4.1 The peak in the Fourier transform

In the period finding algorithm we prepared the “periodic state”

$$\frac{1}{\sqrt{A}} \sum_{j=0}^{A-1} |x_0 + jr\rangle,$$

where \(A \) is the least integer greater than \(N/r \); then we performed the quantum Fourier transform with base \(N \) and measured. The probability distribution governing the measurement outcome \(y \) is

$$\text{Prob}(y) = \frac{1}{NA} \left(\frac{\sin^2 \pi Ay/N}{\sin^2 \pi yr/N} \right).$$

(2)

Letting \(\delta \) denote the deviation of the rational number \(y/N \) from the nearest integer multiple of \(1/r \),

$$\delta = \frac{y}{N} - \frac{k}{r},$$

(3)

this probability may be expressed as

$$\text{Prob}(y) = \frac{1}{NA} \left(\frac{\sin^2 \pi Ar\delta}{\sin^2 \pi r\delta} \right).$$

(4)

Note that, since there is a multiple of \(1/r \) within distance \(1/2r \) from any real number, we may assume that \(-1/2r \leq \delta \leq 1/2r\).

a) Show that

$$\text{Prob}(y) \leq \frac{1}{4NAr^2\delta^2}.$$

(5)

b) Let us say that the measurement outcome \(y \) is “\(\delta \)-bad” if the distance to the nearest multiple of \(1/r \) is larger than \(\delta \). Show that the probability \(\text{Prob}(>\delta) \) of a \(\delta \)-bad outcome satisfies

$$\text{Prob}(>\delta) < \frac{1}{N\delta}.$$

(6)
Thus, for fixed δ, the probability of a δ-bad outcome is small for $N >> 1/\delta$.

4.2 Estimating the trace of a unitary matrix

Recall that using an oracle that applies the conditional unitary $\Lambda(U)$,

$$
\Lambda(U) : \begin{align*}
|0\rangle \otimes |\psi\rangle &\mapsto |0\rangle \otimes |\psi\rangle, \\
|1\rangle \otimes |\psi\rangle &\mapsto |1\rangle \otimes U|\psi\rangle
\end{align*}
$$

(7)

(where U is a unitary transformation acting on n qubits), we can measure the eigenvalues of U. If the state $|\psi\rangle$ is the eigenstate $|\lambda\rangle$ of U with eigenvalue $\lambda = \exp(2\pi i \phi)$, then by querying the oracle k times, we can determine ϕ to accuracy $O(1/\sqrt{k})$.

But suppose that we replace the pure state $|\psi\rangle$ in eq. (7) by the maximally mixed state of n qubits, $\rho = I/2^n$.

a) Show that, with k queries, we can estimate both the real part and the imaginary part of $\text{tr}(U)/2^n$, the normalized trace of U, to accuracy $O(1/\sqrt{k})$.

b) Given a polynomial-size quantum circuit, the problem of estimating to fixed accuracy the normalized trace of the unitary transformation realized by the circuit is believed to be a hard problem classically. Explain how this problem can be solved efficiently with a quantum computer.

The initial state needed for each query consists of one qubit in the pure state $|0\rangle$ and n qubits in the maximally mixed state. Surprisingly, then, the initial state of the computer that we require to run this (apparently) powerful quantum algorithm contains only a constant number of “clean” qubits, and $O(n)$ very noisy qubits.

4.3 A generalization of Simon’s problem

Simon’s problem is a hidden subgroup problem with $G = Z_2^n$ and $H = Z_2 = \{0, a\}$. Consider instead the case where $H = Z_k^2$, with generator set $\{a_i, i = 1, 2, 3, \ldots, k\}$. That is, suppose an oracle evaluates a function

$$
f : \{0,1\}^n \rightarrow \{0,1\}^{n-k},
$$

(8)

where we are promised that f is 2^k-to-1 such that

$$
f(x) = f(x \oplus a_i)
$$

(9)
for \(i = 1, 2, 3, \ldots, k \) (here \(\oplus \) denotes bitwise addition modulo 2). Since the number of cosets of \(H \) in \(G \) is smaller, we can expect that the hidden subgroup is easier to find for this problem than in Simon’s \((k = 1)\) case.

Find an algorithm using \(n - k \) quantum queries that identifies the \(k \) generators of \(H \), and show that the success probability of the algorithm is greater than 1/4.

4.4 Finding a collision

Suppose that a black box evaluates a function

\[
 f : \{0, 1\}^n \rightarrow \{0, 1\}^{n-1}.
\]

(10)

We are promised that the function is 2-to-1, and we are to find a “collision” – values \(x \) and \(y \) such that \(f(x) = f(y) \). This problem is harder than Simon’s problem, because we are not promised that the function is periodic. Let \(N = 2^n \).

a) Describe a randomized classical algorithm that requires \(\text{SPACE} = O(\sqrt{N}) \) and that succeeds in finding a collision with high probability in \(O(\sqrt{N}) \) queries of the black box.

b) Now suppose that only \(\text{SPACE} = O(N^{1/3}) \) is available. Describe a randomized classical algorithm that finds a collision with high probability in \(O(N^{2/3}) \) queries.

c) Show that Grover’s exhaustive search algorithm can be used to find a collision in \(O(\sqrt{N}) \) quantum queries, using \(\text{SPACE} = O(1) \).

d) Describe a quantum algorithm that uses \(\text{SPACE} = O(M) \) and finds a collision in \(O(M) + O(\sqrt{N/M}) \) quantum queries. [Hint: First query the box \(M \) times to learn the value of \(f(x) \) for \(M \) arguments \(\{x_1, x_2, \ldots, x_M\} \), then search for \(y \) such that \(f(y) = f(x_i) \) for some \(x_i \).] Thus, if \(M \) is chosen to optimize the number of queries, the quantum algorithm uses \(\text{SPACE} = O(N^{1/3}) \) and \(O(N^{1/3}) \) quantum queries.

4.5 Quantum counting

A black box computes a function

\[
 f : \{0, 1\}^n \rightarrow \{0, 1\},
\]

(11)
which can be represented by a binary string

\[X = X_{N-1}X_{N-2}\cdots X_1X_0, \]

(12)

where \(X_i = f(i) \) and \(N = 2^n \). Our goal is to count the number \(r \) of states “marked” by the box; that is, to determine the Hamming weight \(r = |X| \) of \(X \). We can devise a quantum algorithm that counts the marked states by combining Grover’s exhaustive search with the quantum Fourier transform.

\(a \) The black box performs an \((n+1)\)-qubit unitary transformation \(U_f \) which acts on a basis according to

\[U_f (|x\rangle \otimes |y\rangle) = |x\rangle \otimes |y \oplus f(x)\rangle. \]

(13)

If the last qubit is set to the state \(|-\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)\), then the box applies the unitary transformation \(\tilde{U}_f \) to the first \(n \) qubits, where

\[\tilde{U}_f |x\rangle = (-1)^{f(x)}|x\rangle. \]

(14)

Explain how to use the box and Hadamard gates to perform \(\Lambda(\tilde{U}_f) \), the unitary \(\tilde{U}_f \) conditioned on the value of a control qubit.

\(b \) Let

\[|\Psi_X\rangle = \frac{1}{\sqrt{r}} \sum_{j:X_j=1} |j\rangle \]

(15)

denote the uniform superposition of the marked states, and let \(U_{\text{Grover}} \) denote the “Grover iteration,” which performs a rotation by the angle \(2\theta \) in the plane spanned by \(|\Psi_X\rangle \) and

\[|s\rangle = \frac{1}{\sqrt{N}} \sum_{j=0}^N |j\rangle, \]

(16)

where

\[\sin \theta = \langle s|\Psi_X\rangle = \sqrt{\frac{r}{N}}. \]

(17)

Consider a unitary transformation

\[V : |t\rangle \otimes |\Phi\rangle \rightarrow |t\rangle \otimes U_{\text{Grover}}^t|\Phi\rangle \]

(18)
that reads a counter register taking values \(t \in \{0, 1, 2, \ldots, T - 1\} \) (where \(T = 2^m \)), and then applies \(U_{\text{Grover}} \) \(t \) times. Explain how \(V \) can be implemented, calling the oracle \(T - 1 \) times. [\textbf{Hint:} Use the binary expansion \(t = \sum_{k=0}^{m-1} t_k 2^k \) and the conditional oracle call from (a).]

c) Suppose that \(r \ll N \). Show that, by applying \(V \), performing the quantum Fourier transform on the counter register, and then measuring the counter register, we can determine \(\theta \) to accuracy \(O(1/T) \), and hence we can find \(r \) with high success probability in \(T = O(\sqrt{rN}) \) queries. Compare to the best classical protocol.