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Ph219C/CS219C

Exercises
Due: Thursday 18 April 2024

1.1 Positivity of quantum relative entropy

a) Show that lnx ≤ x−1 for all positive real x, with equality iff x = 1.

b) The (classical) relative entropy of a probability distribution {p(x)}
relative to {q(x)} is defined as

D(p‖q) ≡
∑
x

p(x) (log p(x)− log q(x)) . (1)

Show that
D(p‖q) ≥ 0 , (2)

with equality iff the probability distributions are identical. Hint:
Apply the inequality from (a) to ln (q(x)/p(x)).

c) The quantum relative entropy of the density operator ρ with re-
spect to σ is defined as

D(ρ‖σ) = tr ρ (logρ− logσ) . (3)

Let {pi} denote the eigenvalues of ρ and {qa} denote the eigen-
values of σ. Show that

D(ρ‖σ) =
∑
i

pi

(
log pi −

∑
a

Dia log qa

)
, (4)

where Dia is a doubly stochastic matrix. Express Dia in terms of
the eigenstates of ρ and σ. (A matrix is doubly stochastic if its
entries are nonnegative real numbers, where each row and each
column sums to one.)

d) Show that if Dia is doubly stochastic, then (for each i)

log

(∑
a

Diaqa

)
≥
∑
a

Dia log qa , (5)

with equality only if Dia = 1 for some a.
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e) Show that
D(ρ‖σ) ≥ D(p‖r) , (6)

where ri =
∑

aDiaqa.

f) Show that D(ρ‖σ) ≥ 0, with equality iff ρ = σ.

1.2 Properties of Von Neumann entropy

a) Use nonnegativity of quantum relative entropy to prove the subad-
ditivity of Von Neumann entropy

H(ρAB) ≤ H(ρA) +H(ρB), (7)

with equality iff ρAB = ρA ⊗ ρB. Hint: Consider the relative
entropy of ρAB and ρA ⊗ ρB.

b) Use subadditivity to prove the concavity of the Von Neumann en-
tropy:

H(
∑
x

pxρx) ≥
∑
x

pxH(ρx) . (8)

Hint: Consider

ρAB =
∑
x

px (ρx)A ⊗ (|x〉〈x|)B , (9)

where the states {|x〉B} are mutually orthogonal.

c) Use the condition

H(ρAB) = H(ρA) +H(ρB) iff ρAB = ρA ⊗ ρB (10)

to show that, if all px’s are nonzero,

H

(∑
x

pxρx

)
=
∑
x

pxH(ρx) (11)

iff all the ρx’s are identical.

1.3 Monotonicity of quantum relative entropy

Quantum relative entropy has a property called monotonicity:

D(ρA‖σA) ≤ D(ρAB‖σAB); (12)

The relative entropy of two density operators on a system AB cannot
be less than the induced relative entropy on the subsystem A.
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a) Use monotonicity of quantum relative entropy to prove the strong
subadditivity property of Von Neumann entropy. Hint: On a
tripartite system ABC, consider the relative entropy of ρABC
and ρA ⊗ ρBC .

b) Use monotonicity of quantum relative entropy to show that the
action of a quantum channel N cannot increase relative entropy:

D(N (ρ)‖N (σ) ≤ D(ρ‖σ), (13)

Hint: Recall that any quantum channel has an isometric dilation.

1.4 Hypothesis testing

The (classical) relative entropy D(p‖q) charactizes the difference be-
tween the distributions p(x) and q(x) in a sense that is useful for
hypothesis testing. Suppose that an unknown distribution is sampled
n ≫ 1 times, and we find that outcome x occurs np(x) times. We
would like to assess whether these outcomes are compatible with sam-
pling from a hypothetical distribution q(x). As discussed in class, the
probability of obtaining this result if we are actually sampling from
q(x) may be estimated as

Probability = 2−nD(p‖q). (14)

a) Suppose

q(x) = p(x) + ε(x),
∑
x

ε(x) = 0. (15)

WriteD(p‖q) as a function of p(x) and ε(x), expanded to quadratic
order in ε(x). For this purpose, suppose that the logarithms in
the definition of relative entropy are natural logs rather than logs
to the base 2.

b) Suppose that

‖ε‖1 =
∑
x

|ε(x)| = δ. (16)

Using the quadratic approximation found in (a), find the minimal
value of D(p‖q) and the hypothetical distribution q(x) = p(x) +
ε(x) that minimizes it.

c) Suppose we toss a coin n times, and the outcome “heads” is ob-
served n

(
1
2 + δ

2

)
times. Hence p(heads) = 1

2+ δ
2 and p(tails) = 1

2−
δ
2 . Consider the hypothesis that the coin is unbiased: q(heads) =
q(tails) = 1

2 . Compute the relative entropy D(p‖q) to quadratic
order in δ.
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d) A coin is tossed 1 million times. Use the result of (c) to estimate the
probability of the coin coming up heads 505,000 times, assuming
that the coin is unbiased.

1.5 The first law of Von Neumann entropy

We’ll use S(ρ) = −tr (ρ lnρ) to denote the entropy of a density oper-
ator when using natural logarithms instead of logarithms with base 2.
As in §10.2.6, a d× d density matrix can be expressed as

ρ =
e−K

tr
(
e−K

) , (17)

where K is a d× d Hermitian matrix called the modular Hamiltonian
associated with ρ. (Under this definition of K, we have the freedom
to shift K by a multiple of the identity operator without changing ρ.)
We assume that ρ has full rank; that is, it has d positive eigenvalues.
We will see that when ρ changes slightly, the first-order change in S(ρ)
can be related to the change in the expectation value of K.

a) SupposeA(λ) is a bounded Hermitian operator smoothly parametrized
by the real number λ. Show that

d

dλ
(trAn) = n tr

(
dA

dλ
An−1

)
. (18)

Do not assume that dA/dλ commutes with A.

b) Suppose the density operator is perturbed slightly:

ρ→ ρ′ = ρ+ δρ. (19)

Since ρ and ρ′ are both normalized density operators, we have
tr (δρ) = 0. Show that

S(ρ′)− S(ρ) = tr
(
ρ′K

)
− tr (ρK) +O

(
(δρ)2

)
; (20)

that is,

δS = δ〈K〉 (21)

to first order in the small change in ρ. This statement generalizes
the first law of thermodynamics; for the case of a thermal density
operator with K = H/T (where H is the Hamiltonian and T is
the temperature), it becomes the more familiar statement

δE = δ〈H〉 = TδS. (22)


