6.1 Finding a collision

Suppose that a black box evaluates a function
\[f : \{0, 1\}^n \rightarrow \{0, 1\}^{n-1}. \] (1)

We are promised that the function is 2-to-1, and we are to find a “collision” – values \(x \) and \(y \) such that \(f(x) = f(y) \). This problem is harder than Simon’s problem, because we are not promised that the function is periodic. Let \(N = 2^n \).

a) Describe a randomized classical algorithm that requires \(\text{SPACE} = O(\sqrt{N}) \) and that succeeds in finding a collision with high probability in \(O(\sqrt{N}) \) queries of the black box.

b) Now suppose that only \(\text{SPACE} = O(N^{1/3}) \) is available. Describe a randomized classical algorithm that finds a collision with high probability in \(O(N^{2/3}) \) queries.

c) Show that Grover’s exhaustive search algorithm can be used to find a collision in \(O(\sqrt{N}) \) quantum queries, using \(\text{SPACE} = O(1) \).

d) Describe a quantum algorithm that uses \(\text{SPACE} = O(M) \) and finds a collision in \(O(M) + O(\sqrt{N/M}) \) quantum queries. \(\textbf{Hint:} \) First query the box \(M \) times to learn the value of \(f(x) \) for \(M \) arguments \(\{x_1, x_2, \ldots, x_M\} \), then search for \(y \) such that \(f(y) = f(x_i) \) for some \(x_i \). Thus, if \(M \) is chosen to optimize the number of queries, the quantum algorithm uses \(\text{SPACE} = O(N^{1/3}) \) and \(O(N^{1/3}) \) quantum queries.

6.2 All the information for half the price

A black box computes a function
\[f : \{0, 1\}^n \rightarrow \{0, 1\}. \] (2)

This function can be represented by a binary string
\[X = X_{N-1}X_{N-2}\cdots X_1X_0, \] (3)
where $X_i = f(i)$ and $N = 2^n$. Our goal is to obtain, with high probability of success, complete information about the box; that is, to find the value of X. The only resource we care about is the number of queries of the box — TIME and SPACE are otherwise unlimited.

a) How many classical queries are needed to find X with success probability at least $2/3$?

b) Suppose that the state

$$|\Psi_{X,N}\rangle = \frac{1}{\sqrt{2^N}} \sum_{Y \in \{0,1\}^N} (-1)^{X \cdot Y} |Y\rangle$$

has been prepared, where the sum is over all N-bit strings, and $X \cdot Y$ denotes the mod 2 bitwise inner product

$$X \cdot Y = (X_{N-1} \cdot Y_{N-1}) \oplus (X_{N-2} \cdot Y_{N-2})$$
$$\cdots \oplus (X_1 \cdot Y_1) \oplus (X_0 \cdot Y_0) .$$

Describe a way, by applying a simple unitary and then a measurement, to find the value of X with certainty.

c) Explain how the unitary transformation

$$U : |Y\rangle \rightarrow (-1)^{X \cdot Y} |Y\rangle$$

can be implemented with $|Y|$ queries of the box, where $|Y|$ denotes the Hamming weight of Y, the number of 1’s in the string.

d) Suppose we prepare the state

$$|\Phi_{K}\rangle = \frac{1}{\sqrt{M_K}} \sum_{Y:|Y|\leq K} |Y\rangle ,$$

where

$$M_K = \sum_{j=0}^{K} \binom{N}{j} ,$$

and then apply U (requiring at most K queries) to obtain

$$|\Psi_{X,K}\rangle = \frac{1}{\sqrt{M_K}} \sum_{Y:|Y|\leq K} (-1)^{X \cdot Y} |Y\rangle ,$$

Show that, by applying the procedure that you described in your answer to (b), we can determine the value of X with a probability of success

$$P_{\text{succ}}(N, K) = |\langle \Psi_{X,K} | \Psi_{X,N} \rangle|^2 ,$$

and compute the value of $P_{\text{succ}}(N, K)$.
Suppose that
\[K = N/2 + c\sqrt{N}, \tag{11} \]
where \(c \) is a constant. Show that
\[1 - P_{\text{succ}}(N, K) = O(e^{-2c^2}). \tag{12} \]
Thus we can extract all the information from the box in a number of queries \((N/2) \cdot [1 + O(1/\sqrt{N})]\).

6.3 Quantum counting

A black box computes a function
\[f : \{0, 1\}^n \rightarrow \{0, 1\}, \tag{13} \]
which can be represented by a binary string
\[X = X_{N-1}X_{N-2} \cdots X_1X_0, \tag{14} \]
where \(X_i = f(i) \) and \(N = 2^n \). Our goal is to count the number \(r \) of states “marked” by the box; that is, to determine the Hamming weight \(r = |X| \) of \(X \). We can devise a quantum algorithm that counts the marked states by combining Grover’s exhaustive search with the quantum Fourier transform.

a) Suppose we can consult a quantum oracle that executes the unitary transformation \(U \). We’d like to perform \(\Lambda(U) \), the unitary \(U \) conditioned on the value of a control qubit. Devise a quantum circuit with one oracle query that executes \(\Lambda(U) \), using ancilla qubits and \(\Lambda(\text{SWAP}) \) gates, where
\[\text{SWAP} : |x\rangle|y\rangle \rightarrow |y\rangle|x\rangle. \tag{15} \]

b) Let
\[|\Psi_X\rangle = \frac{1}{\sqrt{r}} \sum_{j:X_j=1} |j\rangle \tag{16} \]
denote the uniform superposition of the marked states, and let \(U_{\text{Grover}} \) denote the “Grover iteration,” which performs a rotation by the angle \(2\theta \) in the plane spanned by \(|\Psi_X\rangle \) and
\[|s\rangle = \frac{1}{\sqrt{N}} \sum_{j=0}^{N} |j\rangle, \tag{17} \]
where
\[
\sin \theta = \langle s | \Psi_X \rangle = \sqrt{\frac{T}{N}}.
\]
Consider a unitary transformation
\[
V : |t\rangle \otimes |\Phi\rangle \rightarrow |t\rangle \otimes U_{\text{Grover}}^t|\Phi\rangle
\]
that reads a counter register taking values \(t \in \{0, 1, 2, \ldots, T-1\} \) (where \(T = 2^m \)), and then applies \(U_{\text{Grover}} \) \(t \) times. Explain how \(V \) can be implemented, calling the oracle \(T-1 \) times. [Hint: Use the binary expansion \(t = \sum_{k=0}^{m-1} t_k 2^k \) and the conditional oracle call from (a).]

c) Suppose that \(r \ll N \). Show that, by applying \(V \), performing the quantum Fourier transform on the counter register, and then measuring the counter register, we can determine \(\theta \) to accuracy \(O(1/T) \), and hence we can find \(r \) with high success probability in \(T = O(\sqrt{rN}) \) queries. Compare to the best classical protocol.

6.4 Simulating the Schrödinger equation

A quantum computer can simulate the continuous time evolution of a quantum system governed by a “geometrically local” Hamiltonian. Usually such simulations are done by approximating continuous time evolution with a series of discrete time steps, introducing an error that should be small if the step size is small enough.

For example, by expanding the exponential in a power series, you can verify that
\[
e^{A+B} - e^A e^B = -\frac{1}{2} [A, B] + \cdots;
\]
here \([A, B] = AB - BA\) is the commutator of operators \(A \) and \(B \) and the ellipsis indicates terms that are higher order in \(A \) and \(B \). Suppose the (time-independent) Hamiltonian \(H \) can be expressed as a sum of terms \(H = \sum_a H_a \). Then we may approximate the time evolution operator \(e^{-i\Delta H} \) for time interval \(\Delta \) using
\[
e^{-i\Delta (H_1 + H_2 + \cdots + H_n)} - \left(e^{-i\Delta H_1} e^{-i\Delta H_2} \cdots e^{-i\Delta H_n} \right)
= \frac{1}{2} \Delta^2 \sum_{a<b} [H_a, H_b] + \cdots.
\]
If the Hamiltonian \(H \) is geometrically local, then \(e^{-i\Delta H_a} \) acts on a constant number of qubits, and let us therefore assume it can be simulated accurately with a constant number of gates (ignoring a possible
"Solovay-Kitaev slowdown"). Furthermore, for an \(n \)-qubit system, the total number of terms \(\{ H_a \} \) is \(O(n) \), and the number of terms in \(\{ H_a \} \) that fail to commute with any fixed term \(H_b \) is a constant. Therefore, if all the terms have a bounded operator norm, \(\| H_a \| \leq E \), then the error on the right-hand side of eq. (21) has operator norm no larger than \(C \Delta^2 E^2 n \), where \(C \) is a constant. To simulate the evolution for time \(T \), we need \(T / \Delta \) time steps, and the accumulated error is bounded above by \(CT \Delta E^2 n \). Therefore our simulation has constant accuracy if we choose \(\Delta = O(1/ nT) \) (assuming \(E \) is a constant), and circuit size \(O(n T / \Delta) = O([n T]^2) \). In effect, then, the circuit size scales quadratically with the volume of the simulated spacetime.

The object of this exercise is to show that the cost of the simulation can be reduced to a lower power of \(nT \), namely the 3/2 power.

a) Show that
\[
e^{2(A + B)} - e^A e^B e^A = \frac{1}{3} [A, [A, B]] - \frac{2}{3} [B, [B, A]] + \cdots,
\]
where now the ellipsis indicates terms of quartic or higher order.

b) Show that
\[
e^{-i\Delta (H_1 + H_2 + \cdots + H_n)}
- \left(e^{-i\Delta H_1/2} e^{-i\Delta H_2/2} \cdots e^{-i\Delta H_n/2} \right)
\times \left(e^{-i\Delta H_n/2} \cdots e^{-i\Delta H_2/2} e^{-i\Delta H_1/2} \right)
= \Delta^3 \left(\sum_{a<b<c} O_{abc} + \sum_{a<b} O_{ab} + \cdots \right),
\]
where the ellipsis indicates terms of quartic order and above.

Find explicit expressions for \(O_{abc} \) and \(O_{ab} \) in terms of third-order commutators of the terms in \(\{ H_a \} \).

c) Assuming as above that \(e^{-i\Delta H_a/2} \) can be simulated using a constant number of gates, show that for a geometrically local \(n \)-qubit Hamiltonian \(H = \sum_a H_a \), where \(\| H_a \| \leq \text{constant} \), the time evolution operator \(e^{-iHT} \) can be simulated to constant accuracy using \(O([n T]^{3/2}) \) gates.

The power of \(nT \) can be reduced further using more elaborate constructions.