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GAUGE THEORIES IN THE MANY-GLUON LIMIT* 
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We argue that  the idea that  the dynamics of a gauge theory simplifies in the limit 
N ~ ~ ,  where N is the number  of colors, can be invoked even if the gauge group 
is an exceptional Lie group, rather  than one of the classical groups. We also point 
out that  quan tum tunneling phenomena can in some cases survive in the N ~ oo 
limit, contrary to the usual claim that  the N -~ c~ limit is "classical." 

I. I N T R O D U C T I O N  

In this talk, we discuss two ideas about  the behavior of gauge field theories with large 

gauge groups. 

The first idea concerns the range of applicability of the insight 1 that  the dynamics of a 

gauge theory simplifies in the N --* eo limit, where N is the number of colors. We argue that  

this insight can be usefully applied to theories with a gauge group that  is an exceptional group 

rather than one of the classical groups. In the case of exceptional gauge groups, there is no 

systematic expansion in a parameter  analogous to 1/N. But we expect  the nonperturbat ive 

dynamics of, for example, a strongly-coupled E8 gauge theory to have certain characteristic 

qualitative features that  are a consequence of the large number of gluon species in the theory. 

The second idea concerns the nature of quantum fluctuations in the N ~ co limit. 

We argue that ,  contrary to the usual assumption, it may in some cases be misleading to 

regard the N --~ oo limit of a gauge theory as a "classical" limit in which fluctuations are 

suppressed. Specifically, some theories respect a classical U(1)A symmetry  that  is broken by 

an anomaly to a discrete symmetry  Zk where k is of order N. We argue that  the realization 

of this Zk symmet ry  is influenced by quantum tunneling phenomena that do not freeze out 

as N ~ co. We speculate that  such fluctuations may, for N --~ oo, give rise to a light 

excitation associated with the spontaneous breakdown of the Zk symmetry.  

The motivation for addressing these issues arose in part from our desire to understand the 

behavior of the "hidden sector" of the low-energy superstring theory. It has been suggested 2 
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that  the hidden sector is a strongly-coupled E8 gauge theory. In characterizing how this 

theory behaves, it is very helpful to identify a relevant small parameter .  We propose that 

d~ 1 is such a parameter ,  where da = 248 is the dimension of the group, equal to tile number 

of gluon species. 

In section 2, we describe how the behavior of a gauge theory in the limit dc  --+ ec can be 

analyzed, irrespective of the gauge group, by counting powers of da in Feynman diagrams. 

This analysis is sufficiently general to be applied to exceptional gauge groups as well as the 

classical groups. In section 3, we explain how fluctuation phenomena in the N -4 ~c limit 

can affect the realization of a discrete Zk symmetry, where k is order N. For definiteness, we 

choose to discuss the part icular  case of pure snpersymmetric Yang-Mills theory with gauge 

group G = SU(N);  this theory has a ZN symmetry. 

(The talk presented at the conference was mainly a review of Ref. 3. For the proceedings, 

we have chosen to expand on the concluding portion of the talk.) 

2. T H E  MANY-GLUON LIMIT 

A useful approach I to the nonperturbat ive behavior of quantum chromodynamics (QCD) 

is the expansion in 1/N,  where N is the number of colors. If color confinement is assumed 

to apply in the N -+ oo limit, then a surprising number of qualitative features of meson 

phenomenology can be deduced 4-a in this approach, such as the existence of many narrow 

resonances, the absence of exotic states, the OZI  rule, and spontaneous breakdown of chiral 

symmetry  7. Much can also be inferred about baryon physics in the N --+ ec limit 5,8. 

A 1/N expansion may be formulated for gauge theories other than QCD. QCD is a theory 

of SU(N) gauge fields coupled to fermions that  transform as the defining representation of 

SU(N). We may consider changing the gauge group or changing the fermion representation. 

An expansion in 1 /N  can be carried out in an SO(N) or Sp(2N) gauge theory 9, or in an 

SU(N) gauge theory with mat ter  that transforms as the adjoint representation or a two-index 

tensor representat ion of the gauge group a. 

It has not yet proved possible to perform quantitative calculations in four-dimensional 

gauge theories by applying the 1IN expansion, but it may not be totally unrealistic to 

hope that  this can someday be achieved. This hope is encouraged by the expectat ion that 

the N --+ oc limit of, for example, QCD is remarkably simple. Indeed, assuming color 

confinement, it can be shown that  in the N ~ ec limit, QCD becomes a theory of an 

infinite number  of noninteractin 9 zero-width resonances 4-6. (The resonances are glueballs 

and mesons; since baryon masses diverge linearly with N, baryons can be safely ignored in 

a discussion of the N -+ oo limit of meson physics at fixed energy.) The N -+ oo limit is 

simple enough that  one can at least conceive of solving the theory explicitly in this limit. 

An expansion in powers of 1/N might then become tractable. 
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Even without the capability to do quantitative calculations, one can infer interesting 

qualitative features of meson physics by considering the properties of the N ---* cc limit. Fur- 

thermore, these inferences are based on quite elementary considerations. The 1/N expansion 

is usually formulated 1 by assigning to each Feynman diagram a power of N determined by 

the topology of the diagram. The leading diagrams in the N ~ oo limit are planar; they 

contain no quark loops and can be drawn on a sphere without any crossing of gluon lines. 

Each quark loop is suppressed by a factor of 1/N, and each nonplanar gluon exchange is 

suppressed by a factor of 1/N 2. 

In fact, all of the insights that have been obtained into the properties of mesons in the 

N ---* co limit can be understood without making any explicit reference to the topology of 

the leading diagrams. What is crucial instead is the scaling behavior of the connected gauge- 

invariant Green functions of the theory as N becomes large. And this scaling behavior is a 

simple consequence of the color degeneracy of the gluons and quarks. That is, the tendency 

of the dynamics of QCD (and other gauge theories) to simplify in the N ---* oo limit arises 

merely because the number of gluon species is of order N 2, and the number of quark species 

is of order N. 

It is a valuable insight that the dynamics of a gauge theory with gauge group SU(N), 

SO(N), or Sp(2N) simplifies dramatically when the number of gluon species is large. The 

point we wish to stress here is that this insight can be usefully applied to theories with 

a gauge group that is an exceptional Lie group rather than one of the classical groups. 

For exceptional gauge groups, we cannot formulate a systematic expansion in a parameter 

analogous to 1/N,  but we can nonetheless make qualitative statements about features of 

the dynamics that arise because the dimension da of the group is large. That a systematic 

expansion in powers of dG 1 cannot be formulated for the exceptional groups is not so serious 

a handicap. Although such an expansion exists in principle for the classical groups, we do 

not know at present how to carry it out. The qualitative understanding of gauge theories 

with classical gauge groups that has been extracted by considering the N --* ~ limit is 

all based on arguments that can be applied just as well to theories with exceptional gauge 

groups. 

To justify the above remark, we may formulate a "many-gluon limit" of a gauge theory 

that makes no explicit reference to a specific gauge group. To see how this is possible, let 

us consider the simplest casc that of a pure Yang-Mills theory with a simple group G. 

The dimension of the group, and hence the number of gluon species, is denoted dG. The 

quadratic Casimir invariant of the adjoint representation of G is denoted C2(G), and g is 

the (conventionally normalized) gauge coupling. 

Now, the Feynman diagrams that can be constructed in this theory are the same for all G, 

but the diagrams carry group-theoretic weights that depend on G. How can we characterize 

this G-dependence? From relatively straightforward group-theoretic considerations, it can be 
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shown that  all the connected vacuum bubble diagrams with m +  1 loops obey an inequality 1°. 

connected (m + 1) - loop 

vacuum diagram 
< Am[g2C2(G)] m dG 

Here Am is a numerical constant that is independent of the gauge group G. Furthermore, 

it is easy to construct  examples of (planar) (rn + 1)-loop diagrams that carry the group 

theoretic weight [g~-C2(G)]mda. Thus, without specifying a particular gauge group, we may 

speak of a "many-gluon  limit" in which d a and C2(G) grow large with 

= 9- C2(G) 

held fixed. In this limit, all of the connected vacuum bubble diagrams are at most of order 

da. Thus,  the vacuum energy of this theory due to the zero-point  fluctuations of the gluons 

is of order da. This behavior is a simple consequence of the da- fo ld  degeneracy of the gluons. 

One should note that ,  even though g 2 is really a running coupling constant, it is sensible 

to regard ~ = g2C2(G) as fixed as we change the size of the gauge group G. This makes 

sense because C2(G) can be scaled out of the renormalization group equation for $ when 

C2(G) > >  1. Thus,  although ~ runs, it runs in a manner  that  is independent of the gauge 

group G when G is large, and we should take A to be of order one as the size of G increases. 

Tha t  the dynamics of the Yang-Mills theory simplifies as the gauge group G grows larger 

follows from the simple observation that  the vacuum energy is of order de;. The point is that 

the diagrams that  contr ibute to the connected Green functions of gauge-invariant operators 

scale the same way with da as the connected vacuum bubbles do. For example, suppose 

that  B I , . . . ,  Bm are local operators,  such as tr(Fg~(z)F~V(x)), that  are gauge-invariant and 

bilinear in the Yang-Mills field strength F; then, 

(Bl. . .Bm)co.nectea = O(da). 

It follows that  

(B 2} -- (B) 2 = O(dG 1) 
(B)2 

for any such gauge-invariant bilinear operator  B. This result is readily generalized to higher 

dimension operators  and nonlocal operators. We see, therefore, that  the many-gluon limit 

da ---+ ~z is a classical limit11; the root-mean-square fluctuations of the fields about their 

mean values are of order dG 1/2. The parameter  dG 1/2 is the generalization for arbitrary 

gauge groups of the expansion parameter  1/N for the classical groups. This parameter  

characterizes how close the Yang-Mills theory is to the many-gluon limit. 
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We can go further if we make an assumption about the spectrum of the theory; namely, 

that the degeneracies in the spectrum are of order one, rather than, say, of order da. A strong 

motivation for this assumption that it is an expected consequence of color confinement. If all 

physical states are G-singlets, then there are no liberated gluons, and there is no reason to 

expect any degeneracy at all. But strictly speaking this assumption is logically independent 

of whether color is confined or not. 

Making this assumption, we conclude that, since the Green function 

(B1B2)connected = O(da)  

has pole terms with residues of order da, the operator/3 couples to one-particle states with 

a strength of order d~ 2. (The possibility that we have excluded, by assumption, is that B 

couples to e.g., dc degenerate one-particle states, each with a strength of order one.) Then, 

= dal /2B 

is properly normalized to couple to a one-particle state. From 

(Bl.. . /)m)connected = o(dlG -m/2) , 

Al-m/2 we see that the m-body connected scattering amplitude is of order ~a . We learn, there- 

fore, that in the many-gluon limit, Yang-Mills theory becomes a free-field theory. "Glueball" 

resonances have decay widths that go to zero like d~ 1 as da --~ ec, and scattering cross sec- 

tions that are of order d~ 2. There must, in fact, be an infinite number of these noninteracting 

zero-width resonances in the limit da ~ e~, in order that the Green functions behave at 

large momentum as predicted by renormalization-group-improved perturbation theory. 

The above conclusions are familiar for an SU(N) gauge theory 4-6. Our purpose here is 

just to emphasize their wider applicability. In, for example, an Es gauge theory (da = 248), 

the naive counting of the number of gluons suggests that the root-mean-square fluctuations 

of gauge-invariant operators about their mean values are of order (248) 1/2 ~ 1/16, and that 

there are many narrow glueball resonances with widths of order 1/248. 

So far we have considered only pure Yang-Mills theory, but the analysis can easily be 

extended to gauge fields coupled to matter that transforms as the adjoint representation 

or the fundamental representation of the gauge group. To deal with the case of a theory 

containing "quarks" in the fundamental representation, we may derive an inequality of the 

form 10 
connected (rn + 1) - loop vacuum 

< A~[g2C2(G)] m d r  , 
diagram with Quark loops 

where dF is the dimension of the fundamental representation, the number of quark species. 
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The spectrum of this theory contains both glueball states and mesons that couple to 

gauge-invariant quark bilinear operators. By a straightforward generalization of our previous 

argument, it can be shown, assuming again that all degeneracies are of order one, that the 

connected G-meson k-glueball scattering amplitude is of order d~f-e/2d~ k/2 (for g -# 0). Thus, 

meson-glueball mixing is of order (dF/da) 1/2 and meson widths are of order 1/dF. 

In a gauge theory in which the gauge group is a classical group, there is just one expansion 

parameter 1/N. But in a general theory of gauge fields coupled to matter in the fundamental 

representation, there are two small parameters analogous to 1/N; the two parameters are 

dG 1/2 and d~ 1. Qualitative conclusions concerning the physics of the theory can be inferred 

from the smallness of these parameters. It seems reasonable a priori to expect that these 

conclusions apply to a theory whose gauge group is any one of the exceptional Lie groups 

(with the possible exception of G2). 

3. SUPERSYMMETRIC YANG-MILLS THEORY 

We turn now to a discussion of the possible relevance of fluctuation phenomena in the 

N ~ ec theory. For the sake of definiteness, we will consider one example of a theory 

in which these phenomena can arise - pure supersymmetric Yang-Mills theory with gauge 

group G = SU(N).  This is a theory of gluons coupled to a single two-component spin- 

1/2 fermion field ,~ (the gluino) that transforms as the adjoint representation of the gauge 

group. It follows from the discussion in section 2 that a similar analysis ought to apply to 

supersymmetric Yang-Mills with any large gauge group. (Also, the effects we will describe 

can occur for other choices of the fermion representation content of theory.) 

If color confinement holds, then in the N ~ ee limit supersymmetric Yang-Mills the- 

ory becomes a theory of an infinite number of noninteracting zero-width resonances. The 

resonances are glueballs and mesons (gluino-gluino bound states) with order one mixing be- 

tween glueballs and mesons. At finite N, the resonances acquire widths of order 1/N 2, and 

two-body scattering cross sections of order 1/N 4. 

What can we say about the realization of the symmetries of the theory? Of particular 

interest is the realization of supersymmetry. It is known, however, that supersymmetry 

cannot be spontaneously broken in pure supersymmetric Yang-Mills theory 12, for any value 

of N. 

What other symmetries does this theory have? The classical action is invariant under 

the (gluino number) U(1)a transformation 

But quantum mechanical effects arising from the triangle anomaly destroy this symmetry 13. 

ttowever, a discrete subgroup of the U(1)A symmetry does survive. Because of the anomaly, 
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a rotation of the phase of the gluino field is equivalent to a rotation of the vacuum angle 0, 

0 ~ 0 + 2Na. 

Since 0 is a periodic variable defined modulo 2~r, a rotation with 

7r 
m = 0 , 1 , . . . , N -  1, 

really does leave the physics invariant. Therefore, this theory has an exact ZN symmetry. 

(The discrete symmetry is ZN rather than Z2N because a phase rotation by a = ~" is 

equivalent to a spatial rotation by 2~-, which is embedded in a continuous symmetry group 

of the theory.) 

How is the ZN symmetry realized? There is a plausible mechanism by which it could be 

spontaneously broken. If a gluino condensate forms, that is, if a Lorentz-invariant, gauge- 

invariant operator bilinear in A has a vacuum expectation value, 

(AA) # o, 

then the Z N symmetry is completely broken. The arguments 12 that show that supersym- 

merry is manifest do not exclude the formation of such a gluino condensate. 

There is a good physics motivation for investigating whether gluino condensation occurs. 

If the Yang-Mills supermultiplet is weakly coupled to an azion supermultiplet and the gluinos 

condense, then supersymmetry is spontaneously broken 2. (The super-partner of the axion 

becomes the Goldstino.) It is quite possible that the breaking of supersymmetry observed 

in Nature arises in this way. 

A number of arguments support the contention that a gluino condensate forms in pure 

supersymmetric Yang-Mills theory: 

- Gluon exchange generates an attractive interaction between a pair of gluinos in the 

color-singlet channel. We may expect this attractive interaction to drive an instabil- 

ity toward the formation of a pair condensate. A similar instability is presumably 

responsible for spontaneous breakdown of chiral symmetry in QCD. 

- In Yang-Mills theory coupled to not 1 but Nf  adjoint fermions, rigorous inequalities 14 

combined with 't Hooft's anomaly condition show that for Nf  >_ 3 the S U ( N f )  chiral 

symmetry is spontaneously broken to the subgroup S O ( N I )  (assuming confinement). 

The pattern of symmetry breakdown suggests the formation of a gluino condensate 

(Ai ,\j) cx &j, 



90 J. Preskill, S. Trivedi / Gauge theories in the many-gluon limit 

where i , j  = 1 , 2 , . . . , N f  are "flavor" indices. If gluinos condense for Nf _> 3, it is 

reasonable to expect that they condense also for Nf = 1. 

- Supersymmetry relates gluino condensation to gluon condensation, and one expects 

gluons to condense (e.g., as a consequence of the conformal anomaly) 15 

- It is known on topological grounds that the theory has N degenerate vacua, and one is 

tempted to identify these vacua 12 with the N possible values of (AA). (Actually, this 

counting works for G = SU(N) or Sp(2N), but fails for other gauge groups.) 

All of these arguments are fairly persuasive, but none is totally convincing. 

The 1IN expansion gives further support for the claim that gluinos condense. In the 

N --, oo, fluctuations in the phase of the gtuino bilinear become suppressed. If we write 

AA = pe ia, 

where p and a are real fields, then counting powers of 1/N in connected Green functions 

shows that the typical root-mean-square fluctuations of a are of order 1IN. Because these 

fluctuations are very weak, it seems plausible that the ground state of the theory would be 

a state with long-range-order, a gluino condensate. 

The 1IN expansion also provides us with some interesting insights into the nature of 

the fluctuations of o. We expect that the discrete ZN symmetry is spontaneously broken for 

N --* oo (and probably for all values of N). But we might also expect a ZN symmetry to 

become indistinguishable from a U(1) symmetry in the limit N ~ co. Ought there to be, 

then, a massless "spin wave" (Goldstone boson) excitation in the theory as N -~ oo? 

As far as the realization of the ZN symmetry is concerned, our supersymmetric Yang- 

Mills theory is analogous to a ZN spin system ("clock model") in four dimensions. A ZN 

spin system in four dimensions has two phases, a low-temperature ordered phase and a high- 

temperature disordered phase. For any finite value of N, the ordered phase has a mass gap; 

correlation functions approach their asymptotic values at large separation exponentially. But 

if we take the limit N ~ oo with the temperature fized, the mass gap in the ordered phase 

approaches zero. In this sense, the ZN spin system behaves in the N --~ oo limit like a U(1) 

spin system, which has a massless spin wave excitation in the ordered phase. This analogy 

therefore suggests that, as N ~ oo, the ZN symmetry of supersymmetric Yang-Mills theory 

does behave like a U(1) symmetry, and that there is an exactly massless "Goldstone boson" 

in spite of the explicit breaking of the U(1) symmetry due to the anomaly. But we should 

not accept this conclusion too readily. 

In a ZN spin model in four dimensions, for any finite value of N, spin fluctuations freeze 

out at sufficiently low temperature. To characterize how important the fluctuations are, we 



J. Preskill, S. Trivedi / Gauge theories in the many-gluon limit 91 

may consider the abundance of (three-dimensional) domain "walls" across which the spin 

rotates by the angle 27r/N. Since a misalignment of nearest neighbors by the angle 2r /N is 

suppressed by a Boltzman factor 

exp(- /3/N2),  

such domain walls are rare for /3-1 < <  7~" But for /3 -1 ~ :~-~, domain walls become 

abundant,  and long-wavelength spin fluctuations may occur. The effect of these fluctuations 

is to reduce the mass gap m to 

m ,,, exp(-N21/3) 

This behavior of the mass gap in the ordered phase of the three-dimensional ZN spin systems 

can be easily understood.  The mass gap may be interpreted as the magnetic screening mass 

in a ZN gauge system that  is dual to the spin system 16, and is proportional to the density 

of magnetic monopoles in the dual gauge system 17. We expect that  the behavior of the mass 

gap as a function of/3 and N is similar in any dimension d > 3. Note that ,  at fixed/3, the 

mass gap approaches zero very rapidly as N increases. 

Now, the ZN spin system that  describes the gluino condensate in supersymmetric Yang- 

Mills theory becomes very "cold" as N ~ c~; quantum fluctuations freeze out in this limit. 

Is it so cold that  fluctuations of the ZN %pins" are unimportant?  To answer this question, 

we must determine the cost in action density of a domain wall across which the ZN spin 

rotates by 27r/N. This action density is governed by an effective Lagrangian for the field a, 

the phase of the gluino bilinear, that  has the form 

Z: = N2(Va) 2 + V(Na).  

The N 2 in front of the kinetic term reflects the usual tendency for fluctuations to be sup- 

pressed at large N. The potential V(Ncr) arises from the explicit breaking of the U(1)A 

symmetry due to the anomaly. It is essentially the dependence of the vacuum energy of pure 

(nonsupersymmetric) Yang-Mills theory on the vacuum angle 0, and can be expressed as a 

function of Ncr because a rotation of Na is equivalent to a rotation of 0. It is important 

to realize that  the potential  V(0) is of order one ]8, rather than of order N 2 as one might 

have naively expected. As a result, N can be scaled out of the effective Lagrangian £:, and 

the action density of a domain wall across which a rotates by 27r/N (0 rotates by 2~r) is of 

order one. Therefore, the ZN spin fluctuations do not freeze out in the limit N --* c~. This 

is the "nonclassical" behavior referred to in the introduction. Although the quantum fluctu- 

ations of ~ are suppressed as N ~ c~, the distance in a between the neighboring minima of 

the potential V(Na) is shrinking as N ---* ~ ,  and quantum tunneling between neighboring 

minima therefore persists even for large N. 
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While we have established that  ZN spin fluctuations occur even for N --~ oe, we have 

not shown that  these fluctuations are sufficiently abundant  to dramatically reduce the mass 

of the c~ particle. Supersymmetr ic  Yang-Mills theory in the N ~ oo limit is similar to a 

ZN spin system at t empera ture  /~-I ,,~ l/N2; in the spin system, the abundance of the spin 

fluctuations and hence also the mass gap are exponentially sensitive to the value of N2//~. 

The corresponding parameter  in the supersymmetric Yang-Mills theory is a number of order 

one that  we have not computed.  If this parameter  is small enough, spin fluctuations are rare 

and the c~ field behaves "classically." The mass of the ~ particle (and of its supersymmetric 

partner) is therefore determined to good accuracy by the curvature of the potential V(O) 

at its minimum. But if this parameter  is large enough, the cr field tunnels easily from one 

minimum of V(Ncr) to a neighboring minimum, and the mass of the cr particle may be many 

orders of magnitude below the "classical" estimate. One is tempted to speculate, then, that 

because of copious quan tum fluctuations of the ~r field that survive in the N --~ oo limit, there 

is a very light particle in the spectrum of supersymmetric Yang-Mills particle, associated 

with the spontaneous breakdown of the discrete ZN symmetry. 

Of course, on the basis of naive counting of powers of I/N, one expects the cr particle to 

have a mass m ,  of order one. Strictly speaking, the above considerations do not change this 

expectation.  Since N scales out of the effective Lagrangian for the c~ field, m ,  presumably 

does approach a finite nonzero limit as N --~ ~ .  We are suggesting, though, that  this 

limiting value of m ,  may be much smaller than the characteristic mass scale A of the theory. 

One should also note that  the mixing of the a particle with glueball states must be similarly 

suppressed. Since the e particle has a derivative coupling to the gluino number current 

2 But because of the anomaly cg~,Y u d ~' = AtT~'A , its coupling to 0~,d ~' is proportional to m , .  

is a gluon bilinear. Hence, the spin fluctuations that  lower the mass of the cr particle must 

also reduce the mixing of the a with glueballs below that naively expected. 

If pure supersymmetr ic  Yang-Mills theory with gauge group G = SU(N) does contain 

a very light excitation, then it is reasonable to expect supersylnmetric Yang-Mills theory 

with any large gauge group to have the same property. For example, the supersymmetric 

Es gauge theory has a Z30 discrete symmetry, and one might expect  there to be a light 

excitation in the spect rum of the theory associated with the spontaneous breakdown of the 

Z30 symmetry. 

In fact, a phenomenon similar to that discussed above might arise in any large N gauge 

theory with a discrete Zk symmetry, where k is of order N. We could consider, for example, 

an SU(N) theory with fermions that  transform as a two-index symmetr ic  or antisymmetric 

tensor. (Larger representations of SU(N) are excluded if we wish to maintain asymptotic  

freedom for N --* oo.) One case of particular interest is QCD (fermions in the fundamental 

representation) with a number Nf of flavors that is of order N. In this case, the U(1)A 

symmetry is broken by the anomaly to a ZNI symmetry, but  the symmetry  is not really 
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discrete. Rather, the ZNI is embedded in the continuous S U ( N f )  x SU(NI) x U(1)v chiral 

symmetry group of the theory. Nonetheless, the spin fluctuations we have described would 

occur in this theory, and might have interesting dynamical effects. 
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