Ph219C/CS219C

Exercises
Due: Thursday 18 May 2023

2.1 Distingushing two nonorthogonal pure states

a) Consider an ensemble in which the two pure states of a single qubit

o= (o) len=(Stra)) 1)

occur equiprobably, where 6 € [0,27). The two states both lie
in the zz plane of the Bloch sphere, and the angle between them
is . Suppose that a state is drawn from this ensemble and then
the Pauli observable

Z = [0)(0] — [1)(1] (2)
is measured. Compute the information gain achieved by this

measurement.

b) Now suppose that, instead of Z, the rotated observable
Z' =) (]~ ) W (3)

is measured, where

cos(0/4 —m/4) cos(0/4 +m/4)
) = (sin(0/4—77/4)> ;)= (sin(9/4+7r/4)> - @

Compute the information gain in this case. Make a plot showing
the two functions of # computed in parts (a) and (b). Which has
the higher information gain?

¢) For § = n/2 and for § = 27/3, find the numerical value of the
information gain, in bits, achieved by measuring Z and Z’.

d) For the three pure states of a single qubit described in Section
10.6.4 of the notes,
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consider the ensemble in which the three two-qubit states

‘q)a> = ’SOG) ® |(10(l>7 a = 17273 (6)

occur equiprobably. A state is drawn from this ensemble, and
we are to measure the two-qubit state with the goal of gaining
information about the value of a. Instead of doing the collective
measurement described in the notes, consider an adaptive strat-
egy in which the two qubits are measured separately. On the first
qubit we perform the POVM with the three outcomes

2
Eo= (I -lpagal)s a=123 (™)

this measurement excludes one of the three states, but provides
no information to distinguish the other two states. Then we per-
form a measurement on the second qubit that is conditioned on
the outcome of the first measurement. Guided by the results of
(a), (b), (¢), choose the most informative measurement to per-
form on the second qubit, and then compute the information
gain achieved by this adaptive procedure. Compare with the in-
formation gain achieved by the collective measurement described
in Section 10.6.4.

2.2 An ensemble of four pure states

a) Consider an ensemble in which the four pure states of a single qubit

e =(g) len=3) |soz>—<@, r¢3>—<_€>,

(8)
occur equiprobably. Compute the information gain achieved by
measuring Z for a state drawn from this ensemble.

b) Now compute the information gain achieved by measuring Z’ for
6 = /2. Compare with the result of (a).

2.3 An infinite ensemble

a) We now consider an ensemble with an infinite number of possible
pure states, namely the uniform distribution on 0 € [0, 27) where

00 = (gl ) 0



That is, when a state is sampled from this ensemble, a value in
the interval [0, 0 + df] occurs with probability df/2mw. How much
information do we gain about the value of 6 by measuring Z7
To avoid having to take a difference of infinite quantities, answer
this question by computing the conditional entropy H(Y'|¢) and
using

1(6;Y) = H(Y) — H(Y|0), (10)

where Y denotes the probability distribution of measurement out-
comes.

b) Hoping to gain more information, let’s try a POVM with many
outcomes rather than a two-outcome orthogonal measurement.
Choose the POVM elements to be

2
Ek:E’¢k><¢k|v k:071727’n7]" (11)

where ok
T
p ="

Check the normalization condition

Y Ep=1, (13)
k

- (12)

and compute the information gain achieved by this measurement.
Compare with the result of (a).

2.4 A quantum version of Fano’s inequality

a) In a d-dimensional system, suppose a density operator p approxi-
mates the pure state |¢) with fidelity

F = (Wlpl) =1 . (14)
Show that
H(p) < Hy(e) + elogy(d — 1). (15)

Hint: Recall that if a complete orthogonal measurement per-
formed on the state p has distribution of outcomes X, then
H(p) < H(X), where H(X) is the Shannon entropy of X.



b) As in §10.7.2, suppose that the noisy channel A A=B acts on the
pure state 1ra, and is followed by the decoding map DB—C.
Show that

H(R)p — I.(R )B)p < 2H(RC)g, (16)

where

pPre =N(¥ra), orc=DoN(Pra). (17)

Therefore, if the decoder’s output (the state of RC) is almost
pure, then the coherent information of the channel N comes close
to matching its input entropy. Hint: Use the data processing
inequality I.(R )C)g < I.(R )B)p and the subadditivity of von
Neumann entropy. It is convenient to consider the joint pure
state of the reference system, the output, and environments of
the dilations of N and D.

¢) Suppose that the decoding map recovers the channel input with
high fidelity,

F(DoN(Yra),¥rc) =1—e¢. (18)
Show that
H(R)p — I.(R )B)p < 2Hs(e) + 2clogy(d® — 1),  (19)

assuming that R and C' are d-dimensional. This is a quantum
version of Fano’s inequality, which we may use to derive an upper
bound on the quantum channel capacity of N.



