
Quantum Information

Chapter 6. Quantum Algorithms

John Preskill

Institute for Quantum Information and Matter

California Institute of Technology

Updated November 2020

For further updates and additional chapters, see:

http://www.theory.caltech.edu/people/preskill/ph219/

Please send corrections to preskill@caltech.edu

Contents

page iv

Preface v

6 Quantum Algorithms 1

6.1 Some Quantum Algorithms 1

6.2 Periodicity 7

6.2.1 Finding the period 8

6.2.2 From FFT to QFT 10

6.3 Factoring 12

6.3.1 Factoring as period finding 12

6.3.2 RSA 16

6.4 Phase Estimation 18

6.5 Hidden Subgroup Problem 21

6.5.1 Discrete Log Problem 23

6.5.2 Diffie-Hellman key exchange 23

6.5.3 Finding abelian hidden subgroups 24

6.6 Quantum Searching 28

6.6.1 Generalized Search 31

6.7 The Grover Algorithm Is Optimal 32

6.8 Using quantum computers to simulate quantum physics 35

6.8.1 Simulating time evolution of local Hamiltonians 35

6.8.2 Estimating energy eigenvalues and preparing energy eigenstates 39

6.9 Classical simulation of slightly entangling quantum computations 42

6.10 QMA-completeness of the local Hamiltonian problem 46

6.10.1 3-SAT is NP-complete 47

6.10.2 Frustrated spin glasses 49

6.10.3 The quantum k-local Hamiltonian problem 50

6.10.4 Constructing and analyzing the Hamiltonian 51

This article forms one chapter of Quantum Information which will be first published by

Cambridge University Press.

c© in the Work, John Preskill, 2020

NB: The copy of the Work, as displayed on this website, is a draft, pre-publication copy

only. The final, published version of the Work can be purchased through Cambridge

University Press and other standard distribution channels. This draft copy is made

available for personal use only and must not be sold or re-distributed.

Preface

This is the 6th chapter of my book Quantum Information, based on the course I have

been teaching at Caltech since 1997. An early version of this chapter has been available

on the course website since 1998, but this version is substantially revised and expanded.

This is a working draft of Chapter 6, which I will continue to update. See the URL

on the title page for further updates and drafts of other chapters. Please send an email

to preskill@caltech.edu if you notice errors.

Eventually, the complete book will be published by Cambridge University Press. I

hesitate to predict the publication date — they have been far too patient with me.

6

Quantum Algorithms

6.1 Some Quantum Algorithms

While we are not yet able to show that BPP 6= BQP , there are three approaches that

we can pursue to study the differences between the capabilities of classical and quantum

computers:

(1) Nonexponential speedup. We can find quantum algorithms that are demonstra-

bly faster than the best classical algorithm, but not exponentially faster. These

algorithms shed no light on the conventional classification of complexity. But

they do demonstrate a type of separation between tasks that classical and quan-

tum computers can perform. Example: Grover’s quantum speedup of the search

of an unsorted data base.

(2) “Relativized” exponential speedup. We can consider the problem of analyzing

the contents of a “quantum black box.” The box performs an a priori unknown)

unitary transformation. We can prepare an input for the box, and we can measure

its output; our task is to find out what the box does. It is possible to prove that

quantum black boxes (computer scientists call them oracles1) exist with this

property: By feeding quantum superpositions to the box, we can learn what is

inside with an exponential speedup, compared to how long it would take if we

were only allowed classical inputs. A computer scientist would say that BPP 6=
BQP “relative to the oracle.” Example: Simon’s exponential quantum speedup

for finding the period of a 2 to 1 function.

(3) Exponential speedup for “apparently” hard problems. We can exhibit a

quantum algorithm that solves a problem in polynomial time, where the problem

appears to be hard classically, so that it is strongly suspected (though not proved)

that the problem is not in BPP . Example: Shor’s factoring algorithm.

Deutsch’s problem. We will discuss examples from all three approaches. But first,

we’ll warm up by recalling an example of a simple quantum algorithm that was previously

discussed in §1.5: Deutsch’s algorithm for distinguishing between constant and balanced

functions f : {0, 1} → {0, 1}. We are presented with a quantum black box that computes

f(x); that is, it enacts the two-qubit unitary transformation

Uf : |x〉|y〉 → |x〉|y ⊕ f(x)〉, (6.1)

which flips the second qubit iff f(first qubit) = 1. Our assignment is to determine

1 The term “oracle” signifies that the box responds to a query immediately; that is, the time it takes the box
to operate is not included in the complexity analysis.

2 Quantum Algorithms

whether f(0) = f(1). If we are restricted to the “classical” inputs |0〉 and |1〉, we need

to access the box twice (x = 0 and x = 1) to get the answer. But if we are allowed to

input a coherent superposition of these “classical” states, then once is enough.

The quantum circuit that solves the problem (discussed in §1.5) is:

|0〉

|1〉

MeasureH

H Uf

Hs

Here H denotes the Hadamard transform

H : |x〉 → 1√
2

∑
y

(−1)xy|y〉, (6.2)

or

H : |0〉 → 1√
2

(|0〉+ |1〉)

|1〉 → 1√
2

(|0〉 − |1〉); (6.3)

that is, H is the 2× 2 matrix

H :

(
1√
2

1√
2

1√
2
− 1√

2

)
. (6.4)

The circuit takes the input |0〉|1〉 to

|0〉|1〉 →1

2
(|0〉+ |1〉)(|0〉 − |1〉)

→1

2

(
(−1)f(0)|0〉+ (−1)f(1)|1〉

)
(|0〉 − |1〉)

→1

2

[(
(−1)f(0) + (−1)f(1)

)
|0〉

+
(

(−1)f(0) − (−1)f(1)
)
|1〉

]
1√
2

(|0〉 − |1〉). (6.5)

Then when we measure the first qubit, we find the outcome |0〉 with probability one if

f(0) = f(1) (constant function) and the outcome |1〉 with probability one if f(0) 6= f(1)

(balanced function).

A quantum computer enjoys an advantage over a classical computer because it can

invoke quantum parallelism. Because we input a superposition of |0〉 and |1〉, the output

is sensitive to both the values of f(0) and f(1), even though we ran the box just once.

Deutsch–Jozsa problem. Now we’ll consider some generalizations of Deutsch’s

problem. We will continue to assume that we are to analyze a quantum black box

(“quantum oracle”). But in the hope of learning something about complexity, we will

imagine that we have a family of black boxes, with variable input size. We are interested

in how the time needed to find out what is inside the box scales with the size of the

input (where “time” is measured by how many times we query the box).

6.1 Some Quantum Algorithms 3

In the Deutsch–Jozsa problem, we are presented with a quantum black box that com-

putes a function taking n bits to 1,

f : {0, 1}n → {0, 1}, (6.6)

and we have it on good authority that f is either constant (f(x) = c for all x) or

balanced (f(x) = 0 for exactly 1
2 of the possible input values). We are to solve the

decision problem: Is f constant or balanced?

In fact, we can solve this problem, too, accessing the box only once, using the same

circuit as for Deutsch’s problem (but with x expanded from one bit to n bits). We note

that if we apply n Hadamard gates in parallel to n-qubits.

H(n) = H ⊗H ⊗ . . .⊗H, (6.7)

then the n-qubit state transforms as

H(n) : |x〉 →
n∏
i=1

 1√
2

∑
yi={0,1}

(−1)xiyi |yi〉

 ≡ 1

2n/2

2n−1∑
y=0

(−1)x·y|y〉, (6.8)

where x, y represent n-bit strings, and x · y denotes the bitwise AND (or mod 2 scalar

product)

x · y = (x1 ∧ y1)⊕ (x2 ∧ y2)⊕ . . .⊕ (xn ∧ yn). (6.9)

Acting on the input (|0〉)n|1〉, the action of the circuit is

(|0〉)n|1〉 →

(
1

2n/2

2n−1∑
x=0

|x〉

)
1√
2

(|0〉 − |1〉)

→

(
1

2n/2

2n−1∑
x=0

(−1)f(x)|x〉

)
1√
2

(|0〉 − |1〉)

→

 1

2n

2n−1∑
x=0

2n−1∑
y=0

(−1)f(x)(−1)x·y|y〉

 1√
2

(|0〉 − |1〉) (6.10)

Now let us evaluate the sum

1

2n

2n−1∑
x=0

(−1)f(x)(−1)x·y. (6.11)

If f is a constant function, the sum is

(−1)f(x)

(
1

2n

2n−1∑
x=0

(−1)x·y

)
= (−1)f(x)δy,0; (6.12)

it vanishes unless y = 0. Hence, when we measure the n-bit register, we obtain the result

|y = 0〉 ≡ (|0〉)n with probability one. But if the function is balanced, then for y = 0,

the sum becomes

1

2n

2n−1∑
x=0

(−1)f(x) = 0, (6.13)

(because half of the terms are (+1) and half are (−1)). Therefore, the probability of

obtaining the measurement outcome |y = 0〉 is zero.

4 Quantum Algorithms

We conclude that one query of the quantum oracle suffices to distinguish constant and

balanced function with 100% confidence. The measurement result y = 0 means constant,

any other result means balanced.

So quantum computation solves this problem neatly, but is the problem really hard

classically? If we are restricted to classical input states |x〉, we can query the oracle

repeatedly, choosing the input x at random (without replacement) each time. Once we

obtain distinct outputs for two different queries, we have determined that the function

is balanced (not constant). But if the function is in fact constant, we will not be certain

it is constant until we have submitted 2n−1 + 1 queries and have obtained the same

response every time. In contrast, the quantum computation gives a definite response in

only one go. So in this sense (if we demand absolute certainty) the classical calculation

requires a number of queries exponential in n, while the quantum computation does not,

and we might therefore claim an exponential quantum speedup.

But perhaps it is not reasonable to demand absolute certainty of the classical com-

putation (particularly since any real quantum computer will be susceptible to errors, so

that the quantum computer will also be unable to attain absolute certainty.) Suppose

we are satisfied to guess balanced or constant, with a probability of success

P (success) > 1− ε. (6.14)

If the function is actually balanced, then if we make k queries, the probability of getting

the same response every time is p = 2−(k−1). If after receiving the same response k

consecutive times we guess that the function is balanced, then a quick Bayesian analysis

shows that the probability that our guess is wrong is 1
2k−1+1

(assuming that balanced

and constant are a priori equally probable). So if we guess after k queries, the probability

of a wrong guess is

1− P (success) =
1

2k−1(2k−1 + 1)
. (6.15)

Therefore, we can achieve success probability 1 − ε for ε−1 = 2k−1(2k−1 + 1) or k ∼
1
2 log

(
1
ε

)
. Since we can reach an exponentially good success probability with a polynomial

number of trials, it is not really fair to say that the problem is hard.

Bernstein–Vazirani problem. Exactly the same circuit can be used to solve another

variation on the Deutsch–Jozsa problem. Let’s suppose that our quantum black box

computes one of the functions fa, where

fa(x) = a · x, (6.16)

and a is an n-bit string. Our job is to determine a.

The quantum algorithm can solve this problem with certainty, given just one (n-qubit)

quantum query. For this particular function, the quantum state in eq. (6.10) becomes

1

2n

2n−1∑
x=0

2n−1∑
y=0

(−1)a·x(−1)x·y|y〉. (6.17)

But in fact

1

2n

2n−1∑
x=0

(−1)a·x(−1)x·y = δa,y, (6.18)

so this state is |a〉. We can execute the circuit once and measure the n-qubit register,

finding the n-bit string a with probability one.

6.1 Some Quantum Algorithms 5

If only classical queries are allowed, we acquire only one bit of information from each

query, and it takes n queries to determine the value of a. Therefore, we have a clear

separation between the quantum and classical difficulty of the problem. Even so, this

example does not probe the relation of BPP to BQP , because the classical problem is

not hard. The number of queries required classically is only linear in the input size, not

exponential.

Simon’s problem. Bernstein and Vazirani managed to formulate a variation on the

above problem that is hard classically, and so establish for the first time a “relativized”

separation between quantum and classical complexity. We will find it more instructive

to consider a simpler example proposed somewhat later by Daniel Simon.

Once again we are presented with a quantum black box, and this time we are assured

that the box computes a function

f : {0, 1}n → {0, 1}n, (6.19)

that is 2-to-1. Furthermore, the function has a “period” given by the n-bit string a; that

is

f(x) = f(y) iff y = x⊕ a, (6.20)

where here ⊕ denotes the bitwise XOR operation. (So a is the period if we regard x

as taking values in (Z2)n rather than Z2n .) This is all we know about f . Our job is to

determine the value of a.

Classically this problem is hard. We need to query the oracle an exponentially large

number of times to have any reasonable probability of finding a. We don’t learn anything

until we are fortunate enough to choose two queries x and y that happen to satisfy

x ⊕ y = a. Suppose, for example, that we choose 2n/4 queries. The number of pairs of

queries is less than (2n/4)2, and for each pair {x, y}, the probability that x ⊕ y = a is

2−n. Therefore, the probability of successfully finding a is less than

2−n(2n/4)2 = 2−n/2; (6.21)

even with exponentially many queries, the success probability is exponentially small.

If we wish, we can frame the question as a decision problem: Either f is a 1-1 function,

or it is 2-to-1 with some randomly chosen period a, each occurring with an a priori

probability 1
2 . We are to determine whether the function is 1-to-1 or 2-to-1. Then, after

2n/4 classical queries, our probability of making a correct guess is

P (success) <
1

2
+

1

2n/2
, (6.22)

which does not remain bounded away from 1
2 as n gets large.

But with quantum queries the problem is easy! The circuit we use is essentially the

same as above, but now both registers are expanded to n qubits. We prepare the equally

weighted superposition of all n-bit strings (by acting on |0〉 with H(n)), and then we

query the oracle:

Uf :

(
2n−1∑
x=0

|x〉

)
|0〉 →

2n−1∑
x=0

|x〉|f(x)〉. (6.23)

Now we measure the second register. (This step is not actually necessary, but I include

it here for the sake of pedagogical clarity.) The measurement outcome is selected at

random from the 2n−1 possible values of f(x), each occurring equiprobably. Suppose the

6 Quantum Algorithms

outcome is f(x0). Then because both x0 and x0⊕ a, and only these values, are mapped

by f to f(x0), we have prepared the state

1√
2

(|x0〉+ |x0 ⊕ a〉) (6.24)

in the first register.

Now we want to extract some information about a. Clearly it would do us no good to

measure the register (in the computational basis) at this point. We would obtain either

the outcome x0 or x0⊕a, each occurring with probability 1
2 , but neither outcome would

reveal anything about the value of a.

But suppose we apply the Hadamard transform H(n) to the register before we mea-

sure:

H(n) :
1√
2

(|x0〉+ |x0 + a〉)

→ 1

2(n+1)/2

2n−1∑
y=0

[
(−1)x0·y + (−1)(x0⊕a)·y

]
|y〉

=
1

2(n−1)/2

∑
a·y=0

(−1)x0·y|y〉. (6.25)

If a · y = 1, then the terms in the coefficient of |y〉 interfere destructively. Hence only

states |y〉 with a · y = 0 survive in the sum over y. The measurement outcome, then, is

selected at random from all possible values of y such that a · y = 0, each occurring with

probability 2−(n−1).

We run this algorithm repeatedly, each time obtaining another value of y satisfying

y · a = 0. Once we have found n such linearly independent values {y1, y2, y3 . . . yn} (that

is, linearly independent over (Z2)n), we can solve the equations

y1 · a = 0

y2 · a = 0

...

yn · a = 0, (6.26)

to determine a unique value of a, and our problem is solved. It is easy to see that with

O(n) repetitions, we can attain a success probability that is exponentially close to 1.

So we finally have found an example where, given a particular type of quantum oracle,

we can solve a problem in polynomial time by exploiting quantum superpositions, while

exponential time is required if we are limited to classical queries. As a computer scientist

might put it:

There exists an oracle relative to which BQP 6= BPP .

Note that whenever we compare classical and quantum complexity relative to an

oracle, we are considering a quantum oracle (queries and replies are states in Hilbert

space), but with a preferred orthonormal basis. If we submit a classical query (an element

of the preferred basis) we always receive a classical response (another basis element).

The issue is whether we can achieve a significant speedup by choosing more general

quantum queries.

6.2 Periodicity 7

6.2 Periodicity

So far, the one case for which we have found an exponential separation between the speed

of a quantum algorithm and the speed of the corresponding classical algorithm is the

case of Simon’s problem. Simon’s algorithm exploits quantum parallelism to speed up

the search for the period of a function. Its success encourages us to seek other quantum

algorithms designed for other kinds of period finding.

Simon studied periodic functions taking values in (Z2)n. For that purpose the n-bit

Hadamard transform H(n) was a powerful tool. If we wish instead to study periodic func-

tions taking values in Z2n , the (discrete) Fourier transform will be a tool of comparable

power.

The moral of Simon’s problem is that, while finding needles in a haystack may be

difficult, finding periodically spaced needles in a haystack can be far easier. For example,

if we scatter a photon off of a periodic array of needles, the photon is likely to be scattered

in one of a set of preferred directions, where the Bragg scattering condition is satisfied.

These preferred directions depend on the spacing between the needles, so by scattering

just one photon, we can already collect some useful information about the spacing. We

should further explore the implications of this metaphor for the construction of efficient

quantum algorithms.

So imagine a quantum oracle that computes a function

f : {0, 1}n → {0, 1}m, (6.27)

that has an unknown period r, where r is a positive integer satisfying

1� r � 2n. (6.28)

That is,

f(x) = f(x+mr), (6.29)

where m is any integer such that x and x+mr lie in {0, 1, 2, . . . , 2n− 1}. We are to find

the period r. Classically, this problem is hard. If r is, say, of order 2n/2, we will need to

query the oracle of order 2n/4 times before we are likely to find two values of x that are

mapped to the same value of f(x), and hence learn something about r. But we will see

that there is a quantum algorithm that finds r in time poly (n).

Even if we know how to compute efficiently the function f(x), it may be a hard

problem to determine its period. Our quantum algorithm can be applied to finding, in

poly(n) time, the period of any function that we can compute in poly(n) time. Efficient

period finding allows us to efficiently solve a variety of (apparently) hard problems, such

as factoring an integer, or evaluating a discrete logarithm.

The key idea underlying quantum period finding is that the Fourier transform can

be evaluated by an efficient quantum circuit (as discovered by Peter Shor). The quan-

tum Fourier transform (QFT) exploits the power of quantum parallelism to achieve an

exponential speedup of the well-known (classical) fast Fourier transform (FFT). Since

the FFT has such a wide variety of applications, perhaps the QFT will also come into

widespread use someday.

8 Quantum Algorithms

6.2.1 Finding the period

The QFT is the unitary transformation that acts on the computational basis according

to

QFT : |x〉 → 1√
N

N−1∑
y=0

e2πixy/N |y〉, (6.30)

where N = 2n. For now let’s suppose that we can perform the QFT efficiently, and see

how it enables us to extract the period of f(x).

Emulating Simon’s algorithm, we first query the oracle with the input 1√
N

∑
x |x〉

(easily prepared by applying H(n) to |0〉), and so prepare the state

1√
N

N−1∑
x=0

|x〉|f(x)〉. (6.31)

Then we measure the output register, obtaining the result |f(x0)〉 for some 0 ≤ x0 < r.

This measurement prepares in the input register the coherent superposition of the A

values of x that are mapped to f(x0):

1√
A

A−1∑
j=0

|x0 + jr〉, (6.32)

where

N − r ≤ x0 + (A− 1)r < N, (6.33)

or

A− 1 <
N

r
< A+ 1. (6.34)

Actually, the measurement of the output register is unnecessary. If it is omitted, the state

of the input register is an incoherent superposition (summed over x0 ∈ {0, 1, . . . r − 1})
of states of the form eq. (6.32). The rest of the algorithm works just as well acting on

this initial state.

Now our task is to extract the value of r from the state eq. (6.32) that we have

prepared. Were we to measure the input register by projecting onto the computational

basis at this point, we would learn nothing about r. Instead (cf. Simon’s algorithm), we

should Fourier transform first and then measure.

By applying the QFT to the state eq. (6.32) we obtain

1√
NA

N−1∑
y=0

e2πix0y/N
A−1∑
j=0

e2πijry/N |y〉. (6.35)

If we now measure in the computational basis, the probability of obtaining the outcome

y is

Prob(y) =
A

N

∣∣∣∣∣∣ 1

A

A−1∑
j=0

e2πijry/N

∣∣∣∣∣∣
2

. (6.36)

This distribution strongly favors values of y such that yr/N is close to an integer. For

6.2 Periodicity 9

example, if N/r happened to be an integer (and therefore equal to A), we would have

Prob(y) =
1

r

∣∣∣∣∣∣ 1

A

A−1∑
j=0

e2πijy/A

∣∣∣∣∣∣ =

1
r y = A · (integer)

0 otherwise.
(6.37)

More generally, we may sum the geometric series

A−1∑
j=0

eiθj =
eiAθ − 1

eiθ − 1
, (6.38)

where

θy =
2πyr(mod N)

N
. (6.39)

There are precisely r values of y in {0, 1, . . . , N − 1} that satisfy

−r
2
≤ yr(mod N) ≤ r

2
. (6.40)

(To see this, imagine marking the multiples of r and N on a number line ranging from

0 to rN − 1. For each multiple of N , there is a multiple of r no more than distance r/2

away.) For each of these values, the corresponding θy satisfies.

−π r
N
≤ θy ≤ π

r

N
. (6.41)

Now, since A − 1 < N
r , for these values of θy all of the terms in the sum over j in eq.

(6.38) lie in the same half-plane, so that the terms interfere constructively and the sum

is substantial.

We know that

|1− eiθ| ≤ |θ|, (6.42)

because the straight-line distance from the origin is less than the arc length along the

circle, and for A|θ| ≤ π, we know that

|1− eiAθ| ≥ 2A|θ|
π

, (6.43)

because we can see (either graphically or by evaluating its derivative) that this distance

is a convex function. We actually have A < N
r + 1, and hence Aθy < π

(
1 + r

N

)
, but by

applying the above bound to∣∣∣∣∣ei(A−1)θ − 1

eiθ − 1
+ ei(A−1)θ

∣∣∣∣∣ ≥
∣∣∣∣∣ei(A−1)θ − 1

eiθ − 1

∣∣∣∣∣− 1, (6.44)

we can still conclude that∣∣∣∣eiAθ − 1

eiθ − 1

∣∣∣∣ ≥ 2(A− 1)|θ|
π|θ|

− 1 =
2

π
A−

(
1 +

2

π

)
. (6.45)

Ignoring a possible correction of order 2/A, then, we find

Prob(y) ≥
(

4

π2

)
1

r
, (6.46)

10 Quantum Algorithms

for each of the r values of y that satisfy eq. (6.40). Therefore, with a probability of at

least 4/π2, the measured value of y will satisfy

k
N

r
− 1

2
≤ y ≤ kN

r
+

1

2
, (6.47)

or
k

r
− 1

2N
≤ y

N
≤ k

r
+

1

2N
, (6.48)

where k is an integer chosen from {0, 1, . . . , r − 1}. The output of the computation is

reasonable likely to be within distance 1/2 of an integer multiple of N/r.

Suppose that we know that r < M � N . Thus N/r is a rational number with a

denominator less than M . Two distinct rational numbers, each with denominator less

than M , can be no closer together than 1/M2, since a
b −

c
d = ad−bc

bd . If the measurement

outcome y satisfies eq. (6.47), then there is a unique value of k/r (with r < M) deter-

mined by y/N , provided that N ≥ M2. This value of k/r can be efficiently extracted

from the measured y/N , by the continued fraction method.

Now, with probability exceeding 4/π2, we have found a value of k/r where k is selected

(roughly equiprobably) from {0, 1, 2, . . . , r − 1}. It is reasonably likely that k and r are

relatively prime (have no common factor), so that we have succeeded in finding r. With

a query of the oracle, we may check whether f(x) = f(x+ r). But if GCD(k, r) 6= 1, we

have found only a factor (r1) of r.

If we did not succeed, we could test some nearby values of y (the measured value

might have been close to the range −r/2 ≤ yr(mod N) ≤ r/2 without actually lying

inside), or we could try a few multiples of r (the value of GCD(k, r), if not 1, is probably

not large). That failing, we resort to a repetition of the quantum circuit, this time (with

probability at least 4/π2) obtaining a value k′/r. Now k′, too, may have a common

factor with r, in which case our procedure again determines a factor (r2) of r. But it is

reasonably likely that GCD(k, k′) = 1, in which case r = LCM(r1, r2). Indeed, we can

estimate the probability that randomly selected k and k′ are relatively prime as follows:

Since a prime number p divides a fraction 1/p of all numbers, the probability that p

divides both k and k′ is 1/p2. And k and k′ are coprime if and only if there is no prime

p that divides both. Therefore,

Prob(k, k′ coprime) =
∏

prime p

(
1− 1

p2

)
=

1

ζ(2)
=

6

π2
' .607 (6.49)

(where ζ(z) denotes the Riemann zeta function). Therefore, we are likely to succeed in

finding the period r after some constant number (independent of N) of repetitions of

the algorithm.

6.2.2 From FFT to QFT

Now let’s consider the implementation of the quantum Fourier transform. The Fourier

transform ∑
x

f(x)|x〉 →
∑
y

(
1√
N

∑
x

e2πixy/Nf(x)

)
|y〉, (6.50)

is multiplication by an N × N unitary matrix, where the (x, y) matrix element is

(e2πi/N)xy. Naively, this transform requires O(N2) elementary operations. But there is a

6.2 Periodicity 11

well-known and very useful (classical) procedure that reduces the number of operations

to O(N logN). Assuming N = 2n, we express x and y as binary expansions

x = xn−1 · 2n−1 + xn−2 · 2n−2 + . . .+ x1 · 2 + x0

y = yn−1 · 2n−1 + yn−2 · 2n−2 + . . .+ y1 · 2 + y0. (6.51)

In the product of x and y, we may discard any terms containing n or more powers of 2,

as these make no contribution to e2πixy/2n. Hence

xy

2n
≡ yn−1(.x0) + yn−2(.x1x0) + yn−3(.x2x1x0) + . . .

+ y1(.xn−2xn−3 . . . x0) + y0(.xn−1xn−2 . . . x0), (6.52)

where the factors in parentheses are binary expansions; e.g.,

.x2x1x0 =
x2

2
+
x1

22
+
x0

23
. (6.53)

We can now evaluate

f̃(x) =
1√
N

∑
y

e2πixy/Nf(y), (6.54)

for each of the N values of x. But the sum over y factors into n sums over yk = 0, 1,

which can be done sequentially in a time of order n.

With quantum parallelism, we can do far better. From eq. (6.52) we obtain

QFT :|x〉 → 1√
N

∑
y

e2πixy/N |y〉

=
1√
2n

(
|0〉+ e2πi(.x0)|1〉

)(
|0〉+ e2πi(.x1x0)|1〉

)
. . .
(
|0〉+ e2πi(.xn−1xn−2...x0)|1〉

)
. (6.55)

The QFT takes each computational basis state to an unentangled state of n qubits;

thus we anticipate that it can be efficiently implemented. Indeed, let’s consider the case

n = 3. We can readily see that the circuit

|x2〉

|x1〉

|x0〉

|y0〉

|y1〉

|y2〉

s
s s

H R1 R2

H R1

H

does the job (but note that the order of the bits has been reversed in the output). Each

Hadamard gate acts as

H : |xk〉 →
1√
2

(
|0〉+ e2πi(.xk)|1〉

)
. (6.56)

The other contributions to the relative phase of |0〉 and |1〉 in the kth qubit are provided

by the two-qubit conditional rotations, where

Rd =

(
1 0

0 eiπ/2
d

)
, (6.57)

12 Quantum Algorithms

and d = (k − j) is the “distance” between the qubits.

In the case n = 3, the QFT is constructed from three H gates and three controlled-R

gates. For general n, the obvious generalization of this circuit requires n H gates and(
n
2

)
= 1

2n(n−1) controlled R’s. A two qubit gate is applied to each pair of qubits, again

with controlled relative phase π/2d, where d is the “distance” between the qubits. Thus

the circuit family that implements QFT has a size of order (logN)2.

We can reduce the circuit complexity to linear in logN if we are willing to settle for

an implementation of fixed accuracy, because the two-qubit gates acting on distantly

separated qubits contribute only exponentially small phases. If we drop the gates acting

on pairs with distance greater than m, than each term in eq. (6.52) is replaced by an

approximation to m bits of accuracy; the total error in xy/2n is certainly no worse than

n2−m, so we can achieve accuracy ε in xy/2n withm ≥ log n/ε. If we retain only the gates

acting on qubit pairs with distance m or less, then the circuit size is mn ∼ n log n/ε.

In fact, if we are going to measure in the computational basis immediately after

implementing the QFT (or its inverse), a further simplification is possible – no two-qubit

gates are needed at all! We first remark that the controlled – Rd gate acts symmetrically

on the two qubits – it acts trivially on |00〉, |01〉, and |10〉, and modifies the phase of |11〉
by eiθd . Thus, we can interchange the “control” and “target” bits without modifying the

gate. With this change, our circuit for the 3-qubit QFT can be redrawn as:

|x2〉

|x1〉

|x0〉

|y0〉

|y1〉

|y2〉

s s
s

H

R1 H

R2 R1 H

Once we have measured |y0〉, we know the value of the control bit in the controlled-R1

gate that acted on the first two qubits. Therefore, we will obtain the same probability

distribution of measurement outcomes if, instead of applying controlled-R1 and then

measuring, we instead measure y0 first, and then apply (R1)y0 to the next qubit, condi-

tioned on the outcome of the measurement of the first qubit. Similarly, we can replace

the controlled-R1 and controlled-R2 gates acting on the third qubit by the single qubit

rotation

(R2)y0(R1)y1 , (6.58)

(that is, a rotation with relative phase π(.y1y0)) after the values of y1 and y0 have been

measured.

Altogether then, if we are going to measure after performing the QFT, only n

Hadamard gates and n− 1 single-qubit rotations are needed to implement it. The QFT

is remarkably simple!

6.3 Factoring

6.3.1 Factoring as period finding

What does the factoring problem (finding the prime factors of a large composite positive

integer) have to do with periodicity? There is a well-known (randomized) reduction of

6.3 Factoring 13

factoring to determining the period of a function. Although this reduction is not directly

related to quantum computing, we will discuss it here for completeness, and because the

prospect of using a quantum computer as a factoring engine has generated so much

excitement.

Suppose we want to find a factor of the n-bit number N . Select pseudo-randomly

a < N , and compute the greatest common divisor GCD(a,N), which can be done

efficiently (in a time of order (logN)3) using the Euclidean algorithm. If GCD(a,N) 6= 1

then the GCD is a nontrivial factor of N , and we are done. So suppose GCD(a,N) = 1.

[Aside: The Euclidean algorithm. To compute GCD(N1, N2) (for N1 > N2) first

divide N1 by N2 obtaining remainder R1. Then divide N2 by R1, obtaining

remainder R2. Divide R1 by R2, etc. until the remainder is 0. The last nonzero

remainder is R = GCD(N1, N2). To see that the algorithm works, just note that

(1) R divides all previous remainders and hence also N1 and N2, and (2) any

number that divides N1 and N2 will also divide all remainders, including R. A

number that divides both N1 and N2, and also is divided by any number that

divides both N1 and N2 must be GCD(N1, N2). To see how long the Euclidean

algorithm takes, note that

Rj = qRj+1 +Rj+2, (6.59)

where q ≥ 1 and Rj+2 < Rj+1; therefore Rj+2 < 1
2Rj . Two divisions reduce

the remainder by at least a factor of 2, so no more than 2 logN1 divisions are

required, with each division using O((logN)2) elementary operations; the total

number of operations is O((logN)3).]

The numbers a < N coprime to N (having no common factor with N) form a finite

group under multiplication mod N . [Why? We need to establish that each element a has

an inverse. But for given a < N coprime to N , each ab (mod N) is distinct, as b ranges

over all b < N coprime to N . (If N divides ab − ab′, it must divide b − b′.) Therefore,

for some b, we must have ab ≡ 1 (mod N); hence the inverse of a exists.] Each element

a of this finite group has a finite order r, the smallest positive integer such that

ar ≡ 1 (mod N). (6.60)

The order of a mod N is the period of the function

fN,a(x) = ax (mod N). (6.61)

We know there is an efficient quantum algorithm that can find the period of a function;

therefore, if we can compute fN,a efficiently, we can find the order of a efficiently.

Computing fN,a may look difficult at first, since the exponent x can be very large.

But if x < 2m and we express x as a binary expansion

x = xm−1 · 2m−1 + xm−2 · 2m−2 + . . .+ x0, (6.62)

we have

ax(mod N) = (a2m−1
)xm−1(a2m−2

)xm−2 . . . (a)x0 (mod N). (6.63)

Each a2j has a large exponent, but can be computed efficiently by a classical computer,

using repeated squaring

a2j (mod N) = (a2j−1
)2 (mod N). (6.64)

14 Quantum Algorithms

So only m − 1 (classical) mod N multiplications are needed to assemble a table of all

a2j ’s.

The computation of ax(mod N) is carried out by executing a routine:

INPUT 1

For j = 0 to m− 1, if xj = 1, MULTIPLY a2j .

This routine requires at most m mod N multiplications, each requiring of order

(logN)2 elementary operations. (Using tricks for performing efficient multiplication

of very large numbers, the number of elementary operations can be reduced to

O(logN log logN log log logN); thus, asymptotically for large N , a circuit family with

size O(log2N log logN log log logN) can compute fN,a.) Since r < N , we will have a

reasonable chance of success at extracting the period if we choose m ∼ 2 logN . Hence,

the computation of fN,a can be carried out by a circuit family of size O((logN)3).

Schematically, the circuit has the structure:

|x2〉

|x1〉

|x0〉

|1〉

sss
a a2 a4

Multiplication by a2j is performed if the control qubit xj has the value 1.

Suppose we have found the period r of a mod N . Then if r is even, we have

N divides
(
a
r
2 + 1

)(
a
r
2 − 1

)
. (6.65)

We know that N does not divide ar/2−1; if it did, the order of a would be ≤ r/2. Thus,

if it is also the case that N does not divide ar/2 + 1, or

ar/2 6= −1 (mod N), (6.66)

then N must have a nontrivial common factor with each of ar/2 ± 1. Therefore,

GCD(N, ar/2 + 1) 6= 1 is a factor (that we can find efficiently by a classical compu-

tation), and we are done.

We see that, once we have found r, we succeed in factoring N unless either (1) r is

odd or (2) r is even and ar/2 ≡ −1 (mod N). How likely is success?

Let’s suppose that N is a product of two prime factors p1 6= p2,

N = p1p2 (6.67)

(this is actually the least favorable case). For each a < p1p2, there exist unique a1 < p1

and a2 < p2 such that

a ≡ a1 (mod p1)

a ≡ a2 (mod p2). (6.68)

Choosing a random a < N is, therefore, equivalent to choosing random a,< p1 and

a2 < p2.

6.3 Factoring 15

[Aside: We’re using the Chinese Remainder Theorem. The a solving eq. (6.68) is

unique because if a and b are both solutions, then both p1 and p2 must divide

a − b. The solution exists because every a < p1p2 solves eq. (6.68) for some a1

and a2. Since there are exactly p1p2 ways to choose a1 and a2, and exactly p1p2

ways to choose a, uniqueness implies that there is an a corresponding to each

pair a1, a2.]

Now let r1 denote the order of a1 mod p1 and r2 denote the order of a2 mod p2. The

Chinese remainder theorem tells us that ar ≡ 1 (mod p1p2) is equivalent to

ar1 ≡ 1 (mod p1)

ar2 ≡ 1 (mod p2). (6.69)

Therefore r = LCM(r1, r2). If r1 and r2 are both odd, then so is r, and we lose.

But if either r1 or r2 is even, then so is r, and we are still in the game. If

ar/2 ≡ −1 (mod p1)

ar/2 ≡ −1 (mod p2). (6.70)

Then we have ar/2 ≡ −1 (mod p1p2) and we still lose. But if either

ar/2 ≡ −1 (mod p1)

ar/2 ≡ 1 (mod p2), (6.71)

or

ar/2 ≡ 1 (mod p1)

ar/2 ≡ −1 (mod p2), (6.72)

then ar/2 6≡ −1(mod p1p2) and we win. (Of course, ar/2 ≡ 1 (mod p1) and ar/2 ≡
1 (mod p2) is not possible, for that would imply ar/2 ≡ 1 (mod p1p2), and r could not

be the order of a.)

Suppose that

r1 = 2c1 · odd

r2 = 2c2 · odd, (6.73)

where c1 > c2. Then r = LCM(r1, r2) = 2r2· integer, so that ar/2 ≡ 1 (mod p2) and

eq. (6.71) is satisfied – we win! Similarly c2 > c1 implies eq. (6.72) – again we win. But

for c1 = c2, r = r1 · (odd) = r2 · (odd′) so that eq. (6.70) is satisfied – in that case we

lose.

Okay – it comes down to: for c1 = c2 we lose, for c1 6= c2 we win. How likely is c1 6= c2?

It helps to know that the multiplicative group mod p is cyclic – it contains a primitive

element of order p− 1, so that all elements are powers of the primitive element. [Why?

The integers mod p are a finite field. If the group were not cyclic, the maximum order

of the elements would be q < p− 1, so that xq ≡ 1 (mod p) would have p− 1 solutions.

But that can’t be: in a finite field there are no more than q qth roots of unity.]

Suppose that p−1 = 2k · s, where s is odd, and consider the orders of all the elements

of the cyclic group of order p − 1. For brevity, we’ll discuss only the case k = 1, which

is the least favorable case for us. Then if b is a primitive (order 2s) element, the even

powers of b have odd order, and the odd powers of b have order 2· (odd). In this case,

16 Quantum Algorithms

then, r = 2c· (odd) where c ∈ {0, 1}, each occuring equiprobably. Therefore, if p1 and

p2 are both of this (unfavorable) type, and a1, a2 are chosen randomly, the probability

that c1 6= c2 is 1
2 . Hence, once we have found r, our probability of successfully finding

a factor is at least 1
2 , if N is a product of two distinct primes. If N has more than two

distinct prime factors, our odds are even better. The method fails if N is a prime power,

N = pα, but prime powers can be efficiently factored by other methods.

6.3.2 RSA

Does anyone care whether factoring is easy or hard? Well, yes, some people do.

The presumed difficulty of factoring is the basis of the security of the widely used

RSA (for Rivest, Shamir, and Adleman) scheme for public key cryptography, which you

may have used yourself if you have ever sent your credit card number over the internet.

The idea behind public key cryptography is to avoid the need to exchange a secret key

(which might be intercepted and copied) between the parties that want to communicate.

The enciphering key is public knowledge. But using the enciphering key to infer the

deciphering key involves a prohibitively difficult computation. Therefore, Bob can send

the enciphering key to Alice and everyone else, but only Bob will be able to decode

the message that Alice (or anyone else) encodes using the key. Encoding is a “one-way

function” that is easy to compute but very hard to invert.

(Of course, Alice and Bob could have avoided the need to exchange the public key if

they had decided on a private key in their previous clandestine meeting. For example,

they could have agreed to use a long random string as a one-time pad for encoding and

decoding. But perhaps Alice and Bob never anticipated that they would someday need

to communicate privately. Or perhaps they did agree in advance to use a one-time pad,

but they have now used up their private key, and they are loath to reuse it for fear that

an eavesdropper might then be able to break their code. Now they are too far apart to

safely exchange a new private key; public key cryptography appears to be their most

secure option.)

To construct the public key Bob chooses two large prime numbers p and q. But he

does not publicly reveal their values. Instead he computes the product

N = pq. (6.74)

Since Bob knows the prime factorization of N , he also knows the value of the Euler

function ϕ(N) – the number of number less than N that are coprime with N . In the

case of a product of two primes it is

ϕ(N) = N − p− q + 1 = (p− 1)(q − 1), (6.75)

(only multiples of p and q share a factor with N). It is easy to find ϕ(N) if you know

the prime factorization of N , but it is hard if you know only N .

Bob then pseudo-randomly selects e < ϕ(N) that is coprime with ϕ(N). He reveals

to Alice (and anyone else who is listening) the value of N and e, but nothing else.

Alice converts her message to ASCII, a number a < N . She encodes the message by

computing

b = f(a) = ae(mod N), (6.76)

which she can do quickly by repeated squaring. How does Bob decode the message?

6.3 Factoring 17

Suppose that a is coprime to N (which is overwhelmingly likely if p and q are very

large – anyway Alice can check before she encodes). Then

aϕ(N) ≡ 1 (mod N) (6.77)

(Euler’s theorem). This is so because the numbers less than N and coprime to N form a

group (of order ϕ(N)) under mod N multiplication. The order of any group element must

divide the order of the group (the powers of a form a subgroup). Since GCD(e, ϕ(N) = 1,

we know that e has a multiplicative inverse d = e−1 mod ϕ(N):

ed ≡ 1 (mod ϕ(N)). (6.78)

The value of d is Bob’s closely guarded secret; he uses it to decode by computing:

f−1(b) = bd (mod N)

= aed (mod N)

= a · (aϕ(N))integer (mod N)

= a (mod N). (6.79)

[Aside: How does Bob compute d = e−1? The multiplicative inverse is a byproduct

of carrying out the Euclidean algorithm to compute GCD(e, ϕ(N)) = 1. Tracing

the chain of remainders from the bottom up, starting with Rn = 1:

1 = Rn = Rn−2 − qn−1Rn−1

Rn−1 = Rn−3 − qn−2Rn−2

Rn−2 = Rn−4 − qn−3Rn−3

etc. . . . (6.80)

(where the qj ’s are the quotients), so that

1 = (1 + qn−1qn−2)Rn−2 − qn−1Rn−3

1 = (−qn−1 − qn−3(1 + qn−1qn−2))Rn−3

+ (1 + qn−1qn−2)Rn−4,

etc. (6.81)

Continuing, we can express 1 as a linear combination of any two successive

remainders; eventually we work our way up to

1 = d · e+ q · ϕ(N), (6.82)

and identify d as e−1 (mod ϕ(N)).]

Of course, if Eve has a superfast factoring engine, the RSA scheme is insecure. She

factors N , finds ϕ(N), and quickly computes d. In fact, she does not really need to factor

N ; it is sufficient to compute the order modulo N of the encoded message ae (mod N).

Since e is coprime with ϕ(N), the order of ae (mod N) is the same as the order of a

(both elements generate the same orbit, or cyclic subgroup). Once the order Ord(a) is

known, Eve computes d̃ such that

d̃e ≡ 1 (mod Ord(a)) (6.83)

so that

(ae)d̃ ≡ a · (aOrd(a))integer (mod N) ≡ a (mod N), (6.84)

18 Quantum Algorithms

and Eve can decipher the message. If our only concern is to defeat RSA, we run the

Shor algorithm to find r = Ord(ae), and we needn’t worry about whether we can use r

to extract a factor of N or not.

How important are such prospective cryptographic applications of quantum comput-

ing? When fast quantum computers are readily available, concerned parties can stop

using RSA, or can use longer keys to stay a step ahead of contemporary technology.

However, people with secrets sometimes want their messages to remain confidential for

a while (30 years?). They may not be satisfied by longer keys if they are not confident

about the pace of future technological advances.

And if they shun RSA, what will they use instead? Not so many suitable one-way

functions are known, and others besides RSA are (or may be) vulnerable to a quantum

attack. So there really is a lot at stake. If fast large scale quantum computers become

available, the cryptographic implications may be far reaching.

But while quantum theory taketh away, quantum theory also giveth; quantum com-

puters may compromise public key schemes, but also offer an alternative: secure quantum

key distribution, as discussed in Chapter 4.

6.4 Phase Estimation

There is an alternative way to view the factoring algorithm (due to Kitaev) that deepens

our insight into how it works: we can factor because we can measure efficiently and

accurately the eigenvalue of a certain unitary operator.

Consider a < N coprime to N , let x take values in {0, 1, 2, . . . , N − 1}, and let Ua

denote the unitary operator

Ua : |x〉 → |ax (mod N)〉. (6.85)

This operator is unitary (a permutation of the computational basis) because multipli-

cation by a mod N is invertible.

If the order of a mod N is r, then

U r
a = 1. (6.86)

It follows that all eigenvalues of Ua are rth roots of unity:

λk = e2πik/r, k ∈ {0, 1, 2, . . . , r − 1}. (6.87)

The corresponding eigenstates are

|λk〉 =
1√
r

r−1∑
j=0

e−2πikj/r|ajx0(mod N)〉; (6.88)

associated with each orbit of length r generated by multiplication by a, there are r

mutually orthogonal eigenstates.

Ua is not hermitian, but its phase (the Hermitian operator that generates Ua) is an

observable quantity. Suppose that we can perform a measurement that projects onto

the basis of Ua eigenstates, and determines a value λk selected equiprobably from the

possible eigenvalues. Hence the measurement determines a value of k/r, as does Shor’s

procedure, and we can proceed to factor N with a reasonably high success probability.

But how do we measure the eigenvalues of a unitary operator?

Suppose that we can execute the unitary U conditioned on a control bit, and consider

the circuit:

6.4 Phase Estimation 19

|0〉

|λ〉

Measure

|λ〉

sH H

U

Here |λ〉 denotes an eigenstate of U with eigenvalue λ (U |λ〉 = λ|λ〉). Then the action

of the circuit on the control bit is

|0〉 → 1√
2

(|0〉+ |1〉)→ 1√
2

(|0〉+ λ|1〉)

→ 1

2
(1 + λ)|0〉+

1

2
(1− λ)|1〉. (6.89)

Then the outcome of the measurement of the control qubit has probability distribution

Prob(0) =

∣∣∣∣12(1 + λ)

∣∣∣∣2 = cos2(πφ)

Prob(1) =

∣∣∣∣12(1− λ)

)
|2 = sin2(πφ), (6.90)

where λ = e2πiφ.

As we have discussed previously (for example in connection with Deutsch’s problem),

this procedure distinguishes with certainty between the eigenvalues λ = 1 (φ = 0) and

λ = −1 (φ = 1/2). But other possible values of λ can also be distinguished, albeit

with less statistical confidence. For example, suppose the state on which U acts is a

superposition of U eigenstates

α1|λ1〉+ α2|λ2〉. (6.91)

And suppose we execute the above circuit n times, with n distinct control bits. We thus

prepare the state

α1|λ1〉
(

1 + λ1

2
|0〉+

1− λ1

2
|1〉
)⊗n

+α2|λ2〉
(

1 + λ2

2
|0〉+

1− λ2

2
|1〉
)⊗n

. (6.92)

If λ1 6= λ2, the overlap between the two states of the n control bits is exponentially small

for large n; by measuring the control bits, we can perform the orthogonal projection onto

the {|λ1〉, |λ2〉} basis, at least to an excellent approximation.

If we use enough control bits, we have a large enough sample to measure Prob (0)=
1
2(1 + cos 2πφ) with reasonable statistical confidence. By executing a controlled-(iU),

we can also measure 1
2(1 + sin 2πφ) which suffices to determine φ modulo an integer.

However, in the factoring algorithm, we need to measure the phase of e2πik/r to ex-

ponential accuracy, which seems to require an exponential number of trials. Suppose,

though, that we can efficiently compute high powers of U (as is the case for Ua) such

as

U2j . (6.93)

By applying the above procedure to measurement of U2j , we determine

exp(2πi2jφ), (6.94)

20 Quantum Algorithms

where e2πiφ is an eigenvalue of U . Hence, measuring U2j to one bit of accuracy is

equivalent to measuring the jth bit of the eigenvalue of U .

We can use this phase estimation procedure for order finding, and hence factorization.

We invert eq. (6.88) to obtain

|x0〉 =
1√
r

r−1∑
k=0

|λk〉; (6.95)

each computational basis state (for x0 6= 0) is an equally weighted superposition of r

eigenstates of Ua.

Measuring the eigenvalue, we obtain λk = e2πik/r, with k selected from {0, 1 . . . , r−1}
equiprobably. If r < 2n, we measure to 2n bits of precision to determine k/r. In principle,

we can carry out this procedure in a computer that stores fewer qubits than we would

need to evaluate the QFT, because we can attack just one bit of k/r at a time.

But it is instructive to imagine that we incorporate the QFT into this phase estimation

procedure. Suppose the circuit

|0〉

|0〉

|0〉

|λ〉

1√
2

(
|0〉+ λ4|1〉

)
1√
2

(
|0〉+ λ2|1〉

)
1√
2

(|0〉+ λ|1〉)s
s

sH

H

H

U U2 U4

acts on the eigenstate |λ〉 of the unitary transformation U . The conditional U prepares
1√
2
(|0〉+λ|1〉), the conditional U2 prepares 1√

2
(|0〉+λ2|1〉), the conditional U4 prepares

1√
2
(|0〉 + λ4|1〉), and so on. We could perform a Hadamard and measure each of these

qubits to sample the probability distribution governed by the jth bit of φ, where λ =

e2πiφ. But a more efficient method is to note that the state prepared by the circuit is

1√
2m

2m−1∑
y=0

e2πiφy|y〉. (6.96)

A better way to learn the value of φ is to perform the QFT(m), not the Hadamard H(m),

before we measure.

Considering the case m = 3 for clarity, the circuit that prepares and then Fourier

analyzes the state

1√
8

7∑
y=0

e2πiφy|y〉 (6.97)

is

6.5 Hidden Subgroup Problem 21

|0〉

|0〉

|0〉

|ỹ0〉

|ỹ1〉

|ỹ2〉r
r

r r r
rH

H

H

H

1 H

2 1 H

U U2 U4

This circuit very nearly carries out our strategy for phase estimation outlined above, but

with a significant modification. Before we execute the final Hadamard transformation

and measurement of ỹ1 and ỹ2, some conditional phase rotations are performed. It is

those phase rotations that distinguish the QFT(3) from Hadamard transform H(3), and

they strongly enhance the reliability with which we can extract the value of φ.

We can understand better what the conditional rotations are doing if we suppose

that φ = k/8, for k ∈ {0, 1, 2 . . . , 7}; in that case, we know that the Fourier transform

will generate the output ỹ = k with probability one. We may express k as the binary

expansion

k = k2k1k0 ≡ k2 · 4 + k1 · 2 + k0. (6.98)

In fact, the circuit for the least significant bit ỹ0 of the Fourier transform is precisely

Kitaev’s measurement circuit applied to the unitary U4, whose eigenvalue is

(e2πiφ)4 = eiπk = eiπk0 = ±1. (6.99)

The measurement circuit distinguishes eigenvalues ±1 perfectly, so that ỹ0 = k0.

The circuit for the next bit ỹ1 is almost the measurement circuit for U2, with eigen-

value

(e2πiφ)2 = eiπk/2 = eiπ(k1·k0). (6.100)

Except that the conditional phase rotation has been inserted, which multiplies the phase

by exp[iπ(·k0)], resulting in eiπk1 . Again, applying a Hadamard followed by measure-

ment, we obtain the outcome ỹ1 = k1 with certainty. Similarly, the circuit for ỹ2 measures

the eigenvalue

e2πiφ = eiπk/4 = eiπ(k2·k1k0), (6.101)

except that the conditional rotation removes eiπ(·k1k0), so that the outcome is ỹ2 = k2

with certainty.

Thus, the QFT implements the phase estimation routine with maximal cleverness.

We measure the less significant bits of φ first, and we exploit the information gained in

the measurements to improve the reliability of our estimate of the more significant bits.

Keeping this interpretation in mind, you will find it easy to remember the circuit for

the QFT(n)!

6.5 Hidden Subgroup Problem

Simon’s problem and period finding are two black-box problems for which quantum

computers provide exponential speedups. What else can quantum computers do? These

two problems have a similar structure, and it is useful to recognize this common ground,

because it suggests further generalizations.

More specifically, Simon’s problem and period finding are both special cases of a

22 Quantum Algorithms

problem that is naturally formulated in group-theoretic language: the Hidden Subgroup

Problem (HSP). This is a black-box problem where we may regard the input to the

function f to be an element of a group G which is mapped into a finite set X, where X

may be chosen to be the set of m-bit strings:

f : G→ X = {0, 1}m. (6.102)

The group G may be either finite or infinite, but we ordinarily assume it is finitely

generated, that is, each element of G can be expressed as a product of a finite set of

generating elements, where these generating elements may be used any number of times

in the product, and in any order.

We are promised that the function f is constant and distinct on the cosets of a

subgroup H ⊆ G. This means that

f(g1) = f(g2) iff g−1
2 g1 ∈ H (6.103)

(that is, g1 = g2h for some h ∈ H). The problem is to find H — to list a set of elements

of G that generate H. We may take the input size for the HSP to be an upper bound

on log(|G/H|), the number of cosets (which is finite because X is finite).

The promise may restrict the hidden subgroup further by specifying additional prop-

erties of H. For example, in the case of Simon’s problem,

G = Zn2 , H = Z2 = {0, a}. (6.104)

The group Z2 is the set {0, 1}, where the group operation is addition modulo 2. A

product group G1 ×G2 is defined as the group of pairs of elements

G1 ×G2 = {(g1, g2)|g1 ∈ G1, g2 ∈ G2}, (6.105)

where the group operations are performed in parallel:

(g1, g2) ◦ (g′1, g
′
2) = (g1g

′
1, g2g

′
2) (6.106)

Thus, the elements of Zn2 (the product of n Z2s) are n-bit strings of bits, where the

group operation is bitwise XOR:

(xn−1, .., x0) ◦ (yn−1, .., y0) = (xn−1 ⊕ yn−1, .., x0 ⊕ y0) (6.107)

Each element is its own inverse (i.e. is order 2).

The promise in Simon’s problem is:

f(x) = f(y) iff x ∈ {0, a} = H = Z2. (6.108)

Here {0, a} is isomorphic to Z2. The problem is to determine how this Z2 is embedded in

G = Zn2 — i.e., to find its generator a. The number of possible embeddings is exponential

in n. The number of cosets (and so the number of possible outputs in the set X) is 2n−1,

and its log is the input size.

Another example is period finding, for which

G = Z and H = rZ = {rk, k ∈ Z}. (6.109)

The group operation is addition, and we are promised that

f(x) = f(y) iff x− y = r · integer ∈ H (6.110)

The problem is to find the generator of H, namely the period r. The number of cosets

of H is |G/H| = r, and an upper bound on its log is the input size.

6.5 Hidden Subgroup Problem 23

Classically, the HSP has query complexity Ω(
√
|G/H|); we need to query this many

times in order to get the same output in response to two different queries with reasonable

probability. This is exponential in the input size — the problem is hard classically.

But for any finitely generated abelian group, the problem is easy quantumly! It

can be solved (with high success probability) using O(polylog|G/H|) queries, and

O(polylog|G/H|) additional computational steps.

Before we explain the algorithm, let’s discuss another application:

6.5.1 Discrete Log Problem

Recall that if q is prime, then the group Z∗q (multiplication mod q with elements

{1, 2, ..., q − 1}) is cyclic. This means that Z∗q is generated by a single element a; Thus

Z∗q = {a, a2, a3, .., aq−1 = e}. (6.111)

Therefore any element x ∈ Z∗q can be expressed in a unique way as the modular expo-

nential

x = ay (mod q) where y ∈ {0, 1, 2, .., q − 2}. (6.112)

The discrete log (mod q) with base a is the inverse of this function’:

x = ay (mod q) ↔ y = dlogq,a(x) (6.113)

A discrete log can be defined this way for any cyclic group and any generating element

of the group.

Example: q = 7, Z∗q = {1, 2, ..., 6}, a = 5 is the generator:

y = 0 1 2 3 4 5

x = 5y (mod 7) 1 5 4 6 2 3
.

The inverse function is

x = 1 2 3 4 5 6

y = dlog7,5(x) = 0 4 5 2 1 3
.

The modular exponential is easy to compute classically (by repeated squaring), but the

discrete log seems to be hard to compute — the modular exponential is a candidate one-

way function. It is hard to invert because ax seems to jump about in Z∗q haphazardly as

x varies (for at least some values of q).

There are applications of this one-way function in cryptography; for example:

6.5.2 Diffie-Hellman key exchange

This protocol’s security rests on the presumed hardness of computing the discrete log-

arithm. The objective is for Alice and Bob to generate a shared secret key that is not

known by their adversary Eve.

• A prime number q and a generating element a ∈ Z∗q are publicly announced.

• Alice generates a random element x ∈ Z∗q and keeps it secret. Bob generates a random

element y ∈ Z∗q and keeps it secret.

• Alice computes and announces ax (mod q). Bob computes and announces ay (mod q).

24 Quantum Algorithms

• Alice computes (ay)x = axy (mod q). Bob computes (ax)y = axy (mod q). This is their

final shared key.

Alice and Bob can both compute the key because the modular exponential can be

evaluated efficiently. The protocol is expected to be secure because even when ax and

ay (but not x or y) are known, it is hard to compute axy. Of course, if Eve can compute

the discrete log, she could break the protocol. E.g. knowing ax and ay she would be able

to compute x and then compute (ay)x.

But a quantum computer can evalutate a discrete log by solving a HSP! Here is how.

We would like to find

r = dlogq,a(x) (6.114)

where the value of r is such that x = ar (mod q). We consider the function

f : Z× Z→ Z∗q , f(y1, y2) = ay1x−y2 (mod q). (6.115)

When does f map two different inputs to the same output?

f(y1, y2) = ay1−ry2 (mod q) = f(z1, z2) = az1−rz2 (mod q) (6.116)

iff (y1 − z1) − r(y2 − z2) = 0 (mod q − 1). This means that we may think of the input

to f as an element of the additive group G = Z×Z where f is constant and distinct on

the cosets of

H = {(y1, y2)|y1 = ry2 (mod q − 1)}. (6.117)

H is generated by the elements (r, 1), (q− 1, 0) so if we find generators, we determine r.

6.5.3 Finding abelian hidden subgroups

Primal lattice and dual lattice

For a HSP problem with finitely generated abelian G̃, we may consider without loss

of generality a corresponding problem with G = Zn, since there is a homomorphism

mapping G onto G̃ . In general, it is useful that we can give geometrical interpretations

to G and H. G is the n-dimensional hypercubic lattice, containing all ordered n-tuples

of integers. The subgroup H can be regarded as a sublattice of Zn. This sublattice is

spanned by a set of n linearly independent vectors {v1, v2, ..vn}, each an element of

Zn (i.e. with integer entries). A general element x of H is a linear combination of the

generating vectors

x =
n∑
a=1

αava. (6.118)

We may construct an n × n generator matrix for the lattice H whose rows are the

generating vectors:

M =

v1

v2

.

vn

 and H = {x = αM, α ∈ Zn}, (6.119)

where α is the row vector α = (α1, α2, .., αn). For fixed H, the generator matrix is not

unique. We may make the replacement M 7→ RM where R is an invertible integral

6.5 Hidden Subgroup Problem 25

matrix with detR = ±1 (so that R−1 is also integral). Both M and RM are generators

of the same lattice.

The quotient space G/H may be called the unit cell of the lattice. It contains all the

distinct ways to shift the lattice H by an element of G. We may say that |G/H| is the

volume of the unit cell, the number of points it contains. Note that

|G/H| = detM (6.120)

(the linear transformation M inflates the cube {0, 1}n to a region of volume detM).

Corresponding to the integral lattice H is its dual lattice, denoted H⊥. The elements

of H⊥ are points in Rn that are orthogonal to all the vectors in H, modulo integers:

H⊥ = {k ∈ Rn such that k · x ∈ Z for all x ∈ H}. (6.121)

Equivalently, exp (2πik · x) = 1 for k ∈ H⊥ and x ∈ H. H⊥ is also a lattice (i.e. its

elements are the span of a set of generating vectors with integer coefficients), but the

components are not necessarily integer (although they are rational numbers). If H⊥ is

generated by vectors u1, u2, ..un then its generating matrix is

M⊥ =

u1

u2

.

un

 and H⊥ = {k = βM⊥, β ∈ Zn} (6.122)

We can choose the basis for the dual lattice such that uav
T
b = δab, in which case

M⊥MT = I. That means that, once we have found M⊥, an easy computation de-

termines M (matrix inversion of transpose of M⊥). In the quantum algorithm for the

abelian HSP, the quantum computation determines the generators of H⊥ (i.e. the matrix

M⊥) and then finding the generators of H is easy (by matrix inversion).

The efficient solution to the problem makes use “Fourier sampling” — after evaluating

the function f on a coherent superposition of values of G, we perform (an approximation

to) the Fourier transform over the group G, and then measure. This procedure enables

us to sample nearly uniformly from H⊥. Only a modest number of samples are needed

to determine H⊥, and hence H, which solves the problem.

For example, in the case of period finding, we have G = Z, H = rZ = {x = rα, α ∈ Z}
and H⊥ = {k = β/r, β ∈ Z}. In the quantum algorithm, we are promised that r ≤ R;

thus we can sample from H⊥ using the Fourier transform for the finite group ZN rather

than the infinite group Z, where N ≥ R2. Fourier sampling then provides sufficient

accuracy to determine an element β/r of H⊥ with high success probability. After a few

samples we can determine 1/r, the generator of H⊥, and hence r, the generator of H.

We want to extend this idea from subgroups of Z to subgroups of Zn.

So, to solve the general abelian HSP, we Fourier transform over ZnN instead of Zn,for

some sufficiently large N . And to keep the discussion simple at first, let’s suppose that

H is actually a subgroup of the finite group ZnN , rather than of Zn.

H-invariant coset state and Fourier sampling from the dual lattice

As in the period finding algorithm we query the black box with

1√
|G|

∑
x∈G
|x〉 to obtain

1√
|G|

∑
x∈G
|x〉 ⊗ |f(x)〉, (6.123)

26 Quantum Algorithms

where f is constant and distinct on the cosets of H ⊆ G. Were we to measure the

output register, obtaining f(x0), we would prepare in the input register the uniform

superposition of elements in the same coset as x0; which is

|H,x0〉 =
1√
|H|

∑
x∈H
|x+ x0〉. (6.124)

This “coset state” has an important property: it is H-invariant. We may consider the

unitary transformation Uy associated with an element y ∈ G whose action is

Uy|H,x0〉 =
1√
|H|

∑
x∈H
|x+ x0 + y〉, (6.125)

and we may reparamaterize the sum over x replacing x 7→ x′ − y, thus obtaining:

1√
|H|

∑
x′∈H

|x′ + x0〉 = |H,x0〉. (6.126)

To appreciate the significance of H-invariance, note that if |ψ〉 obeys U |ψ〉 = |ψ〉, then

Ũ |ψ̃〉 = V UV −1|ψ̃〉 = |ψ̃〉 where |ψ̃〉 = V |ψ〉. Now apply this identity to U = Uy where

V is the Fourier transform

V : |x〉 7→ 1√
|G|

∑
k∈G⊥

e2πik·x/N |k〉, (6.127)

V −1 : |k〉 7→ 1√
|G|

∑
x∈G

e−2πik·x/N |x〉. (6.128)

We then find Ũy|k〉 = e−2πik·y/N |k〉, as follows:

|k〉 V −1

−−−→ 1√
|G|

∑
x∈G⊥

e−2πik·x/N |x〉 (6.129)

Uy−→ 1√
|G|

∑
x∈G⊥

e−2πik·x/N |x+ y〉 (6.130)

= e2πik·y/N 1√
|G|

∑
x′∈G⊥

e−2πik·x′/N |x′〉 (6.131)

V−→ e2πik·y/N |k〉. (6.132)

Therefore, the state |k〉 is an eigenstate of Ũy with eigenvalue 1 iff k · y/N = integer —

or for y ∈ H iff k/N ∈ H⊥. Thus, if a state is H-invariant, then in the Fourier basis its

expansion contains the state |k〉 with a non-zero coefficient only if k/N ∈ H⊥.

More explicitly, we compute

V −1 : |H,x0〉 =
1√
|H|

∑
x∈H
|x+ x0〉 (6.133)

7→ 1√
|H||G|

∑
x∈H

∑
k∈G⊥

e2πik·(x+x0)/N |k〉. (6.134)

(6.135)

Because of H-invariance, only k/N ∈ H⊥ survives in the sum over G⊥, and for such k,

6.5 Hidden Subgroup Problem 27

e2πi(k·x)/N = 1 so we obtain

1√
|H⊥|

∑
k∈H⊥

e2πik·x0/N |k〉 (6.136)

Therefore if we Fourier sample — i.e. Fourier transform and then measure — the prob-

ability distribution that governs the outcome is the uniform distribution on H⊥. Once

we have sampled from H⊥ enough times, with high probability a generating set for H⊥

will be found.

Query complexity

How many samples are enough (assuming now that G is finite — e.g. G = ZnN — and

H ⊆ G)? Suppose K is a group (either abelian or not), and m elements of K are

chosen uniformly at random. If these m elements do not generate K, then they must be

contained in some maximal proper subgroup S ⊂ K. (Proper means S is smaller than

K, and maximal means we cannot add another element of K to S without generating all

of K.) Any proper subgroup has order |S| ≤ |K|/2, because the order of the subgroup

must divide the order of K, and the probability that all m elements are in S is

Prob(all m in S) =

(
|S|
|K|

)m
; (6.137)

therefore the probability that the m elements generate K is

Prob(m elements generate K) ≥ 1−
∑

S∈max

(
|S|
|K|

)m
≥ 1− (# max)2−m, (6.138)

where the sum is over maximal proper subgroups {S}, and where (# max) denotes the

total number of maximal proper subgroups.

If K is abelian, we can count the maximal proper subgroups. S is a sublattice of K

and if S is a maximal proper subgroup, then its dual lattice S⊥ contains a vector not

in K⊥. There is only one such (linearly independent) vector if S is maximal, for if there

were two then we could remove one, obtaining a smaller S⊥ and hence a larger proper

subgroup S. Any nontrivial vector not in K⊥ determines such a subgroup, so there are

|G/K⊥| − 1 choices (where e.g. G = ZnN), and therefore

Prob(m elements generate S) ≥ 1− 2−m|G/K⊥|. (6.139)

In the case of the hidden subgroup problem where H ⊆ G = ZnN , we are sampling

K = H⊥ and |G/K⊥| becomes |G/H|, the number of cosets. To have constant success

probability, then, we choose m such that e.g.

2−m|G/K⊥| < 1

2
, (6.140)

or m − 1 > log |G/H| (compare this with the conclusion for Simon’s problem). Since

|G/H| < Nn; it suffices if m = O(n logN).

How large should N be? For period finding with r ≤ R, choosing N ≥ R2 provided

adequate precision for finding r. For an integral lattice with generator matrix M , its

inverse matrix (transpose of M⊥) has entries that can be expressed as integer/ detM ,

where detM = |G/H|, the number of cosets. In the formulation of the HSP, we are

provided with an upper bound |G/H| ≤ R, and N needs to be large enough to point to

a unique rational number with denominator ≤ R with reasonable success probability.

28 Quantum Algorithms

In our discussion of period finding (H⊥ = Z/r) we noted that Fourier sampling yields

a rational number y/N close to integer/r with high probability:∑
k

Prob

(∣∣∣∣ yN − k

r

∣∣∣∣ ≤ 1

2N

)
≥ 4

π2
, (6.141)

so that choosing N ≥ R2 was good enough to determine a rational number with de-

nominator < R. If we fix the desired accuracy δ, then the part of the distribution lying

outside the peaks decreases as N increases (an exercise):

Prob

(
∀k
∣∣∣∣ yN − k

r

∣∣∣∣ > δ

)
≤ 1

Nδ
, (6.142)

The peak of the Fourier transform sharpens with increasing N , so that the prob of lying

outside all peaks with half width δ scales like 1/N .

When we sample H⊥, we find an n-component vector, where each component should

be determined to accuracy 1/R2 (where |G/H| < R). The probability of success in

finding all n-components to this accuracy is

Prob(success) ≥
(

1− 1

Nδ

)n
(6.143)

and the probability of being successful in each of m consecutive samplings is

Prob(success m times) ≥
(

1− 1

Nδ

)nm
. (6.144)

For δ = 1/R2, the success probability is a constant for

mnR2

N
< constant or N = O(mnR2). (6.145)

Since m = O(n logN) samples are sufficient to find generators of H⊥, we conclude it

suffices to choose N to be

N = O(n2R2 logN) = O(n2R2 log(nR)) (6.146)

This is good enough to determine H⊥ in m = O(n logN) = O(n log(nR)) queries, and

the generators of H are found by inverting the matrix M⊥ that generates H⊥.

The algorithm is efficient: both the number of queries and the number of steps in the

quantum Fourier transform are polylog in (the upper bound on) the number of cosets

|G/H|.

6.6 Quantum Searching

For the hardest instances of NP-hard problems, no better method is known than ex-

haustive search for a solution. For example, suppose that for some efficiently computable

Boolean function

f : {0, 1}n −→ {0, 1}; (6.147)

we wish to determine whether there is an x such that f(x) = 1. We could search for

a solution by trying all of the N = 2n possible values of the input x, but that might

require time O(NpolylogN) — assuming we can evaluate f in time O(polylogN). That’s

very slow, yet if f has no structure that we know how to exploit, we might not know

how to do better.

6.6 Quantum Searching 29

We can model this situation in the black box setting. Suppose we are promised that

the function evaluated by the box has the form

fw(x) =

{
0 x 6= w,

1 x = w,
(6.148)

where x ∈ {0, 1, 2.., N−1} for some unknown w. Our task is to find w, the marked string.

Classically, we’ll need to query the box more than N/2 times to find w with success

probability above 1/2. This is a black-box version of an NP-hard problem, where there

is a unique witness accepted by a circuit, but the problem has no structure, so there is

no better option than exhaustive searching.

Now we ask, can exhaustive search be done faster on a quantum computer? The

answer is yes, using Grover’s algorithm. With quantum queries, we can find the marked

string using O(
√
N) queries. Thus we can solve NP-hard problems by exhaustive search

in time O(
√
NpolylogN).

We say that Grover’s algorithm achieves a quadratic speedup relative to exhaustive

search on a classical computer. Though the speedup is only quadratic rather than ex-

ponential, Grover’s algorithm is interesting because of its broad applicability. And it is

rather remarkable: in effect we can interrogate N potential witnesses by asking O(
√
N)

questions.

In the quantum setting, the black box applies the unitary

Uw : |x〉 ⊗ |y〉 7→ |x〉 ⊗ |y ⊕ fw(x)〉, (6.149)

where x ∈ {0, 1}n and y ∈ {0, 1}n. By the standard trick, Uw becomes a phase oracle:

Uw : |x〉 ⊗ |−〉 7→ (−1)fw(x)|x〉 ⊗ |−〉 (6.150)

where

(−1)fw(x) =

{
1 x 6= w,

−1 x = w.
(6.151)

Ignoring the output register (which is unaffected by Uw), we can express Uw acting on

input as

Uw = I − 2|w〉〈w|. (6.152)

We can express a general n-qubit state |ψ〉 as

Uw : |ψ〉 = a|w〉+ b|ψ⊥〉 7→ −a|w〉+ b|ψ⊥〉, (6.153)

where 〈w|ψ⊥〉 = 0. That is, we resolve |ψ〉 into a component along |w〉 and a component

in the hyperplane orthogonal to |w〉. Uw induces a reflection of the vector |ψ〉 about this

hyperplane.

The first step in Grover’s algorithm is to prepare the uniform superposition of all

values of x:

|s〉 = H⊗n|0〉 =
1√
N

N−1∑
x=1

|x〉; (6.154)

this state |s〉 has overlap with the marked string |w〉

〈w|s〉 =
1√
N
. (6.155)

30 Quantum Algorithms

The next step is to apply the Grover iteration many times in succession, where each

iteration enhances the overlap of the quantum superposition with the marked state |w〉,
while suppressing the amplitude for each |x〉 with x 6= w. This iteration is

UGrover = UsUw (6.156)

where Uw is the query and

Us = 2|s〉〈s| − I (6.157)

reflects a vector about the axis determined by |s〉. Note that Us is easy to construct as

a quantum circuit. It can be expressed as

Us = H⊗n(2|0〉〈0| − I)H⊗n (6.158)

since H⊗n maps |s〉 to |0〉, where H is the single qubit Hadamard gate. Furthermore a

multiply controlled Z gate can be formed from a multiply controlled-not gate Λn−1(X)

where the target qubit has a Hadamard before and after the gate, and we know that

Λn−1(X) can be constructed from O(n) Toffoli gates. Finally, we can conjugate by X⊗n

so the phase gate is triggered by |00..0〉 rather than |11..1〉. Thus Us is realized by a

circuit of size O(logN).

What does UGrover do? It preserves the plane spanned by |s〉 and |w〉, so we may

confine our attention to that plane. First, Uw reflects |s〉 about the axis |w⊥〉 (the vector

⊥ to |w〉 in the span of |s〉 and |w〉). Then Us reflects Uw|s〉 about the axis |s〉. The net

effect of UGrover, then, is a counterclockwise rotation in the plane by the angle 2θ, where

θ is initial angle between |s〉 and |w〉. Each time we repeat the Grover iteration the state

vector rotates further in the counterclockwise direction by 2θ.

The initial angle θ between |s〉 and |w⊥〉 is given by sin θ = 〈w|s〉 = 1/
√
N . For

N � 1, then, we have θ = 1/
√
N + O(1/N3/2). If we repeat the Grover iteration T

times, then the vector is rotated away from the |w⊥〉 axis by (2T + 1)θ.

We may choose T such that (2T + 1)θ = π/2 + δ where |δ| ≤ θ/2 ≈ 1
2
√
N

. Then

if we measure in the computational basis, we find the outcome |w〉 with probability

Prob(w) = cos2 δ ≥ 1 − δ2 ≥ 1 − 1
4N . Thus we find |w〉 with success probability close

to 1 using T ≈ π
4θ ≈

π
4

√
N Grover iterations, making use of T quantum queries to the

black box. This is Grover’s quadratic speedup.

Suppose now that there are r marked states, where r is known. Classically, with each

query the probability of finding a solution (wi such that f(wi) = 1) is r/N , so we need

O(N/r) queries to find a solution with constant success probability. Quantumly, the

uniform superposition of the marked states

|marked〉 =
1√
r

r∑
i=1

|wi〉 (6.159)

has overlap with |s〉 = 1√
N

∑N−1
x=0 |x〉

〈marked|s〉 =

√
r

N
= sin θ (6.160)

and the Grover iteration again rotates by 2θ in the plane spanned by |s〉 and |marked〉
(because the query reflects about the axis perpendicular to |marked〉).

As above, then, for N/r � 1, we achieve success probability Prob = 1 − O(r/N)

6.6 Quantum Searching 31

in T ≈ π/4
√
N/r queries. Again, the speedup is quadratic: The number of quantum

queries needed to find a solution is

#quantum queries = O(
√

#classical queries). (6.161)

What if r is not known a priori? As a function of the number of queries the success

probability oscillates, where the period of the oscillation is T ≈ π/2
√
N/r. If we choose

T uniformly at random in the interval T = {0, 1, 2, .., Tmax ≈ π/4
√
N}, then if there is

a solution (r > 0), a solution will be found with Prob ≥ 1/2 +O(1/N). If we repeat m

times, sampling a different random value of T each time, we will find a solution apart

from a small failure probability ≈ 2−m. Therefore, we can use Grover’s algorithm to

solve a decision problem in NP with high success probability, in

time = O(
√
NpolylogN), (6.162)

since we can compute the circuit that evaluates f(x) in (classical or quantum) time

O(polylogN).

6.6.1 Generalized Search

In some cases, the problem may have structure that can be exploited to search faster for

a solution. In that case, some strings are better candidates than others to be solutions,

and so we ought to be able to search more efficiently by spending more time testing

likely solutions instead of less likely ones.

For the case of Grover’s exhaustive search of a function without any apparent struc-

ture, we started the algorithm by preparing

|s〉 = H⊗n|0〉 =
1√
N

N−1∑
x=0

|x〉, (6.163)

which has overlap sin θ = 1/
√
N with the solution |w〉, and hence would yield the

uniform distribution on x if we measured in the computational basis. For a function

with structure we may be able to construct an efficiently computable unitary U such

that U |0〉 = sin θ|w〉 + cos θ|ψ⊥〉 where sin2 θ > 1/N . In that case, we can conduct

Grover’s algorithm with H⊗n replaced by U , and Us replaced by

Ũs = U(2|0〉〈0| − I)U †. (6.164)

Thus Ũs reflects in the axis U |0〉 rather than |s〉. The analysis of the algorithm is the

same as before, and in the case where there exists a unique solution,we can find it with

high probability in T ≈ π
4θ <

π
4

√
N queries.

Specifically, because of the structure of the function, we might be able to exclude all

except M < N inputs as potential solutions. Then, classically, we could find the solution

in O(M) queries, while quantumly only O(
√
M) queries suffice, if we can construct U

such that

U |0〉 =
1√
M

M∑
i=1

|xi〉, (6.165)

the uniform superposition of the candidate solutions.

For example, suppose that classical search for a solution can be accelerated by a

32 Quantum Algorithms

classical heuristic — that is, a function g that takes a randomly generated seed r in a

set R to a trial solution:

g : r 7→ g(r) where r ∈ R. (6.166)

The heuristic is useful if trial solutions generated by the heuristic are more likely to be

accepted than trial solutions chosen uniformly at random〈
of soln. in g(R)

|R|

〉
>

〈
total # of soln.

N

〉
, (6.167)

where the bracket 〈·〉 indicates the expectation value evaluated for a probability distri-

bution on black-box functions. Then the number of classical queries to find a solution,

using the heuristic, with constant success probability is

Tclassical = O

(〈
|R|

of soln. in g(R)

〉)
. (6.168)

To exploit the heuristic in quantum searching, we apply Grover’s algorithm to searching

in the space of seeds instead of the full search space. The heuristic is realized as an

efficiently computable unitary:

|r〉 ⊗ |0〉 7→ |r〉 ⊗ |g(r)〉. (6.169)

We can query the box with |g(r)〉 and then run the evaluation of g backwards to erase

garbage:

|r〉 ⊗ |0〉 ⊗ |y〉 7→ |r〉 ⊗ |g(r)〉 ⊗ |y〉 7→ |r〉 ⊗ |g(r)〉 ⊗ |y ⊕ f(g(r))〉
7→ |r〉 ⊗ |0〉 ⊗ |y ⊕ f(g(r))〉 (6.170)

This composite oracle can be consulted to search R for a state marked by the function

f ◦ g (i.e. for a state marked by f in g(R), the range of g). The number of quantum

queries used is

Tquantum = O

(〈√
|R|

of soln. in g(R)

〉)
(6.171)

(for each black box there is a quadratic speed up). Furthermore, the square root function

is concave: 〈
√
F 〉 =

∑
i pa
√
pa ≤

√∑
i paFa =

√
〈F 〉 where {pa} is a probability distri-

bution, and here Fa represents the classical query complexity for a black box function

labeled by a. Thus,

Tquantum ≤ O

(√〈
|R|

of soln. in g(R)

〉)
= O(

√
Tclassical). (6.172)

The speedup is quadratic, as for unstructured search.

6.7 The Grover Algorithm Is Optimal

Grover’s quadratic quantum speedup for exhaustive search is already interesting and

potentially important, but surely with more cleverness we can do better, can’t we?

No, it turns out that we can’t. Grover’s algorithm provides the fastest possible quantum

search of an unsorted database, if “time” is measured according to the number of queries

of the oracle.

Considering the case of a single marked state |ω〉, let U(ω, T) denote a quantum circuit

6.7 The Grover Algorithm Is Optimal 33

that calls the oracle T times. We place no restriction on the circuit aside from specifying

the number of queries; in particular, we place no limit on the number of quantum gates.

This circuit is applied to an initial state |ψ(0)〉, producing a final state

|ψω(t)〉 = U(ω, T)|ψ(0)〉. (6.173)

Now we are to perform a measurement designed to distinguish among the N possible

values of ω. If we are to be able to perfectly distinguish among the possible values, the

states |ψω(t)〉 must all be mutually orthogonal, and if we are to distinguish correctly

with high probability, they must be nearly orthogonal.

Now, if the states {|ψω〉 are an orthonormal basis, then, for any fixed normalized

vector |ϕ〉,

N−1∑
ω=0

‖ |ψω〉 − |ϕ〉 ‖2≥ 2N − 2
√
N. (6.174)

(The sum is minimized if |ϕ〉 is the equally weighted superposition of all the basis

elements, |ϕ〉 = 1√
N

∑
ω |ψω〉, as you can show by invoking a Lagrange multiplier to

perform the constrained extremization.) Our strategy will be to choose the state |ϕ〉
suitably so that we can use this inequality to learn something about the number T of

oracle calls.

Our circuit with T queries builds a unitary transformation

U(ω, T) = UωUTUωUT−1 . . .UωU1, (6.175)

where Uω is the oracle transformation, and the U t’s are arbitrary non-oracle transforma-

tions. For our state |ϕ(T)〉 we will choose the result of applying U(ω, T) to |ψ(0)〉, except

with each Uω replaced by I; that is, the same circuit, but with all queries submitted to

the “empty oracle.” Hence,

|ϕ(T)〉 = UTUT−1 . . .U2U1|ψ(0)〉, (6.176)

while

|ψω(T)〉 = UωUTUωUT−1 . . .UωU1|ψ(0)〉. (6.177)

To compare |ϕ(T)〉 and |ψω(T)〉, we appeal to our previous analysis of the effect of errors

on the accuracy of a circuit, regarding the ω oracle as an “erroneous” implementation

of the empty oracle. The norm of the error vector in the t-th step is

‖ |E(ω, t)〉 ‖ =‖ (Uω − I)|ϕ(t)〉 ‖
= 2|〈ω|ϕ(t)〉|, (6.178)

since Uω = I − 2|ω〉〈ω|. After T queries we have

‖ |ψω(T)〉 − |ϕ(T)〉 ‖≤ 2

T∑
t=1

|〈ω|ϕ(t)〉|. (6.179)

34 Quantum Algorithms

From the identity (
T∑
t=1

ct

)2

+
1

2

T∑
s,t=1

(cs − ct)2

=

T∑
s,t=1

(
ctcs +

1

2
c2
s − ctcs +

1

2
c2
t

)
= T

T∑
t=1

c2
t , (6.180)

we obtain the inequality (
T∑
t=1

ct

)2

≤ T
T∑
t=1

c2
t , (6.181)

which applied to eq. (6.179) yields

‖ |ψω(T)〉 − |ϕ(T)〉 ‖2≤ 4T

(
T∑
t=1

|〈ω|ϕ(t)〉|2
)
. (6.182)

Summing over ω we find∑
ω

‖ |ψω(T)〉 − |ϕ(T)〉 ‖2≤ 4T
T∑
t=1

〈ϕ(t)|ϕ(t)〉 = 4T 2. (6.183)

Invoking eq. (6.174) we conclude that

4T 2 ≥ 2N − 2
√
N, (6.184)

if the states |ψω(T)〉 are mutually orthogonal. We have, therefore, found that any quan-

tum algorithm that can distinguish all the possible values of the marked state must

query the oracle T times where

T ≥
√
N

2
, (6.185)

(ignoring the small correction as N →∞). This lower bound on the number of queries

applies if we are to identify the marked state with a success probability that approaches

one for asymptotically large N . A simple extension of argument shows that

T ≥
√
N

2

(
1−
√
ε
)1/2

, (6.186)

if instead we settle for success probabilty at least 1 − ε for each possible choice of the

marked string ω.

Grover’s algorithm finds ω in π
4

√
N queries, which exceeds our lower bound by only

about 11%. In fact, by a more careful argument, we can derive a tighter lower bound on

the number of queries that asymptotically matches what Grover’s algorithm achieves.

Furthermore, we can show that Grover’s circuit attains the best success probability

among all circuits with T oracle calls in the case where T < π
4

√
N .

One feels a twinge of disappointment (as well as a surge of admiration for Grover) at

the realization that the quantum search algorithm cannot be improved in the black box

setting. What are the implications for quantum complexity?

For many optimization problems in the NP class, there is no better method known

than exhaustive search of all the possible solutions. By exploiting quantum parallelism,

we can achieve a quadratic speedup of exhaustive search. Now we have learned that

6.8 Using quantum computers to simulate quantum physics 35

the quadratic speedup is the best possible if we rely on the power of sheer quantum

parallelism — that is, if we don’t design our quantum algorithm to exploit the specific

structure of the problem we wish to solve.

The optimality of the Grover algorithm might be construed as evidence that BQP 6⊇
NP. At least, if it turns out that NP ⊆ BQP and P 6= NP, then the NP problems

must share a deeply hidden structure (for which there is currently no evidence) that is

well-matched to the peculiar capabilities of quantum circuits.

Even the quadratic speedup may prove useful for a variety of NP-complete optimiza-

tion problems. But a quadratic speedup, unlike an exponential one, does not really move

the frontier between solvability and intractability. Quantum computers may someday

outperform classical computers in performing exhaustive search, but only if the clock

speed of quantum devices does not lag too far behind that of their classical counterparts.

6.8 Using quantum computers to simulate quantum physics

Sadly, we now know some things that quantum computers cannot do. But happily, there

are also some important things that they can do.

• They can solve the hidden subgroup problem for finitely generated abelian groups,

with an exponential speedup (in the oracle model) relative to classical algorithms.

• The can speed up, quadratically, exhaustive search for solutions to combinatorial

problems.

What else can they do?

6.8.1 Simulating time evolution of local Hamiltonians

An important application for quantum computers is simulating the time evolution of

quantum systems. The simulation is efficient if the Hamiltonian H is local.

For a system of n qubits, we say that H is k-local if

H =
∑
a

Ha, (6.187)

where each term Ha acts non-trivially on at most k qubits — i.e. Ha = H̃a ⊗ In−k, and

H̃a acts on some set of at most k qubits. (Of course, we may use a similar definition for

a system of d-dimensional subsystems for constant d > 2, rather than qubits.) We say

that H is local if it is k-local for some constant k.

There is a stronger notion of locality we sometimes use, which can be called geometrical

locality or spatial locality. A k-local Hamiltonian is geometrically local in D dimensions

if the qubits can be arranged in (flat) D-dimensional space with a bounded number

of qubits per unit volume, and the k qubits upon which Ha acts non-trivially are all

contained in a ball of constant radius. In this sense there are no long-range interactions

among the qubits. H is geometrically local if it is geometrically k-local in D dimensions

for some constant D and k.

If we write H =
∑

aHa where there is a unique Ha for each set of k qubits, then

the expansion of a k-local H contains at most
(
n
k

)
= O(nk) terms, and the expansion

of a geometrically local H contains O(n) terms (each of the n qubits is contained in a

constant number of interacting sets). Let us also assume that each Ha is bounded

||Ha||∞ ≤ h for all a, where h is a constant. (6.188)

36 Quantum Algorithms

Physicists are interested in geometrically local Hamiltonians because they seem to pro-

vide an accurate description of Nature. Therefore, it is noteworthy that quantum circuits

can simulate quantum evolution governed by a local Hamiltonian efficiently: evolution

of n qubits for time t can be simulated to constant accuracy using a circuit whose size

is polynomial in n and t.

We can formulate the problem this way: suppose we are given an initial quantum state

|ψ(0)〉, or a classical description of a quantum circuit that prepares the state. Our goal

is to construct

|ψ(t)〉 = U(t)|ψ(0)〉 (6.189)

where U(t) satisfies d
dtU(t) = −iH(t)U(t) and the boundary condition U(0) = I. (Thus

U(t) = e−iHt in the case where H is time independent). We will settle for computing

|ψ(t)〉 to accuracy δ, i.e. constructing ψ̃(t)〉 where

|||ψ̃(t)〉 − |ψ(t)〉|| < δ. (6.190)

Depending on the situation, we might be satisfied if δ is a sufficiently small constant, or

we might impose the stricter requirement that the error is smaller than some specified

power of the size n of the system. To relate this simulation task to a task that can be

described classically, suppose the goal is to sample from the probability distribution

〈ψ(t)|Πa|ψ(t)〉 (6.191)

where Πa projects onto an eigenstate with eigenvalue a of an observable A that can be

measured efficiently by a quantum computer. Classicaly this task is believed to be hard

at least in some cases, because the unitary matrix U(t) is exponentially large (2n× 2n).

But quantumly we can do the simulation efficiently if H is a local Hamiltonian.

To simulate continuous time evolution on a classical or quantum computer, we choose

a small step size ∆, and approximate evolution for time t by a sequence of t/∆ steps. (If

H is actually time dependent, assume ∆ is small enough that the change of H during a

time interval of width ∆ can be neglected.) We wish to attain accuracy

||Ũ(t)− U(t)||∞ < δ, (6.192)

where Ũ is the simulated unitary and U is the ideal unitary. Hence the error per time

step should be less than δ∆/t.

Suppose H =
∑

aHa is a sum of M k-local terms, and let’s consider the geometrically

local case, where M = O(n). We will show below that a single time step can be simulated

by a product of M local “gates” (unitary transformations that act on a constant number

of qubits) where each such “gate” has an error O(∆2h2). Therefore the simulation of

evolution for time t uses all together Mt/∆ gates where we require

Mt

∆
∆2h2 ≈ δ =⇒ ∆ = O

(
δ

h2Mt

)
. (6.193)

Therefore the total number of gates is

L = O

(
h2(Mt)2

δ

)
. (6.194)

Furthermore each “gate” can be simulated to accuracy O(∆2h2) with a universal gate

6.8 Using quantum computers to simulate quantum physics 37

set using polylog
(

1
∆2h2

)
= polylog

(
h2(Mt)2

δ2

)
gates, according to the Solovay-Kitaev

theorem. We conclude that the simulation can be done with a quantum circuit of size

L = O

(
h2(Mt)2

δ
polylog

(
h2(Mt)2

δ2

))
. (6.195)

In the case where H is geometrically local, M = O(n) = O(V), where V is the spatial

volume of the system. Since h is a constant, we find that the cost of simulating time

evolution with fixed accuracy scales like

L = O(Ω2 polylog Ω), (6.196)

where Ω = V t is the simulated volume of spacetime.

Now we need to explain how to simulate a single time step. We’ll use the idea that

exp (
∑

aAa) can be approximated by
∏
a exp (Aa) if ||A|| � 1. To check the accuracy

we expand the exponentials:

exp

(∑
a

Aa

)
−
∏
a

exp (Aa) (6.197)

=

1 +
∑
a

Aa +
1

2

∑
a,b

AaAb + . . .

−∏
a

(
1 +Aa +

1

2
A2
a + . . .

)

=

1 +
∑
a

Aa +
1

2

∑
a,b

AaAb + . . .

−(1 +
∑
a

Aa +
∑
a

1

2
A2
a +

∑
a<b

AaAb + . . .

)

=
1

2

(∑
a<b

AaAb +
∑
a<b

AbAa

)
−
∑
a<b

AaAb + . . .

= −1

2

∑
a<b

[Aa, Ab] + . . .

(where + . . . denotes terms higher order in Aa). Writing H =
∑

aHa, then, we find that

e−iH∆ −
∏
a

e−iHa∆ =
1

2
∆2
∑
a<b

[Ha, Hb] + h.o. (6.198)

Now, how many non-vanishing commutators {[Ha, Hb]} can occur in this sum? Let’s

suppose the Hamiltonian is geometrically local, in which case there are O(n) terms

in H, and each term fails to commute with a constant number of terms. So, there are

O(n) = O(M) non-vanishing commutators. We conclude that (in the geometrically local

case) ∥∥∥∥∥e−iH∆ −
∏
a

e−iHa∆

∥∥∥∥∥ = O(M∆2h2). (6.199)

Since Πae
−iHa∆ is a product of M “gates,” we have verified that the accuracy per gate

is O(∆2h2) (Note that terms arising from the higher-order terms in the expansion of

the exponential are of order M∆3h3, and therefore systematically supressed by another

factor of ∆h = O(δ/hMt) = O((δ/L)1/2).)

So far we have shown that, for a geometrically local H that is a sum of bounded terms,

evolution in a spacetime volume Ω can be achieved with a quantum circuit of size

L = O(Ω2 polylog Ω), (6.200)

38 Quantum Algorithms

The resources needed for the simulation scale like the square of the simulated volume

(up to a log factor). Can this be improved?

An improved approximation to exp (
∑

aAa) is the subject of an exercise. Instead

of
∏
a e

Aa we use
∏
a→ e

1
2
Aa
∏
a← e

1
2
Aa , where

∏
a→ denotes the product in ascending

order, and
∏
a← denotes the product in descending order. The exercise shows that, for

geometrically local H,

||e−iH∆ −
∏
a→

e
1
2
Ha∆

∏
a←

e
1
2
Ha∆|| = O(M∆3h3), (6.201)

i.e. the error per gate is O(h3∆3) instead of O(h2∆2). For an accurate simulation, we

choose

Mt

∆
(∆3h3) ≈ δ =⇒ ∆ ≈

(
δ

h3Mt

)1/2

; (6.202)

the number of gates is

Mt

∆
≈ h3/2(Mt)3/2

δ1/2
, (6.203)

and the Solovay-Kitaev blowup factor is polylog
(

1
∆3h3

)
= polylog

(
h3/2(Mt)3/2

δ3/2

)
=

polylog
(
hMt
δ

)
. We conclude that spacetime volume Ω can be simulated with a circuit of

size

L = O(Ω3/2 polylog Ω). (6.204)

The improved approximation in each time step increases the circuit size by only a factor

of 2.

The accuracy of this Trotter-Suzuki approximation to e−iH∆ can be improved further,

so that

||e−iH∆ − approximation|| = O
(
cpM(h∆)p+1

)
(6.205)

where p is any power, the constant cp depends on p, and the improved approximation

increases the number of gates by a factor that depends on p. With this approximation,

we choose

Mt

∆
(h∆)p+1 ≈ δ =⇒ ∆ ≈ δ1/p

h(p+1)/p(Mt)1/p
, (6.206)

so that the number of gates is

Mt

∆
≈ h(p+1)/p(Mt)(p+1)/p

δ1/p
. (6.207)

Including the Solovay-Kitaev log factor, we can do the simulation with a circuit of size

L = O(Ω1+ε polylog Ω), (6.208)

where ε = 1/p. In fact, though, the factor cp grows exponentially with p = 1/ε; this

happens because each time we increase the value of p by 1, we may the price of increas-

ing the circuit size by a constant factor. But anyway, as we systematically improve the

approximation, the circuit size comes closer and closer to scaling linearly with the sim-

ulated volume, though it never quite makes it. Somehow, Nature manages to simulate

herself with “resources” scaling like Ω (and without any error!), but this approximation

method using a universal quantum computer does not do quite as well. There are other

simulation methods that more nearly match the scaling Nature achieves.

6.8 Using quantum computers to simulate quantum physics 39

Whether the quantum circuit model can simulate Nature efficiently is an important

issue, because it addresses whether this model is the right one for studying what problems

can be solved with reasonable resources by computers that are in principle physically

realizable. We believe that the classical Turing machine model is not the right model,

because it seems to be incapable of efficiently simulating general quantum systems, even

ones for which the Hamiltonian is geometrically local. The quantum circuit model is

presumably stronger, but is it really strong enough?

Particle physicists model fundamental physics using quantum field theory (QFT).

Some predictions of QFT can be computed classically, and the success of such predictions

provides the evidence that QFT is a good model. But we don’t know how to efficiently

simulate on a classical computer the real-time evolution of, for example, nuclear matter

governed by quantum chromodynamics. Can we do such simulations efficiently on a

quantum computer?

The question is subtle because the number of qubits per unit volume is formally

infinite in QFT (there are degrees of freedom at arbitrarily small distances) and al-

though the Hamiltonian is local, the terms in the Hamiltonian do not necessarily have

bounded norm. On the other hand, in a physical process of interest, we can usually

assume that the energy density per unit volume is bounded above. In that case, we

expect that the very-short-distance degrees of freedom are not so relevant, so that we

can attain reasonable accuracy by approximating continuous space with a finite den-

sity of lattice points per unit volume, and that furthermore the terms in the local

Hamiltonian can be well approximated by operators with bounded norm. A reasonable

expectation is that the complexity of a simulation of the dynamics scales polynomially

in Ωρmax = (V tρmax) = Emaxt where ρmax is the maximal energy per unit volume, and

Emax is an upper bound on the total energy. But there is no rigorous theorem establish-

ing such scaling. Though physicists have a pretty good grasp of the properties of QFT

(as indicated by the agreement between theory and experimental data), rigorous math-

ematical results pertaining to QFT are still quite technical and incomplete, particulary

in three spatial dimensions (where we live).

Our understanding is even less satisfactory for physical processes in which gravita-

tional effects are important. Can the quantum circuit model simulate quantum gravity

efficiently? If so, quantum computers may turn out to be a powerful tool for deepening

our understanding of quantum gravity. If not, then we still have not found the computa-

tional model that fully captures the computational power that is potentially realizable

in Nature.

6.8.2 Estimating energy eigenvalues and preparing energy eigenstates

We have argued that a quantum computer can efficiently simulate the time evolution

of a quantum system with a local Hamiltonian; i.e., it can solve the time-dependent

Schroedinger equation. Another thing that physicists and chemists want to do is solve

the time-independent Schroedinger equation; i.e., compute the energy eigenvalues of a

Hamiltonian. For example, chemists say that estimating the ground state energy of a

molecule to “chemical accuracy” (about one part in a million) is valuable for predicting

the properties of chemical reactions. In general, finding the energy eigenvalues of a local

Hamiltonian seems to be a hard problem classically because we need to diagonalize a

2n × 2n matrix for a system of n qubits. In some cases this may be easy, for example

40 Quantum Algorithms

if the matrix is very sparse and has a simple structure, but in some physically relevant

cases efficient classical algorithms are not known.

Sometimes, if we express H in a “natural” basis we find that all the off-diagonal terms

in the matrix are non-positive, i.e.

H = cI − h (6.209)

where I is the identity and h has only non-negative entries. In that case, the ground state

|ψ0〉 of H (the eigenvector with the lowest eigenvalue) can be expressed as |ψ0〉 =
∑

i ci|i〉
where |i〉 is a basis element and all ci can be chosen non-negative. That is because |ψ0〉
maximizes

〈ψ0|h|ψ0〉 =
∑

c∗i cjhij (6.210)

and so it is optimal to choose c∗i cj ≥ 0 for all i and j. When all the ci are nonnegative,

there are quantum Monte Carlo sampling algorithms that can find the {ci} efficiently

and accurately in practice. But if the off-diagonal terms in H have both + and − signs,

then sampling algorithms might not work well because there can be delicate cancellations

between positive and negative terms contributing to 〈ψ0|h|ψ0〉. Computational physicists

call this the sign problem.

But on a quantum computer, we can estimate eigenvalues of a unitary matrix U using

the phase estimation algorithm. To obtain m bits of accuracy, we prepare an m-qubit

register in a uniform superposition state, and execute this circuit:

-figure-

The measured value of k provides an estimate of the eigenvalue to m bits of accuracy.

To perform U t conditioned on t we simulate e−iHt for t ∈ T × {1, 2, 4, 8, ..2m−1}. This

suffices to find the fractional part of ET
2π to m-bit accuracy, where E is an eigenvalue

of the Hamiltonian H. We choose the step size in the simulation of e−iHt so that the

accuracy is δ ≈ 2−m for t = 2mT . If the Hamiltonian is geometrically local, we have seen

that this approximation can be achieved with a circuit size (neglecting a log factor)

L = O

(
h2(nt)2

δ

)
= O

(
h2(nT)2 × 22m

2−m

)
= O

(
(hT)2n223m

)
. (6.211)

For a particular preparation of the input state |ψ〉, suppose we repeat the computation

many times, and plot a histogram of the results:

-figure-

The location of each narrow peak estimates an energy eigenvalue Ea, modulo 2π/T .

The height of the peak estimates |〈Ea|ψ〉|2 – the overlap |ψ〉 with the corresponding

energy eigenstate |Ea〉. To compute the energy eigenvalue to accuracy polynomial in n,

we choose

δ ≈ 2−m ≈ 1/nc =⇒ m = c log2 n. (6.212)

6.8 Using quantum computers to simulate quantum physics 41

The algorithm is efficient: the quantum circuit size is

O
(
23mh2(nT)2

)
= O(n3cn2). (6.213)

However, if we want to estimate (say) the ground state energy E0 to polynomial

accuracy in quantum polynomial time, we must be able to prepare a state |ψ〉 whose

overlap with the ground state |E0〉 is no worse than polynomially small:

|〈E0|ψ〉|2 > 1/poly(n). (6.214)

If that is the case, we can get a good estimate of E0 in only polynomially many trials.

As a bonus, when we obtain the value E0 for the measured eigenvalue E0, then we have

projected state |ψ〉 onto the ground state |E0〉, and therefore we can compute further

properties of |E0〉, such as the distribution Prob(a) = 〈E0|Πa|E0〉, where Πa is projector

onto eigenspace of an efficiently measurable observable.

The catch is that the overlap of a randomly chosen n-qubit state with |E0〉 is expo-

nentially small, so preparing |ψ〉 with a polynomially small overlap is not necessarily

easy. One way we might attempt to construct a state with a significant overlap with the

ground state is by appealing to the quantum adiabatic theorem. We prepare the ground

state of a Hamiltonian Heasy whose ground state is easy to find classically. Then we

simulate Schroedinger evolution governed by a time-dependent Hamiltonian H(t) such

that

H(0) = Heasy, H(T) = Hhard, 0 ≤ t ≤ T, (6.215)

where Hhard is the Hamiltonian whose ground state we wish to construct. For example,

we might choose

H(t) = (1− t/T)Heasy + (t/T)Hhard. (6.216)

The quantum adiabatic theorem says that if |ψ(0)〉 has a large overlap with the ground

state of Heasy, then |ψ(T) has a large overlap with the ground state of Hhard, if T is long

enough (i.e. the Hamiltonian H(t) changes slowly enough). But how slow is slow enough?

Let E0(t) denote the energy of the ground state of H(t) and let E1(t) denote the energy

of the first excited state of H(t). Define ∆ = mint∈[0,T](E1(t)− E0(t)); we say ∆ is the

minimum energy gap between the ground and first excited state. Then the adiabatic

theorem says that T > A/∆c is slow enough, where A and c are constants independent

of the number of qubits n. Therefore, we have a complete polynomial algorithm for

computing the ground state energy of a local Hamiltonian to polynomial accuracy in

polynomial time provided that

∆ =
1

poly(n)
. (6.217)

But if ∆ becomes exponentially small in n during the evolution in which H(t) interpo-

lates between Heasy and Hhard, then this algorithm may require exponential time.

Unfortunately, we’ll see that it follows from weak complexity-theoretic assumptions

that there are local Hamiltonians for which computing ground state energy is hard even

for a quantum computer. (For example, otherwise we would be able to solve efficiently

any problem in NP using a quantum computer, which seems unlikely.) So the minimum

energy gap ∆ must be smaller than polynomially small in such cases.

On the other hand, it is reasonable to be hopeful that computing ground state en-

ergy for quantum systems will be an important application of quantum computing. For

example, as previously note, chemists say it is valuable to compute the energy of the

42 Quantum Algorithms

electronic ground state of a molecule with atomic nuclei at fixed positions to accuracy

≈ 10−6 (chemical accuracy). They also claim that it is an adequate approximation to

express

H =
M∑
a=1

Ha (6.218)

and each Ha acts on ≤ 4 basis functions. Hence this Hamiltonian is local. Further-

more, chemists assert (without proof) that it is possible to evolve adiabatically from

the Hartree-Fock Hamiltonian (which they can solve classically) to the full configuration

interaction (FCI) Hamiltonian (which they want to solve, but don’t know how to solve

classically in general) while the gap satisfies ∆ ≥ constant. If that is true, quantum

computers are likely to be a powerful tool for studying molecular chemistry.

6.9 Classical simulation of slightly entangling quantum computations

How hard is it to simulate a quantum computer using a classical computer? Clearly, we

would like to understand more deeply the classical and quantum complexity of solving

the time-dependent and time-independent Schroedinger equations. In particular, we wish

to identify cases for which the problem seems to be hard classically and easy quantumly,

for these are cases where quantum computers will find a useful niche.

More broadly, why do we believe that quantum computers are more powerful than

classical ones, and what is the source of the quantum computer’s power? Roughly speak-

ing, it seems to be hard to simulate a quantum system with a classical computer because

the Hilbert space of the quantum computer is exponentially large in the number of qubits

n, and that exponentially large Hilbert space is needed to accommodate and describe

the quantum correlations among the qubits in a many-body quantum system. From this

perspective, it seems legitimate to claim that quantum entanglement is the source of

the quantum computer’s power. On the other hand, that claim may be too simplistic,

because: 1) Some quantum computations that generate highly entangled quantum states

are easy to simulate classically. We’ll see an example next term when we discuss (in con-

nection with quantum error correction) quantum computation using the Clifford group.

2) For mixed states, simulating a quantum computation classically might be hard even

if the state remains separable (that is, unentangled) at all times during the computation

— even if the correlations among the parts of the quantum computer are “classical”

they could still be hard to simulate. You examined an example in a homework prob-

lem: estimating the trace of an exponentially large unitary matrix using just “one clean

qubit.”

So let’s ask the question this way: for quantum computation with pure states, if the

qubits in the computer never become highly entangled during the course of the compu-

tation, can we simulate the quantum computer efficiently with a classical computer? As

we’ll see, the answer is yes.

Imagine that n qudits (d-dimensional systems) are arranged in a line, and consider

cutting the system into two parts anywhere along the line: there are m qudits to the left

of the cut and n−m qubits to the right of the cut. Suppose that for any way of choosing

where we cut the chain, the entanglement between the two parts is bounded above by

a constant (independent of the system size n). We could quantify the entanglement in

various ways, and the conclusion would be the same, but to keep the discussion simple

6.9 Classical simulation of slightly entangling quantum computations 43

let us use the Schmidt number. Recall that the Schmidt number is the number of terms

in the Schmidt expansion of a bipartite pure state — equivalently it is the rank of the

density operator for either part.

While in principle the Schmidt number could be as large as dn/2 when the system is

cut into two subsystems of equal size, let us assume that

Schmidt number ≤ D = constant. (6.219)

We claim that under this assumption:

1. There is a succinct classical description of the pure state of n qudits.

2. A computation in which the n qudits have bounded Schmidt number at all times can

be efficiently simulated on a classical computer.

First, let’s construct the succinct description. The n-qudit state |ψ〉 can be expanded

in the standard basis as

|ψ〉 =
∑

ci1i2..in |i1i2..in〉 (6.220)

in terms of the dn complex numbers {ci1i2..in}. This is not succinct in general, but if the

Schmidt rank is bounded then each ci1i2..in can be expressed as a contraction of tensors,

where each tensor has 3 indices, and each index has a constant number of values:

-figure-

Here each (Pk)
ik
αk−1αk

has dD2 entries (except for the sites at the ends of the chain,

which have dD entries). Therefore, the state is described by ndD2 complex parameters,

a number that is linear rather than exponential in n. (In the case of a product state,

this becomes nd parameters.)

To obtain this compressed description of the n-site state |ψ〉 we perform the Schmidt

decomposition repeatedly (n − 1 times in succession). In the first step we divide the

system between qudits 1 and 2:

|ψ〉 =
∑
α1

λ1α1 |ψ1α1〉|φ2α1〉. (6.221)

Here the {λ1α1} are Schmidt coefficients, the {|ψ1α1〉} are elements of an orthonormal

basis for the first qudit, and {|φ2α1〉} are elements of an orthonormal basis for qudits

2, 3, ..n. We can expand |ψ1α1〉 in the standard basis, obtaining

|ψ〉 =
∑
α1

∑
i1

λ1α1ψ
i1
1α1
|i1〉|φ2α1〉 =

∑
α1

∑
i1

(P i11)α1 |i1〉|φ2α1〉, (6.222)

where (P i11)α1 = λ1α1ψ
i1
1α1

Now we Schmidt decompose |φ2α1〉 across the cut between

qudits 2 and 3, finding

|φ2α1〉 =
∑
α2

∑
i2

(P i22)α1α2 |i2〉|φ3α2〉. (6.223)

Note that there is no α1 label on the states {|φ3α2〉}. That is because these are the states

occuring in the Schmidt decomposition across the 2-3 cut that describe the right side of

44 Quantum Algorithms

the cut. These states have nothing to do with α1, which labels the states in the Schmidt

decomposition across the 1-2 cut.

Repeating the Schmidt decomposition n−1 times we find

|ψ〉 =
∑

α1..αn−1

∑
i1,..in

(P i11)α1(P i22)α1α2(P i33)α2α3 ..(P
in
n)αn−1 |i1i2..in〉. (6.224)

This is the decomposition in terms of contracted tensors that we sought. It is called the

matrix product state (MPS) decomposition of |ψ〉. It exists for any |ψ〉, but for generic

|ψ〉, the matrices in the middle of the chain of n qudits become exponentially large

in n. Under the assumption of bounded Schmidt rank, however, (P1)i1 and (Pn)in are

D-component vectors and (Pk)
ik for k = 2, 3, ..n− 1 are D ×D matrices.

Therefore, we have expressed |ψ〉 =
∑

i1,..in
P i11 P

i2
2 ..P

in
n |i1i2..in〉 where the coefficient

is a product of matrices. If we don’t want the endpoints to be special we can replace

P i11 and P inn by D ×D matrices contracted with one another; then

|ψ〉 =
∑
i1,..in

tr
(
P i11 P

i2
2 ..P

in
n

)
|i1i2..in〉 (6.225)

This description looks like the MPS locally, but with the ends of the chain now glued

together.

Suppose that the qudits are arranged in a one-dimensional chain, and that a circuit of

geometrically local quantum gates acts on the state, such that each gate acts on a pair of

neighboring qudits. We want to see that the MPS description can be efficiently updated

as this circuit is executed. If a unitary transformation U acts on a pair of neighboring

qudits on the chain as in

-figure-

this unitary affects only two neighboring matrices:∑
β

(P i)αβ(Qj)βγ 7→
∑
β

∑
i′j′

U iji′j′(P
i′)αβ(Qj

′
)βγ ≡M ij

αγ (6.226)

Now we need to update the Schmidt decomposition across the P -Q cut:

-figure-

We regard M ij
αγ as a dD × dD matrix, and we perform its singular value decomposition

(SVD). Recall that for any matrix M , there are unitary matrices VL and VR such that

M = V †L∆VR, where ∆ is diagonal. This Schmidt decomposes the state∑
ac

Mac|ac〉 =
∑
b

∆b|ψLb〉 ⊗ |ψRb〉 (6.227)

where |ψLb〉 =
∑

a |a〉V
†
Lab and |ψRb〉 =

∑
c |c〉V

†
Rbc. Here |ac〉 is shorthand for |αi, γj〉,

where |α〉 labels the states in the Schmidt decomposition across the cut just to the left of

6.9 Classical simulation of slightly entangling quantum computations 45

the two neighboring sites where U acts, and γ labels states in the Schmidt decomposition

across the cut just to the right.

The SVD of an N×N matrix can be computed in time O(N3) on a classical computer.

In the case of M ij
αγ , for which N = dD, this is time O(d3D3). In general, the middle index

b would be summed over N(= dD) values. But if the Schmidt rank stays bounded by D,

the matrix ∆ has at most D nonzero eigenvalues. We may identify (P ′i)αβ = (V †L
√

∆)iαβ
and (Q′j)βγ = (

√
∆VR)jβγ , where β is summed over D values, completing the update of

the MPS. The point is that when U acts on neighboring sites labeled a, a+ 1, we need

not update the Schmidt states to the left of site a or to the right of site a+ 1.

Acting on a product state, any 2-qudit state acting across a given cut can produce a

state with Schmidt number at most d2 across that cut.

-figure-

This can be achieved by a SWAP gate acting on two maximally entangled pairs, one

on each side of the cut. Likewise, acting on a state with Schmidt number D, the two-

qudit gate can increase the Schmidt number to at most d2D . This means that, starting

with a product state, a circuit in which no more than G gates act across any particular

cut creates a state with Schmidt number at most D = (d2)G across that cut. (We can

simulate a 2-qudit gate U acting across the cut by swapping the qubits until they are at

adjacent sites on either side of the cut, applying U , and then swapping back. Only U ,

not the swaps, increases the Schmidt number, and it increases it by at most the factor

d2.) The quantum state admits an efficient MPS classical description provided that the

Schmidt number D is bounded above by poly(n) across every cut, and furthermore this

description can be efficiently updated each time a quantum gate is applied. It follows

that a quantum computation acting on n qubits can be simulated efficiently by a classical

computer if the initial state of the quantum computer is a product state, and the number

of gates that act across each cut (for some ordering of the qubits) is O(log n), since in

that case we have D ≤ (d2)O(logn) = nO(log d2).

We should also note that, for an MPS, local measurements of the qudits in the chain

are easy to simulate. First let’s impose the proper normalization condition on the state

|ψ〉:

|ψ〉 =
∑
i1,..in

tr
(
P i11 P

i2
2 ..P

in
n

)
|i1i2..in〉 (6.228)

=⇒ 〈ψ|ψ〉 =
∑
i1,..in

∣∣∣tr(P i11 P
i2
2 ..P

in
n

)∣∣∣2 ,
which is conveniently written as∑

i1,..in

tr
((
P i11 ⊗ P

i1∗
1

)(
P i22 ⊗ P

i2∗
2

)
..
(
P inn ⊗ P in∗n

))
= tr(E1E2, , En), (6.229)

where Ek =
∑

ik
P ikk ⊗ P

ik∗
k is a D2 × D2 matrix. The expectation value of a product

46 Quantum Algorithms

observable can be expressed as:

〈ψ|O1 ⊗O2 ⊗ ..⊗On|ψ〉 = (6.230)

=
∑
j1..jn

∑
i1..in

tr
(
P j1∗1 ..P jn∗n

)
〈j1|O1|i1〉..〈jn|On|in〉 × tr

(
P i11 ..P

in
n

)
= tr (E1(O1)E2(O2)..En(On))

where Ek(Ok) =
∑

ikjk

(
P ikk ⊗ P

jk∗
k

)
〈jk|Ok|ik〉 is also aD2×D2 matrix. We can evaluate

the trace of a product of n constant-size matrices in time O(n). This completes the proof

that slightly entangled quantum computations can be classically simulated in polynomial

time.

Finally, let’s return to the problem of finding the energy of the ground state of a local

Hamiltonian. In many one-dimensional systems studied in physics, the ground state and

low-lying excited states can be well approximated by an MPS with a reasonable matrix

size. That is, there is a good approximation to e.g. the ground state with maximal

Schmidt number across any cut

D = poly(n). (6.231)

However there are local Hamiltonians (even translation-invariant ones) for which finding

the ground state energy seems to be hard not only for classical computers but also for

quantum computers! In these cases, either an accurate MPS representation requires

matrices super-polynomial in size, or, if there is a good MPS approximation with D =

poly(n), it must be a hard computational task to find that approximation.

6.10 QMA-completeness of the local Hamiltonian problem

As we have discussed, we expect that quantum computers can compute the ground state

energy of local Hamiltonians in cases where the problem is hard classically; this may be

an important application for quantum computers. On the other hand, we believe that in

some cases computing the ground state energy of a local Hamiltonian is still hard even

for quantum computers. Let us try to understand more deeply the reason for this belief.

Physicists are often interested in translation-invariant geometrically local Hamiltoni-

ans, in which all qubits interact in the same way with their neighbors (except for the

qubits at the boundary of the sample), because such Hamiltonians provide good models

of some real materials. But Hamiltonians that are not translationally invariant are also

useful in physics (for example, when modeling a material with ”disorder” due to dirt and

other imperfections in the sample). If the Hamiltonian is not translation invariant, then

we can formulate an instance of an n-qubit local Hamiltonian problem by specifying

how the Hamiltonian varies from site to site in the system. Physicists sometimes refer to

such (not translationally-invariant) systems as spin glasses. Even in the classical case,

where the variable at each site is a bit rather than a qubit, finding the ground state

energy of a spin glass to constant accuracy can be an NP-hard problem. Therefore, we

don’t expect classical or quantum computers to be able to solve the problem in general

(unless NP is contained in BQP, which seems unlikely).

Let’s first understand why the classical spin-glass problem can be NP-hard. Then we’ll

discuss the hardness of the quantum problem. We’ll see that in the quantum case finding

the ground state energy of a local Hamiltonian is QMA-hard. (Recall that QMA is the

6.10 QMA-completeness of the local Hamiltonian problem 47

quantum analogue of NP: the class of problems such that the solution can be verified

efficiently with a quantum computer if a suitable “quantum witness” is provided.)

For the classical case, we’ll recall the notion of a“reduction” of one computational

problem to another (B reduces to A if a machine that solves A can be used to solve B),

and then we’ll consider this sequence of reductions:

1. Any problem in NP reduces to CIRCUIT-SAT (already discussed previously); i.e.,

CIRCUIT-SAT is NP-complete.

2. CIRCUIT-SAT reduces to 3-SAT (3-SAT is NP-complete).

3. 3-SAT can be formulated as the problem of finding the ground state energy of a

classical 3-local Hamiltonian to constant accuracy.

4. MAX 2-SAT is also NP-hard and can be formulated as the problem of finding the

ground state energy of a classical 2-local Hamiltonian to constant accuracy.

5. The classical 2-local Hamiltonian problem is still hard in the case where the Hamil-

tonian is geometrically local, in three or even in two dimensions (cases of interest for

describing real spin glasses).

(5) implies that a spin glass will not be able to relax to its ground state efficiently in any

realistic physical process (which is part of what physicists mean by the word “glass”).

6.10.1 3-SAT is NP-complete

Language: Recall (as discussed earlier) that if f is a uniform family of Boolean functions

with variable input size, f : {0, 1}∗ 7→ {0, 1}, then the set of input strings accepted by

f is called a language:

L = {x ∈ {0, 1}∗ : f(x) = 1} (6.232)

NP: We say that a language is in NP if there is a polynomial-size uniform classical circuit

family (the verifier V (x, y)) such that:

• If x ∈ L, then there exists a witness y such that V (x, y) = 1 (completeness).

• If x /∈ L, then, for all y, V (x, y) = 0 (soundness).

Reduction: We say that B reduces to A if there is a polynomial-size uniform classical

circuit family R mapping x to R(x) such that B accepts x if and only if A accepts R(x).

This means we can hook up R to a machine that solves A to construct a machine that

solves B.

An important problem in NP is CIRCUIT-SAT. The input to the problem is a Boolean

circuit C (with an n-bit input and G = poly(n) gates), and we are to evaluate the

Boolean function f(C), where f(C) = 1 if there is an input x such that C(x) = 1,

f(C) = 0 otherwise. CIRCUIT-SAT is in NP because we can simulate the circuit C.

Given as a witness the value of x that C accepts, we can verify efficiently that C(x) = 1.

Furthermore, CIRCUIT-SAT is NP-complete (any problem in NP reduces to CIRCUIT-

SAT), as we discussed previously. If V (x, .) is the verifier for an NP problem with a fixed

instance x, we may think of V (x, .) as a circuit whose input is the witness y. Solving the

CIRCUIT-SAT problem for this Boolean circuit tells us whether there exists a witness

that the verifier accepts, and therefore solves the NP problem.

Now we come to a further reduction that we did not discuss previously: CIRCUIT-SAT

reduces to 3-SAT, and therefore 3-SAT, too, is an NP-complete problem (the Cook-Levin

theorem). For the SAT problem, the input is a “Boolean formula” with n variables, where

48 Quantum Algorithms

each variable is a bit. The formula is a conjunction of clauses, and the formula is true if

and only if every clause is true. In the k-SAT problem, each clause depends on at most

k of the variables, where k is a constant. (In some formulations of k-SAT, each clause is

required to be a disjunction of k literals (variables or their negations), but that is not

an important requirement, since any formula, and in particular any k-bit formula, can

be expressed in conjunctive normal form.). If f is a Boolean formula, the SAT function

is:

SAT(f) = 1 if there exists x such that f(x) = 1, (6.233)

SAT(f) = 0 otherwise.

Now we’ll show that CIRCUIT-SAT reduces to 3-SAT. For a given circuit C (the input

to CIRCUIT-SAT), how do we construct the corresponding Boolean formula R(C) (the

input to 3-SAT)?

Suppose that the gates in the circuit C are chosen from the universal set (AND, OR,

NOT), or any other gate set such that each gate has at most two input bits and one

output bit. We introduce a variable for the output of each gate, and we include in the

formula R(C) a clause corresponding to each gate.

Here the three-variable clause Cg(x, y, z) is true iff z is a valid output of the gate g when

the inputs are (x, y). The circuit may also have inputs that are constants rather than

variables. Then, e.g. a gate with two input bits, one of which is a constant, becomes a two-

variable clause, determined by the gate and the value of the constant. Or equivalently,

we can regard input of a constant as a gate with a one-bit output; the corresponding

one-bit clause is true if x has the right value. The circuit also has an answer bit, which

becomes a 1-bit clause Cg(x) which is true iff x = 1 (that is, if and only if the answer is

YES).

The formula R(C) has as variables the input x to the circuit C, and also additional

variables corresponding to the outputs of all gates in the circuit C. R(C) has been

constructed so that an assignment that satisfies every clause in C corresponds to a

valid history of the computation of the circuit C acting on input x, where the input is

accepted. If there is an input x that is accepted by the circuit C, then there will be a

satisfying assignment for the 3-SAT formula R(C), and conversely if there is no input

that C accepts, then there will be no satisfying assignment for R(C). Thus we have

obtained the desired reduction of CIRCUIT-SAT to 3-SAT.

The key idea we have exploited to reduce CIRCUIT-SAT to 3-SAT is that the witness

for 3-SAT is a valid history of the whole computation C that accepts the input x. We can

check the history efficiently because the circuit C has polynomial size and it is easy to

check each of the poly(n) gates in the execution of the circuit. Later on, we will extend

this idea — that a valid history of the computation is an efficiently checkable witness

— to the quantum setting.

Notice that we may think of the clauses in the formula f as the terms in a 3-local

classical Hamiltonian

H(x) =
∑
c

Hc(xc1, xc2, xc3); (6.234)

here the sum is over the clauses in the formula, where

Hc(xc1, xc2, xc3) =

{
0 if clause c is true for assignment xc1, xc2, xc3,

1 otherwise
(6.235)

6.10 QMA-completeness of the local Hamiltonian problem 49

Then minxH(x) = 0 if there is an assignment that satisfies every clause, while

minxH(x) ≥ 1 if there is no satisfying assignment (the number of violated clauses

is ≥ 1 for any assignment). We conclude that finding the minimum value of a 3-local

classical Hamiltonian is NP-hard: if we could do it we could solve 3-SAT. and hence any

problem in NP. This conclusion implies, as asserted earlier, that finding the ground state

energy of a 3-local classical Hamiltonian to constant accuracy must be hard in general

for quantum computers, too, unless NP ⊆ BQP.

6.10.2 Frustrated spin glasses

In fact, finding the ground state energy to constant accuracy is NP-hard even for a

2-local classical Hamiltonian

H(x) =
∑
c

Hc(xc1, xc2). (6.236)

Although 2-SAT (deciding whether a 2-SAT formula can be satisfied) is easy (there is a

poly-time algorithm), MAX-2SAT is an NP-hard problem. MAX-2SAT is the problem of

finding the minimum number of violated clauses for any assignment, which is equivalent

to minimizing the Hamiltonian function H.

Furthermore, we can make the 2-local Hamiltonian geometrically local without losing

hardness. An example is the Ising spin-glass model in three dimensions. Suppose the

binary variables are spins sitting at the sites of a cubic lattice, taking values Zi ∈ {±1}
at site i in the lattice. Consider the Hamiltonian

H = −
∑
〈ij〉

JijZiZj (6.237)

Here 〈ij〉 labels the edge in the lattice that connects two nearest-neighbor sites with

labels i and j.

Jij ∈ {±1} encodes the instance of the problem. If Jij = +1, then we say the edge

〈ij〉 is ferromagnetic; it is energetically favorable for the neighboring spins to align

(both +1 or both −1). If Jij = −1, then we say the edge 〈ij〉 is anti-ferromagnetic; it is

energetically favorable for the neighboring spins to anti-align (either +1 and −1 or −1

and +1). If all edges were ferromagnetic, it would be easy to minimize the energy — all

spins would align. But anti-ferromagnetic edges can generate frustration. This means it

is not possible to minimize −JijZiZj for all edges simultaneously.

For purposes of visualization, it is convenient to represent spins by lattice cells– i.e.

by squares on the 2D square lattices or by cubes in the 3D cubic lattice. There is a

−JijZiZj term coupling neighboring spins associated with each edge where two squares

meet in 2D on each face where two cubes meet in 3D.

Consider a site in 2D where 4 edges meet. If one of these edges is antiferromagnetic and

the other three are ferromagnetic, then there must be an odd number of excited edges

meeting at this site. More generally, if the number of antiferromagnetic edges is odd, then

there must be an odd number of excited edges and if the number of antiferromagnetic

edges is even, then there must be an even number of excited edges. If the number of

J = −1 edges meeting at a site is odd, we say that there is an Ising vortex at that site.

For any spin configuration, there are domain walls of excited edges, where the walls end

on Ising vortices.

Minimizing the energy, then, is equivalent in 2D to finding the minimum “chain” of

50 Quantum Algorithms

excited edges with boundary points at the positions of the Ising vortices. There is a poly-

time classical algorithm that finds the minimal chain. In 3D, there is an Ising vortex

on an edge if there are an odd number of J = −1 faces that meed at that edge. These

vortices form closed loops, and each spin configuration has a domain wall of excited faces

bounded by the vortex loops. To minimize the energy, then, we find the minimum area

surface with a specified 1D boundary; this problem is NP-hard. Finding the minimum

energy configuration is hard because there are many ways for the domain walls to be

“pinned” — stuck at local minima in the energy, such that many spins need to flip at

once to find a lower energy configuration. Local searching for the global energy minimum

fails.

In fact, there are also NP-hard spin glass problems in 2D, if we introduce local mag-

netic field terms in H as well as antiferromagnetic terms. For example, on a square

lattice consider

H = −
∑
〈ij〉

JijZiZj −
∑
i

hiZi (6.238)

where Jij ∈ {1, 0,−1} and hi ∈ {1, 0,−1}. The local magnetic field {hi} compounds

the frustration: Each spin wants to align with the local field, but by doing so the edge

connecting the spins might become excited.

So we see that minimizing the energy of a geometrially 2-local classical Hamiltonian

can be NP-hard because of frustration — there is no way to satisfy all the clauses and

there are many local minima of the energy that are not global minima. In the quantum

local Hamiltonian problem, we have H =
∑

aHa where the {Ha} might not be mutually

commuting; hence we might expect the problem to be even harder— that the Ha’s

cannot be simultaneously diagonalized compounds the frustration even further. Indeed

the ground state could be highly entangled, with no succinct classical description. Let’s

try to characterize the hardness of the quantum problem.

6.10.3 The quantum k-local Hamiltonian problem

Let H =
∑

aHa be an n-qubit Hamiltonian that is k-local — each Ha acts nontrivially

on at most k qubits, where k is a constant, and ||Ha|| ≤ h = constant. The 2k × 2k

matrix Ha is specified to poly(n) bits of precision.

We are promised that the ground state energy E0 , the lowest eigenvalue of H, satisfies

either

1. E0 ≤ Elow, or

2. E0 > Ehigh,

where Ehigh − Elow > 1
poly(n) .

We are to output:

f(H) =

{
1 if E0 ≤ Elow,

0 if E0 > Ehigh.
(6.239)

Note that in the formulation of the problem, there is a promise gap so that we can

answer the YES/NO question by determining E0 to 1/poly(n) accuracy.

We already know that this problem is NP-hard, even in the special case where H is

classical (all Ha commute). Also recall there is a class analogous to NP for randomized

computation (MA) and quantum computation (QMA): A language L is in QMA if there

6.10 QMA-completeness of the local Hamiltonian problem 51

exists a poly-size uniform quantum circuit family (the verifier V) and a single-qubit

measurement {Π0,Π1} such that:

1. If x ∈ L there is a witness |ψx〉 such that:

〈Ψ|Π1|Ψ〉 ≥ 2/3 where |Ψ〉 = V (|ψx〉 ⊗ |x〉 ⊗ |0〉∗). (6.240)

2. If x /∈ L, then 〈Ψ|Π1|Ψ〉 ≤ 1/3 for all |ψx〉.
We claim: the k-local Hamiltonian problem is QMA-complete for k ≥ 5 (famously

proved by Kitaev: see Chap. 14 of KSV). The result can be improved to geometrically

2-local H in 2D (for qubits) or geometrically 2-local H in 1D (for higher dimensional

qudits, with the local dimension d sufficiently large).

To verify this claim, we need to show:

1. the k-local Hamiltonian problem is in QMA.

2. Any problem in QMA is reducible to the k-local Hamiltonian problem. We’ll show

this for k = 5 and without geometrical constraints, as in Kitaev’s original discovery.

We have already shown part (1). We have seen that if the ground state |ψ0〉 is provided as

a witness, then we can compute E0 to 1/poly(n) accuracy using a circuit of size poly(n)

that performs the phase estimation algorithm. But how to achieve the reduction (2)?

For the reduction, we’ll follow the strategy used to show that 3-SAT is NP-complete:

For any problem in QMA, we’ll construct a witness that encodes the whole history of

the computation performed by the verifier, and a Hamiltonian H such that computing

the ground state energy of H amounts to checking that each step in the computation is

valid.

For a given problem in QMA, suppose that the verifier circuit VT has T gates:

U1, U2, . . . UT chosen from a universal set, where each Ut acts on at most two qubits. For

the corresponding k-local Hamiltonian problem, we’ll suppose that Merlin provides the

history state encoding the computation performed by the verifier:

|η〉 =
1√
T + 1

T∑
t=0

|ψ(t)〉 ⊗ |t〉, (6.241)

where |ψ(t)〉 = (UtUt−1 . . . U1)|ψinitial〉; here |ψinitial〉 = |x〉 ⊗ |0〉∗ ⊗ |ψx〉 , where |x〉
specifies the instance of the QMA problem, |0〉∗ is the initial state of scratch space used

by the verifier, |ψx〉 is the quantum witness testifying that x should be accepted, and

|ψ(t)〉 is state of the quantum computer obtained after the first t steps of the verifier

circuit have been executed. The state |t〉 is the state of a clock register that records the

time t ∈ {0, 1, · · · , T}; since 〈t|s〉 = δts, the T + 1 states appearing in superposition in

state |η〉 are mutually orthogonal, so |η〉 is properly normalized: 〈η|η〉 = 1.

6.10.4 Constructing and analyzing the Hamiltonian

Now we want to choose our HamiltonianH so that it locally “checks” the history encoded

in |η〉; that is, H will impose an energetic penalty if a step in the circuit is invalid, or if

the input is not accepted.

We will choose H to be of the form

H = Hin +Hout +Hprop +Hclock. (6.242)

The purpose of Hin is to enforce that the verifier circuit’s input qubits (other than the

52 Quantum Algorithms

witness itself) are set to the right initial values. E.g. for each scratch qubit labeled j

that should be in the state |0〉 at time t = 0, we include in Hin the term

H
(j)
in = (|1〉〈1|)(j) ⊗ I(else) ⊗ (|0〉〈0|)(clock). (6.243)

There is an energy penality of 1 if the scratch qubit is set to |1〉 rather than |0〉 as the

execution of the verifier circuit begins (time t = 0). Similar terms in Hin enforce that the

input register is set to the desired value x. The purpose of Hout is to impose a penalty

if the verifier circuit for the QMA problem fails to accept:

Hout = (|0〉〈0|)(output) ⊗ I(else) ⊗ (|T 〉〈T |)(clock). (6.244)

There is an energy cost of 1 if the output qubit has the value |0〉 rather than |1〉 after

the verifier circuit is fully executed (time t = T). The purpose of Hclock is to impose a

penalty if the clock register is not properly encoded (we’ll return to this issue later).

The purpose of the Hprop is to impose a penalty if the state |ψ(t)〉 does not have the

form Ut|ψ(t − 1)〉; i.e., was not obtained by faithfully executing step t of the verifier

circuit. Hence we write:

Hprop =
T∑
t=1

Hprop(t), (6.245)

where

Hprop(t) =
1

2

(
I ⊗ |t〉〈t|+ I ⊗ |t− 1〉〈t− 1| − Ut ⊗ |t〉〈t− 1| − U †t ⊗ |t− 1〉〈t|

)
.

(6.246)

The action of Hprop(t) on the relevant part of the valid history state |η〉 is

|ψ(t− 1)〉 ⊗ |t− 1〉 7→ 1

2
(|ψ(t− 1)〉 ⊗ |t− 1〉 − Ut|ψ(t− 1)〉 ⊗ |t〉+ . . .) ,

|ψ(t)〉 ⊗ |t〉 7→ 1

2

(
|ψ(t)〉 ⊗ |t〉 − U †t |ψ(t)〉 ⊗ |t− 1〉+ . . .

)
. (6.247)

Acting on |η〉, the terms I⊗|t〉〈t| and−Ut⊗|t〉〈t−1| inHprop give canceling contributions.

Hence

Hprop|η〉 = 0 if |η〉 is a valid history state. (6.248)

Therefore, a valid history state (where the state at time t is obtained from the state at

time t− 1 by applying the proper gate), such that the initial state is also valid, is a null

vector of both Hprop and Hin. Furthermore, if the quantum verifier accepts the input

with probability 1− ε, then

E0 ≤ 〈η|Hout|η〉 =
ε

T + 1
. (6.249)

(If the history is valid, the only term in the Hamiltonian that makes a nonzero contri-

bution to 〈H〉 is the term that penalizes an incorrect final readout.) Note also that it

is possible to amplify the success probability by repeating the verification of multiple

copies of the witness. Actually, the amplification is a little bit subtle: Merlin might try

to fool Arthur: Instead of sending a product state |ψx〉⊗m (m copies of the witness) he

might send an entangled state instead. But the amplification still works even in that

case. Each copy sent by Merlin may be a mixed state (obtained from the partial trace

over the other copies), a mixture of a state the verifier accepts with probability ≥ 2/3

6.10 QMA-completeness of the local Hamiltonian problem 53

and of another state that it might reject. But Merlin cannot fool Arthur into accepting

after many trials unless there is some state occuring in the ensemble of pure states that

is accepted with high probability in each trial.

So now we have seen that for a problem in QMA such that the verifier accepts with

high probability, the corresponding Hamiltonian H has an eigenvector with eigenvalue

close to zero. There are two things left to show:

• If the verifier rejects with high probability, then

E0 ≥ 1/poly(n) (6.250)

(then we can choose the promise gap of size 1/poly(n), such that E0 ≤ Elow for a

YES answer and E0 > Ehigh for a NO answer)

• So far Hprop is not local! It acts on the clock register, which is a (T + 1)-dimensional

system, and T = poly(n). We need to show we can encode the clock using qubits such

that Hprop +Hclock is k-local.

We’ll come back to the issue of encoding the clock later. First let’s try to understand

better the spectrum of H = Hin +Hout +Hprop.

Diagonalizing Hprop

Let’s start by considering Hprop. We’ve seen that a valid history state is a null vector of

Hprop (has eigenvalue zero). What are the other eigenspaces and eigenvalues of Hprop?

It’s easier to compute the spectrum of Hprop by transforming to a rotating frame basis

that freezes the motion of the state |ψ(t)〉. That is, let

Vt = UtUt−1 . . . U1 (6.251)

(the unitary applied after the first t steps of the circuit). And consider V =
∑T

t=0 Vt ⊗
|t〉〈t|. The the history state η = 1√

T+1

∑T
t=0 Vt|ψ(0)〉 ⊗ |t〉〈t| is mapped by V † to the

“history” state for the case where |ψ(t)〉 does not depend on t at all:

V †|η〉 1√
T + 1

T∑
t=0

V †t Vt|ψ(0)〉 ⊗ |t〉〈t| = |ψ(0)〉 ⊗
T∑
t=0

|t〉〈t|. (6.252)

Under this basis change, the Hamiltonian transforms as

H ′prop = V †HpropV =

T∑
t=0

1

2
(I ⊗ |t〉〈t|+ I ⊗ |t− 1〉〈t|) (6.253)

−
T∑
t=0

1

2

(
V †t Vt−1 ⊗ |t〉〈t− 1|+ V †t−1Vt−1 ⊗ |t− 1〉〈t|

)
=

T∑
t=0

1

2
(|t〉〈t|+ |t− 1〉〈t− 1| − |t〉〈t− 1| − |t− 1〉〈t|) .

This transformed Hamiltonian H ′prop acts nontrivially only on the clock register. It is a

sum of overlapping 2× 2 blocks:

H ′prop =

T∑
t=1

(
1
2 −1

2

−1
2

1
2

)
t−1,t

, (6.254)

where the subscript means the matrix acts on the space spanned by {|t−1〉, |t〉}. Because

54 Quantum Algorithms

of the overlaps, H ′prop is actually

(
1 −1

2

−1
2 1

)
in each block, except in the spaces

spanned by {|0〉, |1〉} and {|T − 1〉, |T 〉}, where it is(
1
2 −1

2

−1
2 1

)
0,1

and

(
1 −1

2

−1
2

1
2

)
T−1,T

. (6.255)

That is, H ′prop acts on the clock as a (T + 1)× (T + 1) matrix

H ′prop =

1
2 −1

2 0 · · ·
−1

2 1 −1
2 0 · · ·

0 −1
2 1 −1

2 0 · · ·
. . .

. . .

· · · 0 −1
2 1 −1

2

· · · 0 −1
2

1
2

; (6.256)

its entries are (−1
2 ,−

1
2 , ..,−

1
2) just above and below the diagonal, (1

2 , 1, 1, .., 1,
1
2) on the

diagonal, and 0 elsewhere.

We may express it as H ′prop = I − 1
2M , where

M =

1 1 0 · · ·
1 0 1 0 · · ·
0 1 0 1 0 · · ·

. . .
. . .

· · · 0 1 0 1

· · · 0 1 1

. (6.257)

That is,

M : |t〉 7→ |t+ 1〉+ |t− 1〉, t ∈ {1, 2, .., T − 1},
M : |0〉 7→ |0〉+ |1〉,
M : |T 〉 7→ |T − 1〉+ |T 〉. (6.258)

Diagonalizing M also diagonalizes H ′prop.

We can diagonalize M by Fourier transforming. The eigenvectors have the form

|ω〉 =
T∑
t=0

eiωt|t〉. (6.259)

In the expansion of M |ω〉, the coefficient of |t〉 for t ∈ {1, 2, .., T − 1} is

eiω(t−1) + eiω(t+1) = (eiω + e−iω)eiωt (6.260)

= (2 cosω)eiωt. (6.261)

Thus the action on |t〉 is multiplication by 2 cosω, which does not depend on the sign

of w. To construct an eigenstate of M , then, we may consider a linear combination of

|ω〉 and |−ω〉, where the value of |ω〉 is chosen so that M acts properly on the states at

the boundary — i.e. on |t = 0〉 and |t = T 〉.

6.10 QMA-completeness of the local Hamiltonian problem 55

The coefficient of |0〉 in M |ω〉 is 1 + eiw; therefore, the coefficient of |0〉 in

M
(
eiω/2|w〉+ e−iω/2|−ω〉

)
is

eiω/2(1 + eiω) + e−iω/2(1 + e−iω) = (eiω + e−iω)(eiω/2 + e−iω/2)

= 2 cosω(eiω/2 + e−iω/2). (6.262)

If follows that the “boundary condition” at t = 0 is consistent, for any value of ω, with

an eigenvalue of 2 cosω for the vectors eiω/2|ω〉+ e−iω/2|−ω〉.
But we must also consider the other boundary, at t = T . The coefficient of |T 〉

in eiω/2|ω〉 + e−iω/2|−ω〉 is eiω/2eiωT + e−iω/2e−iωT , while the coefficient of |T 〉 in

M
(
eiω/2|ω〉+ e−iw/2|−ω〉

)
is

(1 + e−iω)eiω/2eiωT + (1 + eiω)e−iω/2e−iωT . (6.263)

We are to choose ω so that

(1 + e−iw)eiw/2eiwT + (1 + eiw)e−iw/2e−iwT = (eiw + e−iw)(eiw/2eiwT + e−iw/2e−iwT).

(6.264)

After some cancellations, this condition becomes

eiw/2eiwT + e−iw/2e−iwT = e3iw/2eiwT + e−3iw/2e−iwT (6.265)

=⇒ cos

(
ω

(
T +

1

2

))
= cos

(
ω

(
T +

3

2

))
. (6.266)

This condition is satisfied provided that

w(T + 1) = πk where k = integer. (6.267)

We have therefore established that {2 cosωk} are T + 1 distinct eigenvalues of M where

ωk = π
T+1k for k ∈ {0, 1, 2, .., T}, and that the corresponding eigenvectors (up to nor-

malization) are

|ψk〉 =
T∑
t=0

cos

(
ωk

(
t+

1

2

))
|t〉; (6.268)

hence the eigenvalues of H ′prop are Ek = 1− cosωk = 2 sin2 ωk. These T + 1 eigenstates

are a complete basis, and the two smallest eigenvalues are:

E0 = 0, (6.269)

E1 = 2 sin2

(
π

2(T + 1)

)
≈ π2

2(T + 1)2
. (6.270)

If T = poly(n), then, the eigenvalue gap for Hprop is E1 − E0 ≥ 1
poly(n) .

Lower bound on the energy when the witness is rejected

But we want to consider the spectrum for the full Hamiltonian H = Hin +Hout +Hprop

(ignoring Hclock for now). For Hin +Hout, the null space is spanned by all vectors that

have a valid input at t = 0 and answer YES (are accepted) at t = T :

(Hin +Hout) |valid input, accepted output〉 = 0, (6.271)

while 〈Hin +Hout〉 ≥ 1 for all vectors orthogonal to this null space. Thus Hin +Hout has

eigenvalue gap = 1. Now, if the verifier accepts the input with the probability one, then

56 Quantum Algorithms

there is a simultaneous null eigenvector ofHprop and ofHin+Hout. That is, there is a valid

history with a valid input where the output is accepted. But if the acceptance probability

is small, that means the angle between these two null spaces cannot be too small, since

there is no vector that comes close to lying within both null spaces. We can relate this

angle to the ground state energy of the full Hamiltonian H = Hin +Hout +Hprop.

In general, suppose that H1 and H2 are two Hermitian operators, each with lowest

eigenvalue zero, and eigenvalue gap at least ∆. Then

H1 ≥ ∆(I −Π1) where Π1 is projection onto null space of H1 (6.272)

H2 ≥ ∆(I −Π2) where Π2 is projection onto null space of H2 (6.273)

Thus H1 + H2 ≥ ∆(2I − Π1 − Π2) and 〈H1 + H2〉 ≥ 2∆ −∆〈Π1 + Π2〉. Now suppose

|ψ1〉 and |ψ2〉 are two vectors such that |〈ψ1|ψ2〉| = cos θ for 0 ≤ θ ≤ π/2. With suitable

phase conventions we may choose a basis in the two-dimensional space spanned by |ψ1〉
and |ψ2〉 such that

|ψ1〉 =

(
cos θ/2

sin θ/2

)
|ψ2〉 =

(
cos θ/2

− sin θ/2

)
=⇒ (6.274)

|ψ1〉〈ψ1|+ |ψ2〉〈ψ2| =
(

2 cos2 θ/2 0

0 2 sin2 θ/2

)
, (6.275)

and therefore, in any state

〈|ψ1〉〈ψ1|+ |ψ2〉〈ψ2|〉 ≤ 2 cos2 θ/2 = 1 + cos θ. (6.276)

If follows that, if Π1 and Π2 are projectors, where the maximum overlap between spaces

projected by Π1 and Π2 is |〈ψ1|ψ2〉| = cos θ, then 〈Π1 + Π2〉 ≤ 1 + cos θ. Thus

〈H1 +H2〉 ≥ 2∆−∆〈Π1 + Π2〉 (6.277)

≥ ∆(1− cos θ) = 2∆ sin2 θ/2. (6.278)

Having related the expectation value of a sum of nonnegative Hermitian operators to

the angle between their null spaces, we now need to estimate the angle between null

spaces of H1 = Hin +Hout and H2 = Hprop. That is, we want to find

cos2 θ = max |〈η1|η2〉|2 (6.279)

= max〈η2|Π1|η2〉 (6.280)

where we maximize over η1 in the null space of H1 and η2 in the null space H2, and Π1

is the projector onto the null space of H1.

A vector in the null space of H2 = Hprop is a valid history state |η2〉 =
1√
T+1

∑T
t=0 |ψ(t)〉 ⊗ |t〉. The projector onto null space of H1 acts trivially on states

with t ∈ {1, 2, .., T − 1} so after transforming to the rotating frame

〈η′2|Π1|η′2〉 =
T − 1

T + 1
+

1

T + 1
〈η̃2|Πin + Π′out|η̃2〉, (6.281)

where η̃2 is a state of the non-clock variables, Πin projects onto a valid input state, and

Π′out projects onto

V †T (|1〉out ⊗ (anything else)) (6.282)

(because we have transformed to the rotating frame, and the history state is valid). We

know that 〈η̃2|Πin + Π′out|η̃2〉 ≤ (1 + cosφ) where φ is the angle between the spaces that

6.10 QMA-completeness of the local Hamiltonian problem 57

Πin and Πout project onto, as we showed above. This angle φ is given by cos2 φ = ε where

ε is the max. acceptance probability — that is, if the input is valid (in the support of

Πin) and the history is valid, then the probability of |1〉out is at most ε.

Via eq.(6.281), this upper bound 〈η̃2|Πin +Π′out|η̃2〉 ≤ 1+
√
ε provides an upper bound

on the expectation value of Π1 in a valid history state, and hence an lower bound on

the angle θ between the H1 and H2 null eigenspaces:

cos2 θ ≤ T − 1

T + 1
+

1

T + 1
(1 +

√
ε) = 1− 1−

√
ε

T + 1
, (6.283)

where ε is the maximum acceptance probability. Now, ∆ = 2 sin2
(

π
2(T+1)

)
is a lower

bound for the gap of H1 or H2 and 〈H1 +H2〉 ≥ 2∆ sin2 θ
2 , where sin2 θ = 1− cos2 θ ≥

1−
√
ε

T+1 . Using sin2 θ
2 = sin2 θ

4 cos2 θ
2

≥ 1
4 sin2 θ, we have

E0 ≥ 4 sin2

(
π

2(T + 1)

)
× 1

4

(
1−
√
ε

T + 1

)
≥ sin2

(
π

2(T + 1)

)
×
(

1−
√
ε

T + 1

)
≥ constant× 1−

√
ε

(T + 1)3
=

1−
√
ε

poly(n)
. (6.284)

To summarize, we have shown that if the acceptance probability is≥ 1−ε, then E0 ≤ ε
T+1

and if acceptance probability is ≤ ε, then E0 ≥ constant× (1−
√
ε) 1

(T+1)3
. With suitable

amplification to make ε small (compared to 1/(T + 1)3) in the case where the answer

is YES, we have reduced the QMA problem to an instance of the local Hamiltonian

problem.

Encoding the clock

Except . . . we still need to see that the Hamiltonian can be made local. We’d like to

encode the clock register using qubits. One way is to use a unary encoding with T

qubits labeled by i = {1, 2, 3, . . . , T}, where

|t = 0〉 = |000..0〉
|t = 1〉 = |100..0〉
|t = 2〉 = |110..0〉

etc. (6.285)

We can add a term to the Hamiltonian that imposes an energy penalty on the clock if

its state is not validly encoded. The encoding is valid if a 0 is never followed by a 1.

Therefore we choose

Hclock =

T−1∑
i=1

(|01〉〈01)i,i+1 , (6.286)

so that the only null vectors of Hclock are valid clock states.

The term Hprop in the Hamiltonian contains operators |t〉〈t|, |t〉〈t−1|, |t−1〉〈t| acting

on the clock register. If only validly encoded clock states are allowed, we can project

onto the state |t〉 by acting on just two neighboring qubits:

|t〉〈t| = (|10〉〈10|)t,t+1 (6.287)

for t = 1, 2, 3, . . . , T − 1, and acting on only a single qubit suffices for t = 0 or t = T .

58 Quantum Algorithms

The operators that advance or retard the time act on three adjacent qubits:

|t〉〈t− 1| = (|110〉〈100|)t−1,t,t+1,

|t− 1〉〈t| = (|100〉〈110|)t−1,t,t+1 (6.288)

(for 1 ≤ t ≤ T −1). Acting on three qubits suffices to locate the position of the “domain

wall” between the 0’s and 1’s in the bit string, and to move the wall one position to the

left or to the right; for t = 0 action on just two qubits suffices to move the wall one step

to the right, and for t = T action on two qubits suffices to move the wall one step to the

left. Since these clock terms act on at most three qubits, the term Ut⊗ |t〉〈t− 1| acts on

at most 5 qubits, if Ut is a 2-qubit gate. Thus with this clock encoding, the Hamiltonian

H = Hin +Hout +Hprop +Hclock (6.289)

is 5-local. Because the clock Hamiltonian annihilates validly encoded clock states, it

trivially commutes with the rest of the terms in the Hamiltonian H, and has an energy

gap of 1. Therefore, our previous analysis of the ground state energy of H still stands.

This completes the demonstration that any QMA problem is reducible to the prob-

lem of estimating the ground state energy (with a 1/poly(n) promise gap) of a 5-local

Hamiltonian.

Comments

Thus we have shown that the 5-local Hamiltonian problem is a “natural” QMA-complete

problem, much as 3-SAT is a natural NP-complete problem. But while in the classical

case many practical problems have been shown to be NP-complete, the family of prob-

lems that have been shown to be QMA-complete is still rather small, and the problems

seem relatively “artificial.” In any case, its interesting to see that quantum local Hamil-

tonian problems seem to be harder than classical ones (if QMA 6= NP).

I won’t discuss the tricks for reducing the QMA-complete problem to k = 2 (which

involves clever use of perturbation theory) or for making H geometrically local (which

involves encoding the clock more cleverly, among other things).

Another interesting direction to pursue using these ideas is to show that any problem

in BQP can be solved using adiabatic quantum computing. The idea is to replace

Hprop → Hprop(s) = (1− s)Hclock−init + sHprop (6.290)

where the null space of Hclock−init fixes the clock at |t = 0〉 and s varies in [0, 1]. Then

the ground state of H(s = 0) is easy to construct, and the ground state of H(s = 1) is

the valid history state. The eigenvalue gap of H(s) stays > 1/poly(n) for s ∈ [0, 1], so

the history state can be prepared in polynomial time by adiabatically varying s. Once

we have prepared the history state, we can measure the clock, projecting out |t = T 〉
with probability 1/(T + 1) = 1/poly(n). And once we have |ψ(T)〉 we can measure the

output qubit to find out if the circuit accepts. At a modest additional cost, we can can

substantially improve the probability of preparing |ψ(T)〉, by adding a long “runway”

after time t = T , so that the state of the computer remains fixed for S additional time

steps; then measuring the clock prepares |ψ(T)〉 with probability (S + 1)/(S + T + 1).

