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Ph219C/CS219C

Exercises
Due: Thursday 18 May 2023

2.1 Distingushing two nonorthogonal pure states

a) Consider an ensemble in which the two pure states of a single qubit

|ϕ0〉 =

(
1
0

)
, |ϕ1〉 =

(
cos(θ/2)
sin(θ/2)

)
(1)

occur equiprobably, where θ ∈ [0, 2π). The two states both lie
in the xz plane of the Bloch sphere, and the angle between them
is θ. Suppose that a state is drawn from this ensemble and then
the Pauli observable

Z = |0〉〈0| − |1〉〈1| (2)

is measured. Compute the information gain achieved by this
measurement.

b) Now suppose that, instead of Z, the rotated observable

Z ′ = |ψ〉〈ψ| − |ψ⊥〉〈ψ⊥| (3)

is measured, where

|ψ〉 =

(
cos(θ/4− π/4)
sin(θ/4− π/4)

)
, |ψ⊥〉 =

(
cos(θ/4 + π/4)
sin(θ/4 + π/4)

)
. (4)

Compute the information gain in this case. Make a plot showing
the two functions of θ computed in parts (a) and (b). Which has
the higher information gain?

c) For θ = π/2 and for θ = 2π/3, find the numerical value of the
information gain, in bits, achieved by measuring Z and Z ′.

d) For the three pure states of a single qubit described in Section
10.6.4 of the notes,

|ϕ0〉 =

(
1
0

)
, |ϕ1〉 =

(
−1

2√
3
2

)
, |ϕ2〉 =

(
−1

2

−
√
3
2

)
, (5)
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consider the ensemble in which the three two-qubit states

|Φa〉 = |ϕa〉 ⊗ |ϕa〉, a = 1, 2, 3 (6)

occur equiprobably. A state is drawn from this ensemble, and
we are to measure the two-qubit state with the goal of gaining
information about the value of a. Instead of doing the collective
measurement described in the notes, consider an adaptive strat-
egy in which the two qubits are measured separately. On the first
qubit we perform the POVM with the three outcomes

Ea =
2

3
(I − |ϕa〉〈ϕa|) , a = 1, 2, 3; (7)

this measurement excludes one of the three states, but provides
no information to distinguish the other two states. Then we per-
form a measurement on the second qubit that is conditioned on
the outcome of the first measurement. Guided by the results of
(a), (b), (c), choose the most informative measurement to per-
form on the second qubit, and then compute the information
gain achieved by this adaptive procedure. Compare with the in-
formation gain achieved by the collective measurement described
in Section 10.6.4.

2.2 An ensemble of four pure states

a) Consider an ensemble in which the four pure states of a single qubit

|ϕ0〉 =

(
1
0

)
, |ϕ1〉 =

(
0
1

)
, |ϕ2〉 =

(
1√
2
1√
2

)
, |ϕ3〉 =

(
1√
2

− 1√
2

)
,

(8)
occur equiprobably. Compute the information gain achieved by
measuring Z for a state drawn from this ensemble.

b) Now compute the information gain achieved by measuring Z ′ for
θ = π/2. Compare with the result of (a).

2.3 An infinite ensemble

a) We now consider an ensemble with an infinite number of possible
pure states, namely the uniform distribution on θ ∈ [0, 2π) where

|ϕ(θ)〉 =

(
cos(θ/2)
sin(θ/2)

)
. (9)
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That is, when a state is sampled from this ensemble, a value in
the interval [θ, θ+ dθ] occurs with probability dθ/2π. How much
information do we gain about the value of θ by measuring Z?
To avoid having to take a difference of infinite quantities, answer
this question by computing the conditional entropy H(Y |θ) and
using

I(θ;Y ) = H(Y )−H(Y |θ), (10)

where Y denotes the probability distribution of measurement out-
comes.

b) Hoping to gain more information, let’s try a POVM with many
outcomes rather than a two-outcome orthogonal measurement.
Choose the POVM elements to be

Ek =
2

n
|φk〉〈φk|, k = 0, 1, 2, . . . , n−1, (11)

where

φk =
2πk

n
. (12)

Check the normalization condition∑
k

Ek = I, (13)

and compute the information gain achieved by this measurement.
Compare with the result of (a).

2.4 A quantum version of Fano’s inequality

a) In a d-dimensional system, suppose a density operator ρ approxi-
mates the pure state |ψ〉 with fidelity

F = 〈ψ|ρ|ψ〉 = 1− ε. (14)

Show that

H(ρ) ≤ H2(ε) + ε log2(d− 1). (15)

Hint: Recall that if a complete orthogonal measurement per-
formed on the state ρ has distribution of outcomes X, then
H(ρ) ≤ H(X), where H(X) is the Shannon entropy of X.
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b) As in §10.7.2, suppose that the noisy channel NA→B acts on the
pure state ψRA, and is followed by the decoding map DB→C .
Show that

H(R)ρ − Ic(R 〉B)ρ ≤ 2H(RC)σ, (16)

where

ρRB = N (ψRA), σRC = D ◦ N (ψRA). (17)

Therefore, if the decoder’s output (the state of RC) is almost
pure, then the coherent information of the channel N comes close
to matching its input entropy. Hint: Use the data processing
inequality Ic(R 〉C)σ ≤ Ic(R 〉B)ρ and the subadditivity of von
Neumann entropy. It is convenient to consider the joint pure
state of the reference system, the output, and environments of
the dilations of N and D.

c) Suppose that the decoding map recovers the channel input with
high fidelity,

F (D ◦ N (ψRA), ψRC) = 1− ε. (18)

Show that

H(R)ρ − Ic(R 〉B)ρ ≤ 2H2(ε) + 2ε log2(d
2 − 1), (19)

assuming that R and C are d-dimensional. This is a quantum
version of Fano’s inequality, which we may use to derive an upper
bound on the quantum channel capacity of N .


