Exercises
Due: Friday 10 March 2006

7.1 Finding a collision

Suppose that a black box evaluates a function
\[f : \{0, 1\}^n \rightarrow \{0, 1\}^{n-1} \, . \] (1)

We are promised that the function is 2-to-1, and we are to find a "collision" - values \(x\) and \(y\) such that \(f(x) = f(y)\). This problem is harder than Simon’s problem, because we are not promised that the function is periodic. Let \(N = 2^n\).

\(a)\) Describe a randomized classical algorithm that requires \(\text{SPACE} = O(\sqrt{N})\) and that succeeds in finding a collision with high probability in \(O(\sqrt{N})\) queries of the black box.

\(b)\) Now suppose that only \(\text{SPACE} = O(N^{1/3})\) is available. Describe a randomized classical algorithm that finds a collision with high probability in \(O(N^{2/3})\) queries.

\(c)\) Show that Grover’s exhaustive search algorithm can be used to find a collision in \(O(\sqrt{N})\) quantum queries, using \(\text{SPACE} = O(1)\).

\(d)\) Describe a quantum algorithm that uses \(\text{SPACE} = O(M)\) and finds a collision in \(O(M) + O(\sqrt{N/M})\) quantum queries. \([\text{Hint}:\) First query the box \(M\) times to learn the value of \(f(x)\) for \(M\) arguments \(\{x_1, x_2, \ldots, x_M\}\), then search for \(y\) such that \(f(y) = f(x_i)\) for some \(x_i\).\] Thus, if \(M\) is chosen to optimize the number of queries, the quantum algorithm uses \(\text{SPACE} = O(N^{1/3})\) and \(O(N^{1/3})\) quantum queries.

7.2 All the information for half the price

A black box computes a function
\[f : \{0, 1\}^n \rightarrow \{0, 1\} \, . \] (2)

This function can be represented by a binary string
\[X = X_{N-1}X_{N-2} \cdots X_1X_0 \, . \] (3)
where \(X_i = f(i) \) and \(N = 2^n \). Our goal is to obtain, with high probability of success, complete information about the box; that is, to find the value of \(X \). The only resource we care about is the number of queries of the box — TIME and SPACE are otherwise unlimited.

a) How many classical queries are needed to find \(X \) with success probability at least \(2/3 \)?

b) Suppose that the state

\[
|\Psi_{X,N}\rangle = \frac{1}{\sqrt{2^N}} \sum_{Y \in \{0,1\}^N} (-1)^{X \cdot Y} |Y\rangle
\]

has been prepared, where the sum is over all \(N \)-bit strings, and \(X \cdot Y \) denotes the mod 2 bitwise inner product

\[
X \cdot Y = (X_{N-1} \cdot Y_{N-1}) \oplus (X_{N-2} \cdot Y_{N-2}) \\
\ldots \oplus (X_1 \cdot Y_1) \oplus (X_0 \cdot Y_0).
\]

Describe a way, by applying a simple unitary and then a measurement, to find the value of \(X \) with certainty.

c) Explain how the unitary transformation

\[
U : |Y\rangle \rightarrow (-1)^{X \cdot Y} |Y\rangle
\]

can be implemented with \(|Y| \) queries of the box, where \(|Y| \) denotes the Hamming weight of \(Y \), the number of 1’s in the string.

d) Suppose we prepare the state

\[
|\Phi_K\rangle = \frac{1}{\sqrt{M_K}} \sum_{Y : |Y| \leq K} |Y\rangle,
\]

where

\[
M_K = \sum_{j=0}^{K} \binom{N}{j},
\]

and then apply \(U \) (requiring at most \(K \) queries) to obtain

\[
|\Psi_{X,K}\rangle = \frac{1}{\sqrt{M_K}} \sum_{Y : |Y| \leq K} (-1)^{X \cdot Y} |Y\rangle,
\]

Show that, by applying the procedure that you described in your answer to (b), we can determine the value of \(X \) with a probability of success

\[
P_{\text{succ}}(N, K) = |\langle \Psi_{X,K} | \Psi_{X,N} \rangle|^2,
\]

and compute the value of \(P_{\text{succ}}(N, K) \).
Suppose that
\[K = N/2 + c\sqrt{N}, \]
where \(c \) is a constant. Show that
\[1 - P_{\text{succ}}(N, K) = O(e^{-2c^2}). \]

Thus we can extract all the information from the box in a number of queries \((N/2) \cdot [1 + O(1/\sqrt{N})] \).

7.3 Quantum counting

A black box computes a function
\[f : \{0, 1\}^n \rightarrow \{0, 1\}, \]
which can be represented by a binary string
\[X = X_{N-1}X_{N-2} \cdots X_1X_0, \]
where \(X_i = f(i) \) and \(N = 2^n \). Our goal is to count the number \(r \) of states “marked” by the box; that is, to determine the Hamming weight \(r = |X| \) of \(X \). We can devise a quantum algorithm that counts the marked states by combining Grover’s exhaustive search with the quantum Fourier transform.

\(a) \) Suppose we can consult a quantum oracle that executes the unitary transformation \(U \). We’d like to perform \(\Lambda(U) \), the unitary \(U \) conditioned on the value of a control qubit. Devise a quantum circuit with one oracle query that executes \(\Lambda(U) \), using ancilla qubits and \(\Lambda(\text{SWAP}) \) gates, where
\[\text{SWAP} : |x\rangle|y\rangle \rightarrow |y\rangle|x\rangle. \]

\(b) \) Let
\[|\Psi_X\rangle = \frac{1}{\sqrt{r}} \sum_{j:X_j=1} |j\rangle \]
denote the uniform superposition of the marked states, and let \(U_{\text{Grover}} \) denote the “Grover iteration,” which performs a rotation by the angle \(2\theta \) in the plane spanned by \(|\Psi_X\rangle \) and
\[|s\rangle = \frac{1}{\sqrt{N}} \sum_{j=0}^{N} |j\rangle, \]
where
\[\sin \theta = \langle s | \Psi_X \rangle = \sqrt{\frac{r}{N}}. \] (18)

Consider a unitary transformation
\[V : |t\rangle \otimes |\Phi\rangle \rightarrow |t\rangle \otimes U_{\text{Grover}}^t|\Phi\rangle \] (19)

that reads a counter register taking values \(t \in \{0, 1, 2, \ldots, T - 1\} \) (where \(T = 2^m \)), and then applies \(U_{\text{Grover}} \) \(t \) times. Explain how \(V \) can be implemented, calling the oracle \(T - 1 \) times. [Hint: Use the binary expansion \(t = \sum_{k=0}^{m-1} t_k 2^k \) and the conditional oracle call from (a).]

c) Suppose that \(r \ll N \). Show that, by applying \(V \), performing the quantum Fourier transform on the counter register, and then measuring the counter register, we can determine \(\theta \) to accuracy \(O(1/T) \), and hence we can find \(r \) with high success probability in \(T = O(\sqrt{rN}) \) queries. Compare to the best classical protocol.