9.1 Positivity of quantum relative entropy

a) Show that $\ln x \leq x - 1$ for all positive real x, with equality iff $x = 1$.

b) The (classical) relative entropy of a probability distribution $\{p(x)\}$ relative to $\{q(x)\}$ is defined as

$$H(p \parallel q) \equiv \sum_x p(x) \left(\log p(x) - \log q(x) \right).$$

(1)

Show that

$$H(p \parallel q) \geq 0,$$

(2)

with equality iff the probability distributions are identical. **Hint:** Apply the inequality from (a) to $\ln (q(x)/p(x))$.

c) The quantum relative entropy of the density operator ρ with respect to σ is defined as

$$H(\rho \parallel \sigma) = \text{tr} \rho \left(\log \rho - \log \sigma \right).$$

(3)

Let $\{p_i\}$ denote the eigenvalues of ρ and $\{q_a\}$ denote the eigenvalues of σ. Show that

$$H(\rho \parallel \sigma) = \sum_i p_i \left(\log p_i - \sum_a D_{ia} \log q_a \right),$$

(4)

where D_{ia} is a doubly stochastic matrix. Express D_{ia} in terms of the eigenstates of ρ and σ. (A matrix is doubly stochastic if its entries are nonnegative real numbers, where each row and each column sums to one.)

d) Show that if D_{ia} is doubly stochastic, then (for each i)

$$\log \left(\sum_a D_{ia} q_a \right) \geq \sum_a D_{ia} \log q_a,$$

(5)

with equality only if $D_{ia} = 1$ for some a.
e) Show that
\[H(\rho \parallel \sigma) \geq H(p \parallel r), \]
where \(r_i = \sum_a D_{ia}q_a \).

f) Show that \(H(\rho \parallel \sigma) \geq 0 \), with equality iff \(\rho = \sigma \).

9.2 Properties of Von Neumann entropy

a) Use nonnegativity of quantum relative entropy to prove the *subadditivity* of Von Neumann entropy
\[H(\rho_{AB}) \leq H(\rho_A) + H(\rho_B), \]
with equality iff \(\rho_{AB} = \rho_A \otimes \rho_B \). **Hint**: Consider the relative entropy of \(\rho_{AB} \) and \(\rho_A \otimes \rho_B \).

b) Use subadditivity to prove the concavity of the Von Neumann entropy:
\[H\left(\sum_x p_x \rho_x\right) \geq \sum_x p_x H(\rho_x) \]
Hint: Consider
\[
\rho_{AB} = \sum_x p_x (\rho_x)_A \otimes (|x\rangle\langle x|)_B,
\]

where the states \(\{|x\rangle_B\} \) are mutually orthogonal.

c) Use the condition
\[H(\rho_{AB}) = H(\rho_A) + H(\rho_B) \quad \text{iff} \quad \rho_{AB} = \rho_A \otimes \rho_B \]
to show that, if all \(p_x \)'s are nonzero,
\[H\left(\sum_x p_x \rho_x\right) = \sum_x p_x H(\rho_x) \]
iff all the \(\rho_x \)'s are identical.

d) Use subadditivity to prove the triangle inequality:
\[H(\rho_{AB}) \geq |H(\rho_A) - H(\rho_B)|. \]
Hint: Construct a “purification” of \(\rho_{AB} \) — introduce a third system \(C \) and consider \(|\Phi\rangle_{ABC} \) such that
\[\text{tr}_C (|\Phi\rangle\langle \Phi|) = \rho_{AB} ; \]
then use the subadditivity relations \(H(\rho_{BC}) \leq H(\rho_B) + H(\rho_C) \) and \(H(\rho_{AC}) \leq H(\rho_A) + H(\rho_C) \).
9.3 Coherent information and entanglement fidelity

A criterion for the reversibility of the effect of a quantum channel \(N^{A\rightarrow B} \) on the input state \(\rho^A \) can be formulated in terms of the coherent information \(I_c \). Let \(\phi^{RA} \) be a purification of \(\rho^A \), where \(R \) is a reference system; the channel maps \(\phi^{RA} \) to the output \(\sigma^{RB} \), which has purification \(\psi^{RBE} \). Here system \(E \) can be regarded as the environment, where the channel \(\mathcal{N} \) is realized as an isometry \(U^{A\rightarrow BE} \). There is a decoding map \(\mathcal{D}^{B\rightarrow C} \) that restores the purity of the state on \(RC \) if and only if

\[
I_c(R \rangle B) \equiv H(B) - H(RB) = H(R) ,
\]

or equivalently

\[
H(RE) = H(R) + H(E) ,
\]

where the entropy is evaluated in the output state \(\psi^{RBE} \). That is, the effect of \(N^{A\rightarrow B} \) on input \(\rho^A \) is perfectly reversible if and only if the output state of the environment is uncorrelated with the reference system. That makes sense — there will be irreversible decoherence if and only if information about the input state leaks to the environment.

Naturally, we expect that if the effect of the channel is nearly reversible, then the criterion eq. (14) is nearly satisfied. The purpose of this problem is to make this observation more precise.

a) Show that

\[
H(R) - I_c(R \rangle B) \leq 2H(RC) .
\]

Therefore, if the decoder’s output (the state of \(RC \)) is almost pure, then the coherent information of the channel \(\mathcal{N} \) comes close to matching the input entropy. **Hint:** Use the data processing inequality

\[
I_c(R \rangle C) \leq I_c(R \rangle B) ,
\]

and the subadditivity of von Neumann entropy. It is convenient to consider the pure joint state of the reference system, output, and environment. Do not assume (because it is not true) that the environment \(E \) used in the realization of the noisy channel \(\mathcal{N} \) is uncorrelated with the environment \(E' \) used in the realization the decoder \(\mathcal{D} \).
b) In a d-dimensional system, suppose that the state ρ has fidelity $F = 1 - \varepsilon$ with the pure state $|\psi\rangle$:

$$F = \langle \psi | \rho | \psi \rangle = 1 - \varepsilon . \quad (18)$$

Show that

$$H(\rho) \leq H_2(\varepsilon) + \varepsilon \log_2(d - 1) , \quad (19)$$

where $H_2(\varepsilon) = -\varepsilon \log_2 \varepsilon - (1 - \varepsilon) \log_2 (1 - \varepsilon)$ is the binary Shannon entropy. **Hint:** Recall that if the random variable X describes the outcome of a complete orthogonal measurement performed on the state ρ, then $H(\rho) \leq H(X)$, where $H(X)$ is the Shannon entropy of X.

c) The entanglement fidelity F_e provides a useful way to quantify how much the quantum channel $\mathcal{N}^{A\to B}$ deviates from the identity channel. Channel input ρ^A has purification ϕ^{RA}, which is mapped by \mathcal{N} to σ^{RB}. The entanglement fidelity, defined as

$$F_e(\rho^A, \mathcal{N}) \equiv \text{tr} (\phi^{RB} \sigma^{RB}) , \quad (20)$$

does not depend on how the purification is chosen. $F_e = 1$ if the channel preserves its input, and F_e is close to 1 if the output is close to the input. Suppose that

$$F_e(\rho^A, \mathcal{D} \circ \mathcal{N}) = 1 - \varepsilon , \quad (21)$$

where $\mathcal{N}^{A\to B}$ is a noisy channel and $\mathcal{D}^{B\to C}$ is the decoding map. Show that

$$H(R) - I_c(R \to B) \leq 2H_2(\varepsilon) + 2\varepsilon \log_2(d^2 - 1) , \quad (22)$$

where $d = \dim R = \dim C$.

d) To define the quantum capacity $Q(\mathcal{N})$ of a noisy channel $\mathcal{N}^{A\to B}$, we can use entanglement fidelity rather than fidelity as the criterion for asymptotically successful quantum communication. The rate M may be said to be achievable if, by using the channel n times, nM qubits can be transmitted from A to B such that, after decoding, the entanglement fidelity is arbitrarily close to 1 for n sufficiently large. The quantum capacity $Q(\mathcal{N})$ is the supremum of achievable rates. This definition of the capacity $Q(\mathcal{N})$ is equivalent to the definition where the fidelity rather than the
entanglement fidelity is required to approach 1 as \(n \to \infty \) (you are not asked to prove this equivalence). For \(n \) independent uses of the channel, let \(R^{(n)} \) denote a reference system that purifies the input state on \(\rho^{A^n} \). Show that

\[
Q(N) \leq \lim_{n \to \infty} \max_{\rho^{A^n}} \left(\frac{1}{n} I_c \left(R^{(n)} B^{\otimes n} \right) \right). \tag{23}
\]

Hint: Consider an input density operator to \(N^{\otimes n} \) that is uniform on the subspace of dimension \(2^{nM} \) that can be transmitted reliably.

Remark: The resource inequality

\[
\langle N^{A-B} : \rho^A \rangle \geq I_c(R \uparrow B)[q \to q] \tag{24}
\]

shows that the inequality eq. (23) is actually an equality. But unfortunately, because of the superadditivity of coherent information, this result does not yield a single-letter formula for the quantum capacity \(Q(N) \).

9.4 Entanglement of typical bipartite pure states

Suppose that a pure state is chosen at random on the bipartite system \(AB \), where \(d_A/d_B \ll 1 \). Then with high probability the density operator on \(A \) will be very nearly maximally mixed. The purpose of this problem is to derive this property.

To begin with, we will calculate the value of \(\langle \text{tr} \rho_A^2 \rangle \), where \(\langle \cdot \rangle \) denotes the average over all pure states \(\{ |\varphi \rangle \} \) of \(AB \), and \(\rho_A = \text{tr}_B (|\varphi \rangle \langle \varphi |). \)

a It is convenient to evaluate \(\text{tr} \rho_A^2 \) using a trick. Imagine introducing a copy \(A'B' \) of the system \(AB \). Show that

\[
\text{tr}_A \rho_A^2 = \text{tr}_{ABA'B'} \left([S_{AA'} \otimes I_{BB'}] (|\varphi \rangle \langle \varphi |)_{AB} \otimes |\varphi \rangle \langle \varphi |_{A'B'} \right), \tag{25}
\]

where \(S_{AA'} \) denotes the swap operator

\[
S_{AA'} : |\varphi \rangle_A \otimes |\psi \rangle_{A'} \mapsto |\psi \rangle_A \otimes |\varphi \rangle_{A'}. \tag{26}
\]

b We wish to average the expression found in (a) over all pure states \(|\varphi \rangle \). Rather than go into the details of how such an average is defined, I will simply assert that

\[
\langle |\varphi \rangle \langle \varphi | A \otimes |\varphi \rangle \langle \varphi | A' \rangle = C \Pi_{AA'} , \tag{27}
\]
where C is a constant and $\Pi_{AA'}$ denotes the projector onto the subspace of AA' that is symmetric under interchange of A and A'. Eq. (27) can be proved using invariance properties of the average and some group representation theory, but I hope you will regard it as obvious. The state being averaged is symmetric, and the average should not distinguish any symmetric state from any other symmetric state. Express the constant C in terms of the dimension $d \equiv d_A = d_{A'}$.

c) Use the property $\Pi_{AA'} = \frac{1}{2} (I_{AA'} + S_{AA'})$ to evaluate the expression found in (a). Show that

$$\langle \text{tr} \rho_A^2 \rangle = \frac{d_A + d_B}{d_A d_B + 1}. \quad (28)$$

d) Now estimate the average L^2 distance of ρ_A from the maximally mixed density operator $\frac{1}{d_A} I_A$, where $\| M \|_2 = \sqrt{\text{tr} M^† M}$; show that

$$\left\langle \left\| \rho_A - \frac{1}{d_A} I_A \right\|_2 \right\rangle \leq \frac{1}{\sqrt{d_B}}. \quad (29)$$

Hints: First estimate $\left\langle \left\| \rho_A - \frac{1}{d_A} I_A \right\|_2^2 \right\rangle$ using eq. (28) and the obvious property $\langle \rho_A \rangle = \frac{1}{d_A} I_A$. Then show that for any nonnegative function f, it follows from the Cauchy-Schwarz inequality that $\langle \sqrt{f} \rangle \leq \sqrt{\langle f \rangle}$, and use this property to estimate $\left\langle \left\| \rho_A - \frac{1}{d_A} I_A \right\|_2 \right\rangle$.

e) Finally, estimate the average L^1 distance of ρ_A from the maximally mixed density operator, where $\| M \|_1 = \text{tr} \sqrt{M^† M}$. Use the Cauchy-Schwarz inequality to show that $\| M \|_1 \leq \sqrt{d} \| M \|_2$, if M is a $d \times d$ matrix, and that therefore

$$\left\langle \left\| \rho_A - \frac{1}{d_A} I_A \right\|_1 \right\rangle \leq \sqrt{\frac{d_A}{d_B}}. \quad (30)$$

It follows from (d) that the average entanglement entropy of A and B is close to maximal for $d_A/d_B \ll 1$: $\langle H(A) \rangle \geq \log_2 d_A - d_A/2d_B \ln 2$, though you are not asked to prove this bound. Thus, if for example A is 50 qubits and B is 100 qubits, the typical entropy deviates from maximal by only about $2^{-50} \approx 10^{-15}$.