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Ph219C/CS219C

Exercises
Due: Thursday 1 June 2023

3.1 Noisy superdense coding and teleportation.

a) By converting the entanglement achieved by the mother protocol
into classical communication, prove the noisy superdense coding
resource inequality:

Noisy SD : 〈φABE〉+H(A)[q → q] ≥ I(A;B)[c→ c]. (1)

Verify that this matches the standard noiseless superdense coding
resource inequality when φ is a maximally entangled state of AB.

b) By converting the entanglement achieved by the mother protocol
into quantum communication, prove the noisy teleportation re-
source inequality:

Noisy TP : 〈φABE〉+ I(A;B)[c→ c] ≥ Ic(A〉B)[q → q]. (2)

Verify that this matches the standard noiseless teleportation re-
source inequality when φ is a maximally entangled state of AB.

3.2 Degradability of amplitude damping and erasure

The qubit amplitude damping channel NA→B
a.d. (p) discussed in §3.4.3

has the dilation UA→BE such that

U :|0〉A 7→ |0〉B ⊗ |0〉E ,
|1〉A 7→

√
1− p |1〉B ⊗ |0〉E +

√
p |0〉B ⊗ |1〉E ;

a qubit in its “ground state” |0〉A is unaffected by the channel, while
a qubit in the “excited state” |1〉A decays to the ground state with
probability p, and the decay process excites the environment. Note
that U is invariant under interchange of systems B and E accompanied
by transformation p ↔ (1 − p). Thus the channel complementary to
NA→B

a.d. (p) is NA→E
a.d. (1− p).
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a) Show that NA→B
a.d. (p) is degradable for p ≤ 1/2. Therefore, the

quantum capacity of the amplitude damping channel is its opti-
mized one-shot coherent information. Hint: It suffices to show
that

NA→E
a.d. (1− p) = NB→E

a.d. (q) ◦ NA→B
a.d. (p), (3)

where 0 ≤ q ≤ 1.

The erasure channel NA→B
erase (p) has the dilation UA→BE such that

U : |ψ〉A 7→
√

1− p |ψ〉B ⊗ |e〉E +
√
p |e〉B ⊗ |ψ〉E ; (4)

Alice’s system passes either to Bob (with probability 1 − p) or to
Eve (with probability p), while the other party receives the “erasure
symbol” |e〉, which is orthogonal to Alice’s Hilbert space. Because U
is invariant under interchange of systems B and E accompanied by
transformation p↔ (1− p), the channel complementary to NA→B

erase (p)
is NA→E

erase (1− p).

b) Show that NA→B
erase (p) is degradable for p ≤ 1/2. Therefore, the

quantum capacity of the erasure channel is its optimized one-shot
coherent information. Hint: It suffices to show that

NA→E
erase (1− p) = NB→E

erase (q) ◦ NA→B
erase (p), (5)

where 0 ≤ q ≤ 1.

c) Show that for p ≤ 1/2 the quantum capacity of the erasure channel
is

Q(NA→B
erase (p)) = (1− 2p) log2 d, (6)

where A is d-dimensional, and that the capacity vanishes for
1/2 ≤ p ≤ 1.

3.3 Proof of the decoupling inequality

In this problem we complete the derivation of the decoupling inequality
sketched in §10.9.1. Equation numbers of the form (10.xxx) refer to
Chapter 10 of the lecture notes.

a) Verify eq.(10.336).
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To derive the expression for EU [MAA′(U)] in eq.(10.340), we first
note that the invariance property eq.(10.325) implies that EU [MAA′(U)]
commutes with V ⊗V for any unitary V . Therefore, by Schur’s lemma,
EU [MAA′(U)] is a weighted sum of projections onto irreducible repre-
sentations of the unitary group. The tensor product of two fundamen-
tal representations of U(d) contains two irreducible representations —
the symmetric and antisymmetric tensor representations. Therefore
we may write

EU [MAA′(U)] = csym Π
(sym)
AA′ + canti Π

(anti)
AA′ ; (7)

here Π
(sym)
AA′ is the orthogonal projector onto the subspace of AA′ sym-

metric under the interchange of A and A′, Π
(anti)
AA′ is the projector onto

the antisymmetric subspace, and csym, canti are suitable constants.
Note that

Π
(sym)
AA′ =

1

2
(IAA′ + SAA′) ,

Π
(anti)
AA′ =

1

2
(IAA′ − SAA′) , (8)

where SAA′ is the swap operator, and that the symmetric and an-
tisymmetric subspaces have dimension 1

2 |A| (|A|+ 1) and dimension
1
2 |A| (|A| − 1) respectively.

Even if you are not familiar with group representation theory, you
might regard eq.(7) as obvious. We may write MAA′(U) as a sum of
two terms, one symmetric and the other antisymmetric under the in-
terchange of A and A′. The expectation of the symmetric part must be
symmetric, and the expectation value of the antisymmetric part must
be antisymmetric. Furthermore, averaging over the unitary group en-
sures that no symmetric state is preferred over any other.

b) To evaluate the constant csym, multiply both sides of eq.(7) by

Π
(sym)
AA′ and take the trace of both sides, thus finding

csym =
|A1|+ |A2|
|A|+ 1

. (9)

c) To evaluate the constant canti, multiply both sides of eq.(7)) by

Π
(anti)
AA′ and take the trace of both sides, thus finding

canti =
|A1| − |A2|
|A| − 1

. (10)
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d) Using

cI =
1

2
(csym + canti) , cS =

1

2
(csym − canti) (11)

prove eq.(10.341).


