2

A) � 2�|A| = 2�r. This allows us to conclude
���l(dp)

�
1 � tr(⇢2

A)
�

� H2(⇢A)
��� 

�
1 � 2�r

�dp r log(2)  log(2)r exp (�dp/2r) (S216)

which drops beneath 0.25 if we set dp = log(4 log(2)r)2r = O (log(r)2r). This degree scales exponentially in
the subsystem size r, but is independent of total dimension. We can also use 1 = tr(⇢A)2 = tr

�
I
⌦2

A ⇢⌦2

A

�
and

tr(X)tr(Y ) = tr(X⌦Y ) to bring this polynomial approximation onto the form advertised in Eq. (S213). Indeed,

l(dp)
�
1 � tr(⇢2

A)
�

=l(dp)
�
tr
�
(I⌦2

A � SA)⇢⌦2

A

��
=

dpX

d=1

1

d!
tr
⇣
(d � 1)!

�
I
⌦2

A � SA

�⌦d
⇢⌦2d

A

⌘
and (S217a)

C =

dpX

d=1

1

d!

��(d � 1)!(I⌦2

A � SA)⌦d
��
1

=

dpX

d=1

1

d

��I⌦2

A � SA

��d

1
=

dpX

d=1

1

d
⇡ log(dp). (S217b)

This analysis readily extends to higher order Rényi entropies, as well as averages over multiple subsystems.
Entanglement entropy: This is where things start to get somewhat interesting, because the entanglement

(von Neumann) entropy H(⇢A) = �tr (⇢A log(⇢A)) 2 [0, r log(2)] of a r-body subsystem is notoriously difficult
to accurately approximate with a polynomial (200 ). Fortunately, Assumption 1 does not require an accurate
approximation – a constant error of size 1/4 is fine. To achieve this goal, we make the following polynomial
ansatz in the reduced density matrix ⇢A:

H(dp)(⇢A) = � tr

0

@(⇢A � IA) +

dpX

k=2

(IA � ⇢A)k

k(k � 1)

1

A (S218)

Let �i denote the eigenvalues of a subsystem density matrix ⇢A and note that there are 2r eigenvalues in ⇢A.
We can rewrite the entanglement entropy and the polynomial ansatz as

H(⇢A) = �

2
rX

i=1

�i log(�i) and (S219a)

H(dp)(⇢A) = �

2
rX

i=1

0

@(�i � 1) +

dpX

k=2

(1 � �i)
k

k(k � 1)

1

A , (S219b)

respectively. Using Taylor’s theorem in the interval [0, 1], we have

x log(x) = (x � 1) +

 
1X

k=2

(1 � x)k

k(k � 1)

!
. (S220)

Note that at x = 0, x log x = 0 and the infinite sum comprising the second term on the right hand side also
converges to 1. This ensures that the above equality is valid for the closed interval [0, 1]. We shall also use the
following identity

nX

k=2

1

k(k � 1)
= 1 �

1

n
, (S221)
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which remains valid even in the limit n ! 1. We can combine Eq. (S220) and (S221) to obtain an approximation
error for our polynomial ansatz function. For all x 2 [0, 1], we have

������
x log(x) �

0

@(x � 1) +

0

@
dpX

k=2

(1 � x)k

k(k � 1)

1

A

1

A

������


1X

k=dp+1

(1 � x)k

k(k � 1)


1X

k=dp+1

1

k(k � 1)
=

1

dp
. (S222)

This allows us to bound the approximation error for each individual eigenvalue �i 2 [0, 1] of ⇢A. There are in
total 2r eigenvalues and a triangle inequality asserts

|H(⇢A) � H(dp)(⇢A)| 

2
rX

i=1

������
�i log(�i) �

0

@(�i � 1) +

0

@
dpX

k=2

(1 � �i)k

k(k � 1)

1

A

1

A

������


2d

dp
. (S223)

By choosing dp = 2r+2, we can approximate the entanglement entropy in r-body subsystem by a polynomial
function. As long as the subsystem size r is a constant independent of total system size n, the polynomial
approximation degree dp is also a constant. And it is not hard to check that the same is true for the normalization
constant C. This analysis readily extends to averages of multiple entanglement entropies.

10.5. Training with shadow kernels

We are now ready to dive into the main results of this section: converting Assumption 1 into a statement
about classical shadows and their expressiveness when it comes to training a support vector machine. Our
measure of similarity is the shadow kernel (S205a) evaluated on classical shadows. The kernel matrix is

[K]``0 = k(shadow) (ST (⇢`), ST (⇢`0)) for `, `0 2 {1, . . . , N}, (S224)

and implicitly specifies the feature map, as well as the nonlinear geometry with respect to which we want to
find classifiers for phases. We begin by approximating the true classifier, given as a nonlinear function f(⇢) in
Assumption 1, by a finite power series f (dp)(⇢) with degree-dp. We will then use f (dp)(⇢) as an approximate
phase classifier. Recalling Eq. (S210b), a finite power series f (dp)(ST (⇢)) is linear in feature space, with its
corresponding dual vector ↵f defining a candidate hyperplane for separating the two phases. To complete the
connection to the support vector machines from Section 10 10.1, we must ensure that f (dp)(ST (⇢)) does not
differ substantially from the approximate phase classifier f (dp)(⇢) from Assumption 1. This is the content of
the following auxiliary statement.

Lemma 11. Suppose that Assumption 1 is valid for a function on reduced r-body density matrices with the two
constants C � 1 and dp 2 N. For any 0 < ✏ < 1, classical shadows of size

T = (32/3)d2

pC
212r (r (log(n) + log(12)) + log(1/�)) /✏2 (S225)

suffice to ✏-approximate f (dp)(⇢) with high probability. In particular, for any density matrix ⇢ 2 H
⌦n
2

,
���f (dp)(ST (⇢)) � f (dp)(⇢)

���  ✏ (S226)

with probability at least 1 � � (over the randomized measurement settings and outcomes producing ST (⇢)).

A proof can be found at the end of this subsection. With high probability, this statement ensures that
existence of a well-conditioned phase separation implies the existence of a separating hyperplane in shadow
feature space. This, in turn, is enough to ensure that the SVM training stage can be executed perfectly:
solving the training problem (S182a) efficiently yields a separating hyperplane parametrization ↵] that (1) lies
in the subspace R

N of F
(shadow) spanned by the N training vectors, and (2) performs at least as well as ↵f .

Since we are guaranteed that ↵f separates training data perfectly and achieves zero training error, ↵] must be
at least as good: Etr(↵])  Etr(↵f ) = 0 with high probability. The main result of this section formalizes this
observation.

Proposition 5. Suppose that Assumption 1 is valid for some function on reduced r-body density matrices
with normalization constant C and truncation degree dp. Then, for � 2 (0, 1), a (joint) classical shadow size
T = (512/3)d2

pC
212r (r (log(n) + log(12)) + log(N/�)) ensures that we can achieve zero training error when

solving (S182a) with squared margin constant ⇤2 = 4 (2rn)rdp d
dp
p C2.

The extra constraint ⇤2
� h↵f ,↵f iF(finite) ensures that the ideal separating hyperplane is a feasible point of

the training problem (S182a).
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Proof of Proposition 5. We establish the claim not for the shadow kernel itself (k(shadow)(·, ·)), but for large
finite-dimensional approximations (k(finite)(·, ·)) thereof. We begin by utilizing Eq. (S213) that approximates
the nonlinear function f(⇢) by a finite power series f (dp)(⇢) with the approximation error,

|f(⇢) � f (dp)(⇢)|  0.25. (S227)

For each ` 2 {1, . . . , N}, we invoke Lemma 11 using the truncated Taylor series to conclude

Pr
h
|f (dp)(⇢`) � f (dp) (ST (⇢`)) | � 0.25

i
 �/N, (S228)

provided that T = (512/3)d2

pC
212r (r (log(n) + log(12)) + log(N/�)). Triangle inequality and a union bound

allows us to combine these approximation guarantees into a single statement:

max
1`N

���f(⇢`) � f (dp) (ST (⇢`))
���  0.5 with probability (at least) 1 � �. (S229)

Let us condition on this desirable event and also assume hat the cutoff values of our finite kernel approximation
are large enough, i.e. D � dp, R � r). Then, the function

2f (dp)(ST (⇢`)) = h↵f ,�(finite)(ST (⇢`))i (S230)

describes a linear function in feature space F
(finite) that is guaranteed to achieve zero training error. Indeed,

combine Eq. (S212) and Eq. (S229) to ensure
��2f (dp)(ST (⇢`))

�� � 2(|f(⇢`)| �
��f(⇢`) � f (dp)(ST (⇢`))

��) � 2(1 �

0.5) = 1 and, moreover, sign
�
f (dp)(ST (⇢`))

�
= sign (f(⇢`)) = y(⇢`) 2 {±1} for all ` 2 {1, . . . , N}. In turn,

NX

`=1

max
n

0, 1 � y(⇢`)h↵f ,�(finite) (ST (⇢`))i
o

=
NX

`=1

max
n

0, 1 � sign
⇣
f (dp)(ST (⇢`))

⌘
2f (dp) (ST (⇢`))

o
(S231a)

=
NX

`=1

max
n

0, 1 �

���f (dp) (ST (⇢`))
���
o

= 0. (S231b)

Since zero is the smallest possible training error, the minimizer of the original training problem (S182a) must
also achieve zero, provided that ↵f is actually a feasible point of this optimization. We can, however, ensure
this by choosing the squared margin constant large enough. Eq. (S211) and Assumption 1 ensures

h↵f ,↵f iF(finite)  4 (2rn)rdp ddp
p C2. (S232)

Choosing a squared margin size ⇤2 that exceeds this bound ensures that ↵f is indeed a feasible point of the
training problem (S182a) and the claim follows.

We conclude our discussion on training with shadow kernels by providing a rigorous proof of the auxiliary
statement.

Proof of Lemma 11. It suffices to analyze implications of Lemma 1: for ⌘, � 2 (0, 1)

T � (8/3)12r (r (log(n) + log(12)) + log(1/�)) /⌘2
) max

A⇢{1,...,n},|A|r
ktr¬A (�T (⇢)) � tr¬A(⇢)k

1
 ⌘ (S233)

with probability at least 1 � �. Here, k · k1 denotes the trace norm. Abbreviate tr¬Ai (�T (⇢)) and tr¬Ai(⇢) as
�Ai and ⇢Ai , respectively. A combination of triangle inequalities and Matrix Hoelder (tr(XY )  kXk1kY k1)
asserts

���f (dp)(⇢) � f (dp) (ST (⇢))
��� (S234a)



dpX

d=0

1

d!

X

A1,...,Ad⇢{1,...,n},|Ai|r

|tr (OA1,...,Ar (⇢A1 ⌦ · · · ⌦ ⇢Ad � �A1 ⌦ · · · ⌦ �Ad))| (S234b)



dpX

d=0

1

d!

X

A1,...,Ad⇢{1,...,n},|Ai|r

kOA1,...,Adk1 k⇢A1 ⌦ · · · ⌦ ⇢Ad � �A1 ⌦ · · · ⌦ �Adk1
. (S234c)

Next, we fix a trace norm contribution and use a telescoping trick (A1 ⌦ A2 � B1 ⌦ B2 = (A1 � B1) ⌦ A2 +
B1 ⌦ (A2 � B2)), as well as a triangle inequality and k⇢Aik1 = tr(⇢Ai) = 1 to infer

k⇢A1 ⌦ · · · ⌦ ⇢Ad � �A1 ⌦ · · · ⌦ �Adk1
(S235a)
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= k(⇢A1 � �A1) ⌦ ⇢A2 ⌦ · · · ⌦ ⇢Ad + �A1 ⌦ (⇢A2 ⌦ · · · ⌦ ⇢Ad � �A2 ⌦ · · · ⌦ �Ad)k1
(S235b)

 k⇢A1 � �A1k1k⇢A2k1 · · · k⇢Adk1 + k�A1k1 k⇢A2 ⌦ · · · ⌦ ⇢Ad � �A1 ⌦ · · · ⌦ �Adk1
(S235c)

 k⇢A1 � �A1k1 + (1 + k⇢A1 � �A1k1) k⇢A2 ⌦ · · · ⌦ ⇢Ad � �A1 ⌦ · · · ⌦ �Adk1
(S235d)

 ⌘ + (1 + ⌘)k⇢A2 ⌦ · · · ⌦ ⇢Ad � �A1 ⌦ �Adk1. (S235e)

The last line follows from Rel. (S233). Iterating this simplification procedure ensures

k⇢A1 ⌦ · · · ⌦ ⇢Ad � �A1 ⌦ · · · ⌦ �Adk1
 ⌘

d�1X

k=0

(1 + ⌘)k = (1 + ⌘)d
� 1. (S236)

According to Rel. (S233), such an upper bound is valid for every trace norm contribution in Eq. (S234). This
allows us to obtain

���f (dp)(⇢) � f (dp) (ST (⇢))
��� 

dpX

d=0

1

d!

X

A1,...,Ad⇢{1,...,n},|Ai|r

kOA1,...,Adk1

⇥
(1 + ⌘)d

� 1
⇤

(S237a)


⇥
(1 + ⌘)dp � 1

⇤ dpX

d=0

1

d!

X

A1,...,Ad⇢{1,...,n},|Ai|r

kOA1,...,Adk1 (S237b)

= C
⇥
(1 + ⌘)dp � 1

⇤
. (S237c)

Here, we have used Assumption 1. Finally, by choosing ⌘ = ✏/(2Cdp), we can see that

���f (dp)(⇢) � f (dp) (ST (⇢))
���  C

"✓
1 +

✏

2Cdp

◆dp

� 1

#
 C[exp(✏/2C) � 1]  ✏. (S238)

The second inequality follows from (1+x/n)n
 exp(x), 8|x|  n, n � 1. The third inequality utilizes exp(x) 

1+2x, 8x 2 [0, 1]. The claim of Lemma 11 now follows from inserting this specific choice of ⌘ into Rel. (S233).

10.6. Prediction based on shadow kernels

We now have all pieces in place to prove strong bounds on the prediction error of a SVM based on shadow
kernels. The main result of this section will be a consequence of Theorem 6. For fixed parameters ⌧, � = 1,
the shadow kernel (S205a) (and finite approximations thereof) is always bounded when applied to classical
shadows. Eq. (S208) (under ⌧ = � = 1) asserts

k(shadow)

⇣
ST (⇢1), S̃T (⇢2)

⌘
 exp (exp (5)) (S239)

for any T and quantum states ⇢1, ⇢2. This bound readily extends to finite dimensional approximations
k(finite)(·, ·). Next, we need to specify a distribution. We assume that D̃ is a distribution over n-qubit quan-
tum states ⇢ that either belong to phase A or phase B. We sample quantum states ⇢` ⇠ D̃ accordingly,
but are not permitted to process them directly. Instead, we obtain a (randomly generated) classical shadow
of size T . Denote the raw data by ST (⇢`) which allows us to produce a state approximation �T (⇢`). We
do, however, require that we have direct access to the label y(⇢`) 2 {±1} associated with the phase of ⇢`.
This produces a joint distribution over input data ST (⇢`) and the label y(⇢`) which we call D. In sum-
mary, we assume that training data and new data are generated independently from this data distribution:
(ST (⇢1), y(⇢1)) , . . . , (ST (⇢N ), y(⇢N )) , (ST (⇢), y) ⇠ D. We are now ready to combine Theorem 6 (the prediction
error is bounded by the training error) and Proposition 5 (the training error vanishes if a good phase classifier
exists) to obtain a powerful result about generalization.

Corollary 1. Fix �, ✏ 2 (0, 1) and suppose there exists an analytic function on reduced r-body density matrices
that can distinguish phases: f(⇢) > 1 if ⇢ 2 phase A and f(⇢) < �1 else if ⇢ 2 phase B. Let C be the nor-
malization constant and dp be the truncation degree given in Assumption 1. Suppose that we obtain identically
distributed training data (ST (⇢1), y(⇢1)) , . . . , (ST (⇢N ), y(⇢N )) ⇠ D such that

T � (512/3)d2

pC
212r (r (log(n) + log(12)) + log(N/�)) and (S240a)

N � 256 (2rn)rdp ddp
p C2 exp(exp(5)) log(4/�)/✏2. (S240b)
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Then, solving the training problem (S182a) for the shadow kernel with squared margin constant ⇤2 =

4 (2rn)rdp d
dp
p C2 will produce a hyperplane ↵] 2 R

N in shadow feature space that achieves zero training er-
ror with probability (at least) 1 � �/2. Conditioned on perfect training, the resulting classifier

y] (ST (⇢)) = sign
� NX

`=1

[↵]]` k(shadow)(ST (⇢`), ST (⇢))
�

2 {±1} (S241)

achieves, with probability (at least) 1 � �/2,

Pr(ST (⇢),y(⇢)) [y] (ST (⇢)) 6= y(⇢)]  ✏ . (S242)

The total probability of success is (at least) 1 � � and follows from a union bound over either desirable event
failing. Theorem 1 is contingent on four core assumptions:

1. It must be possible to distinguish phases A and B by evaluating a well-conditioned analytical function
on reduced r-body density matrices. The coefficients in the power series of the analytical function should
also be bounded, but explicit knowledge is not necessary. This is the content of Assumption 1.

2. We use classical shadow raw data to read-in training data (⇢` 7! ST (⇢`)) and process new states in
the prediction phase (⇢ 7! ST (⇢)). We assume that each classical shadow arises from T randomized
single-qubit Pauli measurements on independent state copies. The larger T , the more accurate these
representations become. Theorem 1 requires T � (512/3)d2

pC
212r (r (log(n) + log(12)) + log(N/�)) =

O
�
r12rd2

pC
2 log(nN/�))

�
. If r, C, dp are constants, this resolution only scales polylogarithmically in

system size n because N scales polynomially in n; see the next bullet point.

3. The training data size must not be too small either. We need to have a training data size N of order
at least (2rn)rdp d

dp
p C2 exp(exp(5)) log(4/�)/✏2. As long as r, C, dp are constants (independent of system

size n), this requirement simplifies to N = O
�
nrdp log(1/�)/✏2

�
. Hence, the number scales polynomially

in system size n.

4. The squared margin constant also scales polynomially with system size n: ⇤2 = 4 (2rn)rdp d
dp
p C2 =

O
�
nrdp

�
if r, C, dp = const. This is equivalent to demanding that the minimal margin 2/⇤ scales inverse

polynomially in system size n.
Corollary 1 does not only bound a hypothetical training error. The required shadow size T and training

data size N both scale favorably in the number of qubits n. This also ensures that the numerical costs behind
this procedure remain tractable for a wide range of system sizes. The costs associated with storage (classical
shadows are sums of T elementary tensor products), training (can be reduced to a QCQP in N dimensions per
Section 10 10.1) and prediction (execute Formula (S185)) all scale polynomially in system size n, shadow size
T , and training data size N .

Proof of Corollary 1. Again, we establish the claim for large, but finite-dimensional, approximations to the
shadow kernel (1  dp ⌧ D < 1 and 1  r ⌧ R < 1). Fix � 2 (0, 1) (probability of failure) and ✏ 2 (0, 1)
(bound on average prediction error). Consider the data distribution (ST (⇢), y(⇢)) ⇠ D, the kernel k(finite)(·, ·)
– which obeys k(finite) (ST (⇢), ST (⇢))  exp (exp(5)) – and a squared margin constant ⇤2 to be specified later.
Assume ⇤2 exp(exp(5)) � 1 for simplicity (the other case is similar). Then, for training data size N , Theorem 6
asserts

Pr(ST (⇢),y(⇢))⇠D [y] (ST (⇢)) 6= y(⇢)] 
1

N
Etr(↵]) + 8

r
⇤2 exp(exp(5))

log(4/�)

N
, (S243)

with probability (at least) 1 � �/2. Choosing N large enough allows us to suppress the second contribution
beneath the desired approximation error bound:

N � 64⇤2 exp(exp(5)) log(4/�)/✏2 ) Pr(ST (⇢),y(⇢))⇠D [y] (ST (⇢)) 6= y(⇢)] 
1

N
Etr(↵]) + ✏, (S244)

with probability (at least) 1 � �/2. Here, Etr(↵]) is the training error obtained from solving problem (S182a)
for N independently sampled training data points (ST (⇢1), y(⇢1)) , . . . , (ST (⇢N ), y(⇢N )) ⇠ D. Proposition 5
asserts that this training error can vanish with high probability, provided that a well-conditioned analytical
function on reduced r-body density matrices exists that can distinguish the phases (see Assumption 1). The
classical shadow size T and the squared margin constant ⇤2 depend on the number of body r, the normalization
constant C, and the truncation degree dp of this classifier:

T � (512/3)d2

pC
212r (r (log(n) + log(12)) + log(N/�))

⇤ � 4 (2rn)rdp d
dp
p C2

�
) Etr(↵]) = 0 (S245)

with probability (at least) 1 � �/2. The claim now follows from inserting this squared margin size into the
expression (S244) for training data size.
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11. CLASSIFYING SPT PHASES WITH O(2) SYMMETRY USING A FEW-BODY OBSERVABLE

11.1. Symmetry-protected topological phases

We consider a scenario similar to that of Section 6 6.5, namely, a family of Hamiltonians H(x) parameterized
by x. We additionally enforce that H(x) be invariant under certain symmetry transformations, which can
include tensor products of on-site rotations, “spatial” transformations permuting the sites, or antiunitary maps
characterizing time-reversal. These additional symmetry constraints allow for a fine-grained characterization
of H(x) into various symmetry-protected topological (SPT) phases. Removing said constraints reduces this
characterization to the coarser one involving purely topological phases. Similar to the coarser characterization,
ground states of H(x) remain in a particular SPT when the parameters x are varied continuously, as long as
the spectral gap of the Hamiltonian remains finite. In other words, the gap has to close at some x in order
for the ground states to transition into another phase. When there is a constant spectral gap, it is expected
that an operator acting on a local region larger than some constant size independent of the full system size
n can classify different SPT phases. The existence of a classifying function of local density matrices has been
rigorously established for a handful of cases: U(1)-symmetric systems in two dimensions (either noninteracting
fermionic (66 , 67 ) or interacting (68–70 )), and certain spin-1 chains in one dimension (71–73 ).

SPT phases of one-dimensional spin chains with unique ground states, symmetric under tensor-product uni-
taries forming a symmetry group G, are in one-to-one correspondence with the various projective representations
realized by G (201 ). Projective representations are those in which the group’s multiplication table is deco-
rated with phases in a way that is consistent with associativity (202 ). A genuine (i.e., linear) representation
corresponds to the unique trivial projective representation.

Consider, for example, spin chains symmetric under G = SO(3). This group admits two distinct classes
of projective representations: one class corresponds to integer spin, and one corresponds to half-integer spin.
Thus, there are two different phases for such chains — the trivial phase and the “Haldane phase” (201 , 203 ).

Relaxing the symmetry group down to its O(2) subgroup maintains the two-phase classification, because
O(2) also admits two projective representations (204 ). In fact, one can relax the symmetry all the way down
to the simplest dihedral subgroup Z2 ⇥ Z2 (61 , 205 ); such a classification is similar to that of the model in
Section 4 4.4. We investigate systems admitting the larger O(2) symmetry below, noting that the work we rely
on (72 , 73 ) also studies symmetry groups that include spatial inversion and time reversal.

11.2. O(2)-symmetric qutrit spin chains

The representative states for each of the two O(2)-symmetric phases for qutrit spin chains are the product
state, representing the trivial phase, and the valence-bond-solid (VBS) state (206 ), admitting a projective
representation of the symmetry (73 ) and thus representing the Haldane phase. It has long been known that the
expectation value of a nonlocal “twist” operator OL (207 , 208 ) distinguishes these two representative states:
sign(hOLi) is +1 for the product state, and �1 for the VBS state. We will see later that, by continuity
arguments, this sign will stay constant for other states within the same phase.

In order to work efficiently, our phase classification algorithms require a local operator whose expectation
value (a) has the same sign as that of OL; and (b) is above or below a margin (here, 1/2), in order to determine
the required accuracy of the classical shadows. Recently, criterion (a) was explicitly demonstrated by Tasaki
(72 , 73 ) using a local version O` of the twist, see Eq. (S250) below. We collect relevant parts of his results
to prove both criteria in the theorem below. Due to the existence of a local operator for classifying the SPT
phases, our ML algorithms are guaranteed to predict the SPT phases accurately based on the proof given in
Section 10.

Theorem 8. Consider the triple {H(x), | (x)i , �(x)} containing (2L + 2)-site spin-one chains with periodic
boundary conditions

H(x) =
L�r+1X

j=�(L�r)

hj(x) + h�L(x) + hL+1(x) (S246)

that admit corresponding unique ground states | (x)i and spectral gaps �(x) � � = ⌦(1), bounded interaction
strength khj(x)k

1
 R = O(1), and whose terms hj(x) are supported on sites k such that |j � k|  r = O(1).

Assume that H(x) is O(2)-symmetric, with the symmetry group generated by

1. a collective z-axis rotation by any angle, and

2. an x-axis rotation by ⇡.
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There exists a few-body observable A, such that for all x, we have

sign(h (x)| A | (x)i) = sign (h (x)| OL | (x)i) , as well as (S247a)
| h (x)| A | (x)i | � 1/2 . (S247b)

Proof. We use spin-one operators S(↵) with ↵ 2 {x, y, z} that have eigenvalues {0, ±1} and satisfy angular-
momentum commutation relations [S(x), S(y)] = iS(z). Eigenstates of S(z) are denoted by |�i with � 2 {0, ±1}.
A rotation around axis ↵ is a unitary operator generated by the corresponding S(↵). The two symmetry group
generators are, for ✓ 2 [0, 2⇡),

U (✓) =
L+1O

j=�L

e�i✓S(z)
j and V =

L+1O

j=�L

e�i⇡S(x)
j . (S248)

By assumption, both symmetries commute with each Hamiltonian term hj ; we will explicitly use both to prove
the theorem. We will also need superimposed versions S(±) = S(x)

± iS(y), which satisfy

ei�S(z)

S(±)e�i�S(z)

= S(±)e±i� . (S249)

The family of unitary twist operators (209 ), acting on an interval of 2` spins centered at the origin, is

O` =
O

k ,
���k� 1

2

���`+
1

2

exp

✓
�i2⇡

k + `

2`+ 1
S(z)

k

◆
. (S250)

Each site’s rotation is by a multiple of 2⇡/(2`+ 1) that is proportional to the site index, forming the namesake
twist pattern. The ` = L case reduces to the aforementioned nonlocal twist operator OL, while ` ⌧ L are its
local versions.

Suppressing x dependence, the key property is that the twisted ground state O`| i has energy close to that
of the ground state. In particular, there exists C0, C1 > 0, such that for all ` � C0, Lemma 12 below yields

h |O`HO†

` | i � h |H| i 
C1

`
. (S251)

The ground state is unique by our assumption of a gap, so the twisted ground state must then become propor-
tional to the ground state as ` ! 1. In other words, the magnitude of their overlap must be close to one as
long as ` � C0,

|h |O`| i|
2

� 1 �
C1

�`
; (S252)

see Lemma 13 below. The phase of this overlap is either 0 or ⇡ because the ⇡-rotation V leaves the ground
state invariant:

h |O`| i = h |V †O`V | i = h |O†

` | i = h |O`| i 2 R . (S253)

Hence, the few-body Hermitian observable A = (O` + O†

`)/2 with ` = max(4�/(3C1), C0) satisfies

|h |A| i| = |h |O`| i| �

r
1 �

C1

�`
�

1

2
, (S254)

proving Eq. (S247b). Note that the required value of ` depends on the gap, and thus also on x.
To prove Eq. (S247a), we need to show that the sign of the twist’s expectation value remains the same for

any ` � max(4�/(3C1), C0). To do this, first notice that, when ` is relaxed to be a nonnegative real, the
twist (S250) is continuous in `. (This can be verified, e.g., by studying the twist’s eigenvalues.) Continuity
implies that the expectation value cannot change sign; otherwise, it would have to cross zero, thus violating
Eq. (S254). Therefore, the sign remains the same, confirming Eq. (S247a). Similarly, by continuity in ` and x,
the expectation value maintains its sign within each phase.

The above argument is contingent on two auxiliary statements, which we now prove.

Lemma 12 (Vanishing energy difference (72 ); Eq. (S251)). For constants C0, C1, as long as ` � C0, we have

h |O`HO†

` | i � h |H| i 
C1

`
. (S255)
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Proof. Using the variational principle (which says that the difference in energy between any state and the
ground state is nonnegative), plugging in O` and H, applying h |O| i  kOk

1
, and distributing the norm over

the sum yields

h |O`HO†

` | i � h |H| i  h |

⇣
O`HO†

` + O†

`HO` � 2H
⌘

| i (S256a)

=
`+r+1X

j=�(`+r)

h |

⇣
O`hjO

†

` + O†

`hjO` � 2hj

⌘
| i (S256b)



`+r+1X

j=�(`+r)

���O`hjO
†

` + O†

`hjO` � 2hj

���
1

(S256c)

Next, we use the finite support and rotational invariance of hj from Eq. (S248) to rotate the twist O`,

O`hjO
†

` = O`U (✓j) hjU
† (✓j) O†

` (S257a)

=

0

@
O

|k�j|r

e�i( 2⇡
2`+1 [k+`]+✓j)S(z)

k

1

Ahj

0

@
O

|k�j|r

ei( 2⇡
2`+1 [k+`]+✓j)S(z)

k

1

A , (S257b)

where we pick ✓j = �
2⇡

2`+1
(j + `) for each j. That way, the twist does not affect site j, with

O`hjO
†

` = ei
2⇡

2`+1Mjhje
�i

2⇡
2`+1Mj , and Mj =

X

|k�j|r

(j � k) S(z)

k . (S258)

We now expand hj as a polynomial in {S(z)

k , S(±)

k }. This can be done because products of powers of these
operators form a matrix basis for any operator on the chain. For a single site, the set {S(z)S(±), (S(+))2},
along with their complex conjugates and some powers of S(z), form the basis of nine matrix units for all 3 ⇥ 3
operators on the site. Tensor products of these operators therefore form a matrix-unit basis for all sites. The
conjugation property (S249) and Eq. (S258) imply that each term in the expansion of hj , upon conjugation by
O`, will be imparted with a phase that is some multiple µ of 2⇡/(2`+ 1). Combining all terms with the same
phase into hj,µ, we have

ei
2⇡

2`+1Mjhj,µe�i
2⇡

2`+1Mj = hj,µei
2⇡

2`+1µ . (S259)

Moreover, |µ|  2µmax, where µmax =
P

|k�j|r |j � k| = r (r + 1) is the largest eigenvalue of Mj . Plugging
this in and expanding the resulting cosine yields

���O`hjO
†

` + O†

`hjO` � 2hj

���
1

= 2

������

X
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✓
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2`+ 1
µ

◆
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1

(S260a)



✓
2⇡
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◆2 X

|µ|2r(r+1)

µ2
khj,µk

1
. (S260b)

Since the spin operators form a matrix-unit basis, each hj,µ is simply hj with some entries removed. Therefore,
the norm of hj,µ is bounded by R. Applying that and performing the remaining sum (S256c) over j yields

h |O`HO†

` | i � h |H| i 
`+ r + 1

(2`+ 1)2
4⇡2R

0

@
X

|µ|2r(r+1)

µ2

1

A . (S261)

Thus, for ` � C0, the difference in energies between the ground state and twisted ground state will be bounded
by C1/`, where C0, C1 are two constants depending on the interaction range r and norm bound R of the
Hamiltonian terms.

Lemma 13 (High overlap (73 ); Eq. (S252)). For constants C0, C1, as long as ` � C0, we have

|h |O`| i|
2

� 1 �
C1

�`
. (S262)
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Proof. All eigenvalues of H are bounded below by the sum of the ground state energy Egnd = h |H| i and
spectral gap �,

H � Egnd| ih | + (Egnd + �) (I � | ih |) = EgndI + � (I � | ih |) . (S263)

Conjugating by O` and evaluating the result in the ground state yields

h |O`HO†

` | i � Egnd + �
⇣
1 � |h |O`| i|

2

⌘
. (S264)

Rearranging this and plugging in Lemma 12 yields the desired result.
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