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It is shown that the breakdown of a global symmetry group to a discrete subgroup can lead to analogs
of the Aharonov-Bohm effect. At sufficiently low momentum transfer, the cross section for scattering of
a particle with nontrivial Z, charge off a global vortex is almost equal to (but definitely different from)
maximal Aharonov-Bohm scattering; the effect goes away at large momentum transfer. The scattering
of a spin- 3 particle off a magnetic vortex provides an amusing experimentally realizable example.
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The Aharonov-Bohm effect [1] is generally thought to
be inextricably connected to gauge symmetry, and to
quantum mechanics. However, upon reflection there are
some funny aspects to these connections. When the flux
® is expressed in terms of the fundamental unit 4/e, so
d=dh/e, and the scattered charge is measured in terms
of the fundamental unit e, so g=dge, then the Aharonov-
Bohm phase factor exp(iq®/h) =exp(2zigd) is indepen-
dent of e and A. This observation suggests that the
Aharonov-Bohm effect might survive as e and A ap-
proach zero, if the limit is defined in a suitable way. We
make these remarks not so much to outrage conventional
wisdom concerning the Aharonov-Bohm effect, but to
motivate the possibility of generalizing it. Can something
like it occur for vortices of broken global symmetry, and
in essentially classical contexts? We shall argue here
that indeed it can, and that these generalizations have
many potentially interesting incarnations.

(1) Frame dragging by broken symmetry.—To be
definite let us consider a model with global U(1) symme-
try broken down to Z; by condensation of a scalar field A.
Let 17 be a complex scalar field carrying half the U(1)
charge of A. Then generically one expects there to be a

coupling of the type
AL =grn?+H.c. (1.1)

In the homogeneous ground state where (A) =v this term
generates a mass splitting between the real and imaginary
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components of n=(p, +ip;)/v/2:
AL— 3T (pt—p3),

where I'=2guv.

Now in a vortex configuration for A, where (A(r,¢))
— ve' outside a core region, it will still be possible to re-
gard the interaction (1.1) as generating a mass splitting
between two real fields. However, as ¢ varies the orienta-
tion of these fields in internal space is dragged along—in
fact, it is rotated by ¢/2. In analyzing the dynamical
effect of this frame dragging, it is convenient to work
with fields which have a definite mass. Thus let us intro-
duce the local mass eigenstates:

P 1 [ o2 e"’/z] n ]
=— — e ief2 . —iel2 *x | - (13)

p2 V2 ie ie n
Because of the transformation (1.3) the wave equation
will have two unusual features. (1) Each of the fields p;
obeys the boundary condition p;(¢+2r1) = —p;(¢). This
means that the allowed spectrum of partial waves in-
cludes only half-odd integers. (2) The gradient term
|dn]% becomes modified, in its azimuthal component, to
read [(9,+i02/2)51%/2r?, where o, is the Pauli matrix.

What is the effect of these modifications? At small
momenta transfer [4k2sin?(6/2) ST1 (where 0 is the
scattering angle) the second modification reduces to an
additional potential

V,o=1/4r%.

(1.2)

ps

(1.4)
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Indeed p, and p, have different effective masses, and one
should expect that perturbations connecting them are
suppressed at small momentum transfer, enabling us to
neglect the terms linear in o,. (This is not quite obvious,
because the 1/r? interaction is potentially singular. How-
ever, here the fact that the allowed partial waves are half
integral saves the day, because it means that there is al-
ways a centrifugal barrier shielding the origin.) Thus the
only significant effect of the interaction with the vortex is
to modify the boundary conditions, and to add an addi-
tional potential (1.4). We shall compute the resulting
cross section, and justify our neglect of the off-diagonal
terms, in the following section. If we neglected the addi-
tional potential (1.4), then we would have exactly the set-
up which leads to maximal Aharonov-Bohm scattering.
The additional term introduces a calculable modification,
which is relatively small for high partial waves (or small
angles).

On the other hand, clearly as '— O the effect of the
vortex must go away (for all finite angles 6> VT/k),
apart from a possible contribution from ordinary scatter-
ing off the core (in the lowest partial wave). Thus at
large momentum transfer 4k ?sin?(6/2)>>T the induced
gauge field must essentially cancel the effect of the
modified boundary conditions. Notice that the induced
“gauge field” appearing in the gradient energy, far from
being responsible for the Aharonov-Bohm-like scattering,
plays a crucial role in canceling it off.

We may think of the masses of p; and p, as the eigen-
values of the Hamiltonian of a two-level system, where
the Hamiltonian depends on an external parameter, the
angle around the vortex. Then we recognize that the
minus sign in the boundary condition satisfied by the
mass eigenstate fields on the vortex background is an in-
stance of Berry’s phase [2]. Indeed this point of view is
instructive on several counts. The restriction to low mo-
menta we found above may be considered as the adiabatic
condition for applicability of Berry’s phase. Also the spe-
cial role of the vortex topology is clarified— in circling the
core, we surround a point where an irremovable degen-
eracy between the masses of p; and p, occurs. The in-
duced gauge connection that arises when the Lagrangian
is expressed in terms of the mass eigenstate fields is pre-
cisely Berry’s connection. It is noteworthy that, although
this connection is purely off diagonal in the mass eigen-
state basis, it has a nontrivial effect on the dynamics in
the adiabatic limit, because its square is an on-diagonal
scalar potential. This induced diagonal potential arises
quite generally in the adiabatic approximation for sys-
tems in which “light” and ‘“‘heavy” degrees of freedom
are coupled together.

If the U(1) broken symmetry were a gauge symmetry,
then the gauge field induced by the transformation (1.3)
would be exactly canceled by the true gauge field present
in the gauge covariant derivative of 7 in the vortex back-
ground. Then we would have the classic Aharonov-Bohm
scattering induced by the change in boundary conditions,
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at all momenta. Related to this, in a broken gauge theory
the scattering described here, which (since it arises from
the coupling to the scalar Higgs field) might appear to be
additional to the classical Aharonov-Bohm scattering, in
a sense reduces to an alternative representation of it.

Thus far we have considered the case of Z, charges.
For higher global charges, a more complex situation
emerges. Consider for concreteness a Z3 charge. The in-
teraction corresponding to (1.1) is

(1.5)

The equation of motion for n receives a contribution of
order n? from (1.5). Thus, for small amplitudes its effect
is negligible. In particular, there is no scattering from
the A vortex, even for small momenta, in the low ampli-
tude limit. On the other hand, for finite amplitude waves
an analysis similar to the one given above applies. For
small momenta (where *“small” now depends on the am-
plitude of the wave) it will be appropriate to diagonalize
(1.5), and one will find the appropriate Aharonov-Bohm-
like cross section.

One might be concerned that, since the Nambu-
Goldstone excitations associated with the broken symme-
try field A are massless and therefore may be radiated
with arbitrarily little energy, the effect discussed here
could be washed out by Nambu-Goldstone boson emis-
sion. However, since the Nambu-Goldstone field is
derivatively coupled, it is clear that on general grounds its
emission is an order (k/F)? correction to the elastic pro-
cess for small momenta, where F is the scale of symmetry
breaking. Therefore it can be made arbitrarily small in
regimes of interest, and clearly cannot wash out the gen-
eric effect discussed here.

An essentially geometrical cross section associated with
a global symmetry poses a potential paradox; it is
noteworthy how this paradox is resolved. While gauge
charges have a universal coupling strength, global
charges do not, and so it is difficult at first hearing to un-
derstand how an essentially geometrical, parameter-
independent form of the cross section could emerge for
them. What we have seen is that there is a geometrical
cross section determined by the global charge, but the
domain of validity of the cross section, i.e., the range in
momenta and angle for which it is valid, is a nonuniversal
parameter that depends on the strength of the allowed
coupling that fixes the charge assignment. As the
strength of this coupling goes to zero (removing, in prin-
ciple, our ability to define the charge) the form of the
cross section remains unchanged where it is valid, but its
range of validity shrinks to zero.

(2) Calculation.— Now we shall treat the prototype
problem discussed above more quantitatively. For simpli-
city we will treat the nonrelativistic case. We will also
consider the quantum-mechanical scattering problem, al-
though similar considerations would apply to the classical
scattering waves.

The substitution of Eq. (1.3) into the equation for the

AL=g\hn’+H.c.
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(7,n*) modes results in a nonrelativistic Schrodinger equation of the form

1 , 1 LA
e 2u, 4r? : 2ur?
o 3 N U
2u,r? 2u; 4r?

Pi
P2

.1

+u,

together with the boundary condition p;(¢+27) l
= —p;(¢), and where the perturbed masses are uf )
=(m2%T)"2 The off-diagonal entries (terms linear in
the induced effective gauge field) connect states of
different effective mass. Therefore, at low incident mo-
menta it is reasonable to expect that their effect will be
small. Our strategy will be to first solve the scattering
problem ignoring the off-diagonal terms, and then take
them into account perturbatively. Of course, if we send
in a pure p, state then there can be no real p, production
for incident momenta below the threshold enforced by en-
ergy conservation. However, even below this threshold,
the off-diagonal terms can affect the elastic scattering of
the p> modes at second order in perturbation theory. We
will argue below that this effect is indeed small for in-
cident energies much less than the mass splitting.

The solution of the diagonal scattering problem pro-
ceeds by performing a mode expansion (in two spatial
dimensions— or in three at normal incidence)

pa(t,r,9)=2 e -"(w+nz>rei(n+n/z).P”(z)(,)
nez

(2.2)

(similar for p;). Note that the partial-wave expansion is
shifted by one-half due to the boundary conditions.
Defining z =k,r where o =(k,)?/2u, we find that the ra-
dial eigenfunctions P,(z) satisfy a Bessel equation of or-
der v2=(n+ + )2+ +. The shift of + from the usual or-
der, v?=(n+ )2 expected with a mode expansion of
the form Eq. (2.2), is due to the on-diagonal induced po-
tential, Eq. (1.4).

To select the appropriate set of solutions we must
demand self-adjointness of the Hamiltonian, and square
integrability of the solution at the position of the vortex.
However, as discussed in the appendix of [3] (in the con-
text of gauge strings), this still leaves a one-parameter
family of allowed boundary conditions in both the n = —1
and n =0 modes. The correct choice is discovered by first
performing a calculation at finite core radius R, and then
taking the limit R— 0 [3]. The result is that we should
use only positive-order Bessel functions in a// modes. |

Now we are ready to construct the scattering solution
and calculate the elastic differential cross section for in-
cident p, modes. This is most easily done if we reexpress
the selected Bessel functions in terms of outgoing (Hv(,'))
and incoming (Hff)) Hankel functions. If we take the
incident wave to be a plane wave exp(—ik,x) then we
must construct out of the Hankel functions a solution of
the form

sol=l

3 E pitnt1/2e, —ixa,/2

2 n€zZ
X [HP (ko) + HO (ko)) (2.3)

where v, is given by the positive square root. The a, are
determined by demanding that Eq. (2.3) match onto the
incoming plane wave plus an outgoing scattered wave at
infinity; we require

P3P ~e#2[e TR 4 £()e* 7/ F] (2.4)

where f(¢) is the scattering amplitude. The phase e in
front is necessary, because of the double valuedness of
our solution, but it is harmless— if we construct narrow
wave packets that travel in along the positive x axis, then
this phase is trivial. Using the usual expansion of the
plane wave in terms of integer-order Bessel functions

exp(—ikrcosp) = Y, e —i‘|"|/2e‘"‘1|,,|(kr)
n€z

(2.5)

and the asymptotic behavior of the Hankel functions, the
constraint of matching onto the plane wave determines
a, =v, for all n.

We can now calculate the phase shifts 8,(k,) defined
by the asymptotic relation

sol 1

p3 _,_? Z ei(n+|/2)¢e —ix|n|/2

n€Z
x[HZ Gor) +e S (k,r)] . 2.6)

A simple calculation involving the asymptotic behavior of
the Hankel functions leads to the result &, =z(|n| — v,).
From these phase shifts we can calculate the scattering
amplitude f(¢). The result is

e T2 1 - iA )
f(¢)= Gk 7 | costel2) +2”Z_O(- 1)"(e"™ —1)cosl(n+ 3 )91 |, 2.7
where A, =rn{n+ % —[(n+ $)2+ L 1YY, The first term [ do I I
in Eq. (2.7) is the usual maximal Aharonov-Bohm ampli- d0 Inks m“ +C(0)]; (2.8)

tude. The corrections are due to the diagonal 1/4r2 po-
tential, and are largest in low partial waves.

The differential scattering cross section, expressed in
terms of the scattering angle 6 =z — ¢, has the form

it is the maximal Aharonov-Bohm cross section times a
calculable correction factor that approaches 1 at small
angles. The function C(8) is found by numerically
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evaluating the sum in Eq. (2.7), which actually converges
quite slowly. The correction is largest (C=0.202) at
6=n.

A calculation in second-order perturbation theory
shows that the effect of the neglected off-diagonal terms
on the elastic scattering of p, is bounded by a constant
times (k) */I"%, uniformly in all partial waves [4].

(3) Examples.— (a) Spin- % scattering by a magnetic
vortex. Consider a material with a planar magnetization
M(x)—namely, a material described by the XY model.
This model, of course, supports vortices, which indeed
play an important role in its dynamics. A spin-3 parti-
cle, which might be an electron or a neutron, for example,
couples to the magnetization with an interaction

AH =gytoy'M, 3.1

where y is the spinor field representing the particle. The
scattering of the spin-4 particle from the magnetic vor-
tex is an instance of the general analysis above, but let us
state it in fresh terms. In the presence of a vortex, the
frame of the spin is dragged around. Thus if the magne-
tization is given by the vortex form M‘(r,¢) — Mo(—6;,
xsing+ 8;,cos¢), then to keep the effective-mass term
generated by the interaction (3.1) diagonal, we shall
need to transform to the frame-dragged variable
=expli¢pos/2)y. Now as a spinor is rotated through 2r,
its sign changes. Thus, for consistency, at low momen-
tum where parallel transport of the spin is appropriate,
the boundary condition on the spinor wave function re-
quires it contain only half-odd-integer angular momenta.
As there also occurs an induced diagonal potential (1.4),
the spin will scatter off the vortex with the cross section
(2.8).

Various generalizations may be considered. For exam-
ple if the magnetization is tipped out of the plane by an-
gle B and sweeps out a cone, then the calculation of the
cross section changes as follows. Upon diagonalizing the
interaction (3.1) we find that the effective mass term
takes the form y'lT(sinﬁ o3+cosBa,)y, with eigenspinors
v+ =e '"PP(1,+i)T. Now between these eigenspi-
nors the effective gauge potential proportional to o3 in the
modified gradient term |d,y|2=|(8, —ic3/2)¥|? does not
have nonvanishing diagonal matrix elements, which must
be included in the calculation. As a result, the quantities
v, are modified to become

vi=(+3)n+ 5 Esinp)+ 5, (3.2)
where the * refers to the different eigenspinors. From
these the cross section is readily computed, but the for-
mula is not particularly transparent. It is noteworthy,
however, that the leading correction to the canonical
Aharonov-Bohm result contains terms in sing as well as
cos¢, giving explicit parity and time-reversal asym-
metries.

(b) Polarized light. The essential requirement for the
analysis of the previous section to apply is that there
should be 2 degrees of freedom with different dispersion
relations that are rotated into one another by the varia-
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tion of a material parameter, such as a magnetization,
and that when the material parameter rotates through a
closed cycle each degree of freedom returns to itself, with
a change of phase. This general setup can be realized in
a variety of optical contexts, where the degrees of free-
dom are two polarizations of light of a given frequency.
Realizations of frame dragging for polarized light have
already been used for interference experiments [5]; we
are merely adapting it to a realization in scattering. Of
course, there is nothing special about the optical region of
the electromagnetic spectrum in this regard, and an alter-
native macroscopic realization could be constructed for
microwaves propagating through ferrites.

(c) Passport to exotica. Quite a few remarkable phe-
nomena involving among others Alice strings [6],
Cheshire charge [7], and flux-tube-flux-tube scattering
[8] have been studied in the context of spontaneously bro-
ken non-Abelian gauge symmetries. Unfortunately, how-
ever, the list of spontaneously broken non-Abelian gauge
symmetries available for experimental manipulation is
vanishingly small. The main point emphasized above,
that frame-dragging phenomena usually associated with
gauge theories also occur at low momenta for broken glo-
bal symmetries, opens the strong possibility that effects
closely analogous to these can be realized in suitable lab-
oratory condensed-matter systems. Particularly interest-
ing in this regard are helium 3 [9] and liquid crystals,
which are known to have complicated order-parameter
spaces and to support non-Abelian vortices [10].

The existence of an infinite range Aharonov-Bohm in-
teraction between a global Z, charge and a global string
suggests that the Z, charge on a black hole should be
measurable [11]. However, we have seen that Ahar-
onov-Bohm scattering occurs only if the passage of the
charge by the string can be regarded as adiabatic. We
believe that gravitational time dilation makes it impossi-
ble to satisfy this criterion as the charge falls into a black
hole, so that the long-range interaction between charge
and string is destroyed [12].

The effects we have described are important for the in-
teraction of matter with global and axion strings, and
may affect their evolution in the early Universe.

These matters are under active investigation [4].
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