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Ph219C/CS219C

Exercises
Due: Thursday 2 May 2024

2.1 Distingushing two nonorthogonal pure states

a) Consider an ensemble in which the two pure states of a single qubit

|ϕ0〉 =

(
1
0

)
, |ϕ1〉 =

(
cos(θ/2)
sin(θ/2)

)
(1)

occur equiprobably, where θ ∈ [0, 2π). The two states both lie
in the xz plane of the Bloch sphere, and the angle between them
is θ. Suppose that a state is drawn from this ensemble and then
the Pauli observable

Z = |0〉〈0| − |1〉〈1| (2)

is measured. Compute the information gain achieved by this
measurement.

b) Now suppose that, instead of Z, the rotated observable

Z ′ = |ψ〉〈ψ| − |ψ⊥〉〈ψ⊥| (3)

is measured, where

|ψ〉 =

(
cos(θ/4− π/4)
sin(θ/4− π/4)

)
, |ψ⊥〉 =

(
cos(θ/4 + π/4)
sin(θ/4 + π/4)

)
. (4)

Compute the information gain in this case. Make a plot showing
the two functions of θ computed in parts (a) and (b). Which has
the higher information gain?

c) For θ = π/2 and for θ = 2π/3, find the numerical value of the
information gain, in bits, achieved by measuring Z and Z ′.
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2.2 An adaptive protocol

For the three pure states of a single qubit described in Section 10.6.4
of the notes,

|ϕ0〉 =

(
1
0

)
, |ϕ1〉 =

(
−1

2√
3
2

)
, |ϕ2〉 =

(
−1

2

−
√
3
2

)
, (5)

consider the ensemble in which the three two-qubit states

|Φa〉 = |ϕa〉 ⊗ |ϕa〉, a = 1, 2, 3 (6)

occur equiprobably. A state is drawn from this ensemble, and we are
to measure the two-qubit state with the goal of gaining information
about the value of a. Instead of doing the collective measurement
described in the notes, consider an adaptive strategy in which the two
qubits are measured separately. On the first qubit we perform the
POVM with the three outcomes

Ea =
2

3
(I − |ϕa〉〈ϕa|) , a = 1, 2, 3; (7)

this measurement excludes one of the three states, but provides no
information to distinguish the other two states. Then we perform a
measurement on the second qubit that is conditioned on the outcome of
the first measurement. Guided by the results of Exercise 2.1, choose
the most informative measurement to perform on the second qubit,
and then compute the information gain achieved by this adaptive pro-
cedure. Compare with the information gain achieved by the collective
measurement described in Section 10.6.4.

2.3 An ensemble of four pure states

a) Consider an ensemble in which the four pure states of a single qubit

|ϕ0〉 =

(
1
0

)
, |ϕ1〉 =

(
0
1

)
, |ϕ2〉 =

(
1√
2
1√
2

)
, |ϕ3〉 =

(
1√
2

− 1√
2

)
,

(8)
occur equiprobably. Compute the information gain achieved by
measuring Z for a state drawn from this ensemble.

b) Now compute the information gain achieved by measuring Z ′ for
θ = π/2. Compare with the result of (a).



3

2.4 An infinite ensemble

a) We now consider an ensemble with an infinite number of possible
pure states, namely the uniform distribution on θ ∈ [0, 2π) where

|ϕ(θ)〉 =

(
cos(θ/2)
sin(θ/2)

)
. (9)

That is, when a state is sampled from this ensemble, a value in
the interval [θ, θ+ dθ] occurs with probability dθ/2π. How much
information do we gain about the value of θ by measuring Z?
To avoid having to take a difference of infinite quantities, answer
this question by computing the conditional entropy H(Y |θ) and
using

I(θ;Y ) = H(Y )−H(Y |θ), (10)

where Y denotes the probability distribution of measurement out-
comes.

b) Hoping to gain more information, let’s try a POVM with many
outcomes rather than a two-outcome orthogonal measurement.
Choose the POVM elements to be

Ek =
2

n
|ϕ(θk)〉〈ϕ(θk)|, k = 0, 1, 2, . . . , n−1, (11)

where

θk =
2πk

n
. (12)

Check the normalization condition∑
k

Ek = I, (13)

and compute the information gain achieved by this measurement.
Compare with the result of (a).

2.5 A quantum version of Fano’s inequality

a) In a d-dimensional system, suppose a density operator ρ approxi-
mates the pure state |ψ〉 with fidelity

F = 〈ψ|ρ|ψ〉 = 1− ε. (14)
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Show that

H(ρ) ≤ H2(ε) + ε log2(d− 1). (15)

Hint: Recall that if a complete orthogonal measurement per-
formed on the state ρ has distribution of outcomes X, then
H(ρ) ≤ H(X), where H(X) is the Shannon entropy of X.

b) As in §10.7.2, suppose that the noisy channel NA→B acts on the
pure state ψRA, and is followed by the decoding map DB→C .
Show that

H(R)ρ − Ic(R 〉B)ρ ≤ 2H(RC)σ, (16)

where

ρRB = N (ψRA), σRC = D ◦ N (ψRA). (17)

Therefore, if the decoder’s output (the state of RC) is almost
pure, then the coherent information of the channel N comes close
to matching its input entropy. Hint: Use the data processing
inequality Ic(R 〉C)σ ≤ Ic(R 〉B)ρ and the subadditivity of von
Neumann entropy. It is convenient to consider the joint pure
state of the reference system, the output, and environments of
the dilations of N and D.

c) Suppose that the decoding map recovers the channel input with
high fidelity,

F (D ◦ N (ψRA), ψRC) = 1− ε. (18)

Show that

H(R)ρ − Ic(R 〉B)ρ ≤ 2H2(ε) + 2ε log2(d
2 − 1), (19)

assuming that R and C are d-dimensional. This is a quantum
version of Fano’s inequality, which we may use to derive an upper
bound on the quantum channel capacity of N .


