
Lecture Notes for Ph219/CS219:
Quantum Information

Chapter 5

John Preskill
California Institute of Technology

Updated July 2015

Contents

5 Classical and quantum circuits 3
5.1 Classical Circuits 3

5.1.1 Universal gates 3
5.1.2 Most functions require large circuits 5
5.1.3 Circuit complexity 6
5.1.4 Randomized computation 12

5.2 Reversible computation 13
5.2.1 Landauer’s principle 13
5.2.2 Reversible gates 14
5.2.3 Saving space: the pebble game 20

5.3 Quantum Circuits 22
5.3.1 Accuracy 26
5.3.2 BQP ⊆ PSPACE 29
5.3.3 Most unitary transformations require large quantum

circuits 31
5.4 Universal quantum gates 33

5.4.1 Notions of universality 33
5.4.2 Two-qubit gates are exactly universal 36
5.4.3 Finite universal gate sets 39
5.4.4 The Solovay-Kitaev approximation 42

5.5 Summary 45
5.6 Exercises 46

2

5
Classical and quantum circuits

5.1 Classical Circuits

The concept of a quantum computer was introduced in Chapter 1. Here
we will specify our model of quantum computation more precisely, and we
will point out some basic properties of the model; later we will investigate
the power of the model. But before we explain what a quantum computer
does, we should say what a classical computer does.

5.1.1 Universal gates

A (deterministic) classical computer evaluates a function: given n-bits of
input it produces m-bits of output that are uniquely determined by the
input; that is, it finds the value of the function

f : {0, 1}n → {0, 1}m, (5.1)

for a particular specified n-bit argument x. A function with an m-bit
output is equivalent to m functions, each with a one-bit output, so we
may just as well say that the basic task performed by a computer is the
evaluation of

f : {0, 1}n → {0, 1}. (5.2)

A function talking an n-bit input to a one-bit output is called a Boolean
function. We may think of such a function as a binary string of length 2n,
where each bit of the string is the output f(x) for one of the 2n possible
values of the input x. Evidently, there are 22n

such strings; that’s a lot of
functions! Already for n = 5 there are 232 ≈ 4.3× 109 Boolean functions
— you’ve encountered only a tiny fraction of these in your lifetime.

It is sometimes useful to regard a Boolean function as a subset Σ of the
n-bit strings containing those values of the input x such that f(x) = 1; we

3

4 5 Classical and quantum circuits

say these strings are “accepted” by f . The complementary set Σ̄ contains
values of x such that f(x) = 0, which we say are “rejected” by f .

The evaluation of a Boolean function f can be reduced to a sequence of
simple logical operations. To see how, denote the n-bit strings accepted
by f as Σ = {x(1), x(2), x(3), . . . } and note that for each x(a) we can define
a function f (a) : {0, 1}n → {0, 1} such that

f (a)(x) =
{

1 x = x(a)

0 otherwise
(5.3)

Then f can be expressed as

f(x) = f (1)(x) ∨ f (2)(x) ∨ f (3)(x) ∨ . . . , (5.4)

the logical OR (∨) of all the f (a)’s. In binary arithmetic the ∨ operation
of two bits may be represented

x ∨ y = x+ y − x · y; (5.5)

it has the value 0 if x and y are both zero, and the value 1 otherwise.
Now consider the evaluation of f (a). We express the n-bit string x as

x = xn−1xn−2 . . . x2x1x0. (5.6)

In the case where x(a) = 11 . . . 111, we may write

f (a)(x) = xn−1 ∧ xn−2 ∧ . . . ∧ x2 ∧ x1 ∧ x0; (5.7)

it is the logical AND (∧) of all n bits. In binary arithmetic, the AND is
the product

x ∧ y = x · y. (5.8)

For any other x(a), f (a) is again obtained as the AND of n bits, but where
the NOT (¬) operation is first applied to each xi such that x(a)

i = 0; for
example

f (a)(x) = . . . (¬x3) ∧ x2 ∧ x1 ∧ (¬x0) (5.9)

if
x(a) = . . . 0110. (5.10)

The NOT operation is represented in binary arithmetic as

¬x = 1− x. (5.11)

We have now constructed the function f(x) from three elementary log-
ical connectives: NOT, AND, OR. The expression we obtained is called
the “disjunctive normal form” (DNF) of f(x). We have also implicitly
used another operation INPUT(xi), which inputs the ith bit of x.

5.1 Classical Circuits 5

These considerations motivate the circuit model of computation. A
computer has a few basic components that can perform elementary oper-
ations on bits or pairs of bits, such as NOT, AND, OR. It can also input a
variable bit or prepare a constant bit. A computation is a finite sequence
of such operations, a circuit, applied to a specified string of input bits.
Each operation is called a gate. The result of the computation is the final
value of all remaining bits, after all the elementary operations have been
executed. For a Boolean function (with a one-bit output), if there are
multiple bits still remaining at the end of the computation, one is desig-
nated as the output bit. A circuit can be regarded as a directed acyclic
graph, where each vertex in the graph is a gate, and the directed edges
indicate the flow of bits through the circuit, with the direction specifying
the order in which gates are applied. By acyclic we mean that no directed
closed loops are permitted.

We say that the gate set {NOT, AND, OR, INPUT} is “universal,”
meaning that any function can be evaluated by building a circuit from
these components. It is a remarkable fact about the world that an arbi-
trary computation can be performed using such simple building blocks.

5.1.2 Most functions require large circuits

Our DNF construction shows that any Boolean function with an n-bit
input can be evaluated using no more than 2n OR gates, n2n AND gates,
n2n NOT gates, and n2n INPUT gates, a total of (3n + 1)2n gates. Of
course, some functions can be computed using much smaller circuits, but
for most Boolean functions the smallest circuit that evaluates the function
really does have an exponentially large (in n) number of gates. The point
is that if the circuit size (i.e., number of gates) is subexponential in n,
then there are many, many more functions than circuits.

How many circuits are there with G gates acting on an n-bit input?
Consider the gate set from which we constructed the DNF, where we will
also allow inputting of a constant bit (either 0 or 1) in case we want to
use some scratch space when we compute. Then there are n+ 5 different
gates: NOT, AND, OR, INPUT(0), INPUT(1), and INPUT(xi) for i =
0, 1, 2, . . . n − 1. Each two-qubit gate acts on a pair of bits which are
outputs from preceding gates; this pair can be chosen in fewer than G2

ways. Therefore the total number of size-G circuits can be bounded as

Ncircuit(G) ≤
(
(n+ 5)G2

)G
. (5.12)

6 5 Classical and quantum circuits

If G = c2n

2n , where c is a constant independent of n, then

log2Ncircuit(G) ≤ G (log2(n+ 5) + 2 log2G)

= c2n

(
1 +

1
2n

log2

(
c2(n+ 5)

4n2

))
≤ c2n, (5.13)

where the second inequality holds for n sufficiently large. Comparing with
the number of Boolean functions, Nfunction(n) = 22n

, we find

log2

(
Ncircuit(G)
Nfunction(n)

)
≤ (c− 1)2n (5.14)

for n sufficiently large. Therefore, for any c < 1, the number of circuits
is smaller than the number of functions by a huge factor. We did this
analysis for one particular universal gate set, but the counting would
not have been substantially different if we had used a different gate set
instead.

We conclude that for any positive ε, then, most Boolean functions re-
quire circuits with at least (1 − ε)2n

2n gates. The circuit size is so large
because most functions have no structure that can be exploited to con-
struct a more compact circuit. We can’t do much better than consulting
a “look-up table” that stores a list of all accepted strings, which is essen-
tially what the DNF does.

5.1.3 Circuit complexity

So far, we have only considered a computation that acts on an input with
a fixed (n-bit) size, but we may also consider families of circuits that act
on inputs of variable size. Circuit families provide a useful scheme for
analyzing and classifying the complexity of computations, a scheme that
will have a natural generalization when we turn to quantum computation.

Boolean functions arise naturally in the study of complexity. A Boolean
function f may be said to encode a solution to a “decision problem” — the
function examines the input and issues a YES or NO answer. Often, what
might not be stated colloquially as a question with a YES/NO answer can
be “repackaged” as a decision problem. For example, the function that
defines the FACTORING problem is:

f(x, y) =
{

1 if integer x has a divisor z such that 1 < z < y,
0 otherwise;

(5.15)
knowing f(x, y) for all y < x is equivalent to knowing the least nontrivial
factor of x (if there is one).

5.1 Classical Circuits 7

Another example of a decision problem is the HAMILTONIAN PATH
problem: let the input be an `-vertex graph, represented by an ` × `
adjacency matrix (a 1 in the ij entry means there is an edge linking
vertices i and j); the function is

f(x) =
{

1 if graph x has a Hamiltonian path,
0 otherwise. (5.16)

A path on the graph is Hamiltonian if it visits each vertex exactly once.
For the FACTORING problem the size of the input is the number of

bits needed to specify x and y, while for the HAMILTONIAN PATH
problem the size of the input is the number of bits needed to specify the
graph. Thus each problem really defines a family of Boolean functions
with variable input size. We denote such a function family as

f : {0, 1}∗ → {0, 1}, (5.17)

where the ∗ indicates that the input size is variable. When x is an n-
bit string, by writing f(x) we mean the Boolean function in the family
which acts on an n-bit input is evaluated for input x. The set L of strings
accepted by a function family

L = {x ∈ {0, 1}∗ : f(x) = 1} (5.18)

is called a language.
We can quantify the hardness of a problem by stating how the compu-

tational resources needed to solve the problem scale with the input size
n. In the circuit model of computation, it is natural to use the circuit size
(number of gates) to characterize the required resources. Alternatively,
we might be interested in how much time it takes to do the computation if
many gates can be executed in parallel; the depth of a circuit is the num-
ber of time steps required, assuming that gates acting on distinct bits can
operate simultaneously (that is, the depth is the maximum length of a
directed path from the input to the output of the circuit). The width of a
circuit, the maximum number of gates (including identity gates acting on
“resting” bits) that act in any one time step, quantifies the storage space
used to execute the computation.

We would like to divide the decision problems into two classes: easy
and hard. But where should we draw the line? For this purpose, we
consider decision problems with variable input size, where the number of
bits of input is n, and examine how the size of the circuit that solves the
problem scales with n.

If we use the scaling behavior of a circuit family to characterize the
difficulty of a problem, there is a subtlety. It would be cheating to hide the
difficulty of the problem in the design of the circuit. Therefore, we should

8 5 Classical and quantum circuits

restrict attention to circuit families that have acceptable “uniformity”
properties — it must be “easy” to build the circuit with n + 1 bits of
input once we have constructed the circuit with an n-bit input.

Associated with a family of functions {fn} (where fn has n-bit input)
are circuits {Cn} that compute the functions. We say that a circuit family
{Cn} is “polynomial size” if the size |Cn| of Cn grows with n no faster
than a power of n,

size (Cn) ≤ poly(n), (5.19)

where poly denotes a polynomial. Then we define:

P = {decision problems solved by polynomial-size
uniform circuit families}

(P for “polynomial time”). Decision problems in P are “easy.” The rest
are “hard.” Notice that Cn computes fn(x) for every possible n-bit input,
and therefore, if a decision problem is in P we can find the answer even for
the “worst-case” input using a circuit of size no greater than poly(n). As
already noted, we implicitly assume that the circuit family is “uniform”
so that the design of the circuit can itself be solved by a polynomial-
time algorithm. Under this assumption, solvability in polynomial time
by a circuit family is equivalent to solvability in polynomial time by a
universal Turing machine.

Of course, to determine the size of a circuit that computes fn, we must
know what the elementary components of the circuit are. Fortunately,
though, whether a problem lies in P does not depend on what gate set
we choose, as long as the gates are universal, the gate set is finite, and
each gate acts on a constant number of bits. One universal gate set can
simulate another efficiently.

The way of distinguishing easy and hard problems may seem rather ar-
bitrary. If |Cn| ∼ n1000 we might consider the problem to be intractable in
practice, even though the scaling is “polynomial,” and if |Cn| ∼ nlog log log n

we might consider the problem to be easy in practice, even though the
scaling is “superpolynomial.” Furthermore, even if |Cn| scales like a mod-
est power of n, the constants in the polynomial could be very large. Such
pathological cases seem to be uncommon, however. Usually polynomial
scaling is a reliable indicator that solving the problem is feasible.

Of particular interest are decision problems that can be answered by
exhibiting an example that is easy to verify. For example, given x and
y < x, it is hard (in the worst case) to determine if x has a factor less than
y. But if someone kindly provides a z < y that divides x, it is easy for us
to check that z is indeed a factor of x. Similarly, it is hard to determine if
a graph has a Hamiltonian path, but if someone kindly provides a path,
it is easy to verify that the path really is Hamiltonian.

5.1 Classical Circuits 9

This concept that a problem may be hard to solve, but that a solution
can be easily verified once found, can be formalized. The complexity class
of decision problems for which the answer can be checked efficiently, called
NP, is defined as

Definition. NP. A language L is in NP iff there is a polynomial-size
verifier V (x, y) such that

If x ∈ L, then there exists y such that V (x, y) = 1 (completeness),

If x 6∈ L, then, for all y, V (x, y) = 0 (soundness).

The verifier V is the uniform circuit family that checks the answer. Com-
pleteness means that for each input in the language (for which the answer
is YES), there is an appropriate “witness” such that the verifier accepts
the input if that witness is provided. Soundness means that for each input
not in the language (for which the answer is NO) the verifier rejects the
input no matter what witness is provided. It is implicit that the witness
is of polynomial length, |y| = poly(|x|); since the verifier has a polynomial
number of gates, including input gates, it cannot make use of more than
a polynomial number of bits of the witness. NP stands for “nondeter-
ministic polynomial time;” this name is used for historical reasons, but
it is a bit confusing since the verifier is actually a deterministic circuit
(evaluates a function).

If is obvious that P ⊆ NP; if the problem is in P then the polynomial-
time verifier can decide whether to accept x on its own, without any
help from the witness. But some problems in NP seem to be hard, and
are believed not to be in P. Much of complexity theory is built on a
fundamental conjecture:

Conjecture : P 6= NP. (5.20)

Proving or refuting this conjecture is the most important open problem
in computer science, and one of the most important problems in mathe-
matics.

Why should we believe P 6= NP? If P = NP that would mean we could
easily find the solution to any problem whose solution is easy to check. In
effect, then, we could automate creativity; in particular, computers would
be able to discover all the mathematical theorems which have short proofs.
The conjecture P 6= NP asserts that our machines will never achieve
such awesome power — that the mere existence of a succinct proof of a
statement does not ensure that we can find the proof by any systematic
procedure in any reasonable amount of time.

An important example of a problem in NP is CIRCUIT-SAT. In this
case the input is a Boolean circuit C, and the problem is to determine

10 5 Classical and quantum circuits

whether any input x is accepted by C. The function to be evaluated is

f(C) =
{

1 if there exists x with C(x) = 1,
0 otherwise. (5.21)

This problem is in NP because if the circuit C has polynomial size, then
if we are provided with an input x accepted by C it is easy to check that
C(x) = 1.

The problem CIRCUIT-SAT is particularly interesting because it has a
remarkable property — if we have a machine that solves CIRCUIT-SAT
we can use it to solve any other problem in NP. We say that every problem
in NP is (efficiently) reducible to CIRCUIT-SAT. More generally, we say
that problem B reduces to problem A if a machine that solves A can be
used to solve B as well.

That is, if A and B are Boolean function families, then “B reduces to
A” means there is a function family R, computed by poly-size circuits,
such that B(x) = A(R(x)). Thus B accepts x iff A accepts R(x). In
particular, then, if we have a poly-size circuit family that solves A, we
can hook A up with R to obtain a poly-size circuit family that solves B.

A problem B in NP reduces to CIRCUIT-SAT because problem B has
a poly-size verifier V (x, y), such that B accepts x iff there exists some
witness y such that V accepts (x, y). For each fixed x, asking whether
such a witness y exists is an instance of CIRCUIT-SAT. So a poly-size
circuit family that solves CIRCUIT-SAT can also be used to solve problem
B.

We say a problem A in NP is NP-complete if every problem in NP is
reducible to A. Hence, CIRCUIT-SAT is NP-complete. The NP-complete
problems are the “hardest” problems in NP, in the sense that if we can
solve any NP-complete problem then we can solve every NP problem.
Furthermore, to show that problem A is NP-complete, it is enough to
show that B reduces to A where B is NP-complete. If C is any problem in
NP and B is NP-complete then there is a poly-size reduction R such that
C(x) = B(R(x)), and if B is reducible to A then there is another poly-size
reduction R′ such that B(y) = A(R′(y)). Hence C(x) = A(R′(R(x))), and
since the composition R′ ◦R of two poly-size reductions is also poly-size,
we see that an arbitrary problem C in NP reduces to A, and therefore A
is NP-complete. NP-completeness is a useful concept because hundreds
of “natural” computational problems turn out to be NP-complete. For
example, one can exhibit a polynomial reduction of CIRCUIT-SAT to
HAMILTONIAN PATH, and it follows that HAMILTONIAN PATH is
also NP-complete.

Another noteworthy complexity class is called co-NP. While NP prob-
lems can be decided by exhibiting an example if the answer is YES, co-NP

5.1 Classical Circuits 11

problems can be answered by exhibiting a counter-example if the answer
is NO. More formally:

Definition. co-NP. A language L is in co-NP iff there is a polynomial-
size verifier V̄ (x, y) such that

If x 6∈ L, then there exists y such that V̄ (x, y) = 1,

If x ∈ L, then, for all y, V̄ (x, y) = 0.

For NP the witness y testifies that x is in the language while for co-NP
the witness testifies that x is not in the language. Thus if language L is
in NP, then its complement L̄ is in co-NP and vice-versa. We see that
whether we consider a problem to be in NP or in co-NP depends on how
we choose to frame the question — while “Is there a Hamiltonian path?”
is in NP, the complementary question “Is there no Hamiltonian path?” is
in co-NP.

Though the distinction between NP and co-NP may seem arbitrary, it
is nevertheless interesting to ask whether a problem is in both NP and
co-NP. If so, then we can easily verify the answer (once a suitable witness
is in hand) regardless of whether the answer is YES or NO. It is believed
(though not proved) that NP 6= co-NP. For example, we can show that
a graph has a Hamiltonian path by exhibiting an example, but we don’t
know how to show that it has no Hamiltonian path that way!

If we assume that P 6= NP, it is known that there exist problems in
NP of intermediate difficulty (the class NPI), which are neither in P nor
NP-complete. Furthermore, assuming that that NP 6= co-NP, it is known
that no co-NP problems are NP-complete. Therefore, problems in the
intersection of NP and co-NP, if not in P, are good candidates for inclusion
in NPI.

In fact, a problem in NP ∩ co-NP believed not to be in P is the FAC-
TORING problem. As already noted, FACTORING is in NP because,
if we are offered a factor of x, we can easily check its validity. But it is
also in co-NP, because it is known that if we are given a prime number
we can efficiently verify its primality. Thus, if someone tells us the prime
factors of x, we can efficiently check that the prime factorization is right,
and can exclude that any integer less than y is a divisor of x. Therefore,
it seems likely that FACTORING is in NPI.

We are led to a crude (conjectured) picture of the structure of NP ∪ co-
NP. NP and co-NP do not coincide, but they have a nontrivial intersection.
P lies in NP ∩ co-NP but the intersection also contains problems not in
P (like FACTORING). No NP-complete or co-NP-complete problems lie
in NP ∩ co-NP.

12 5 Classical and quantum circuits

5.1.4 Randomized computation

It is sometimes useful to consider probabilistic circuits that have access
to a random number generator. For example, a gate in a probabilistic
circuit might act in either one of two ways, and flip a fair coin to decide
which action to execute. Such a circuit, for a single fixed input, can
sample many possible computational paths. An algorithm performed by
a probabilistic circuit is said to be “randomized.”

If we run a randomized computation many times on the same input,
we won’t get the same answer every time; rather there is a probability
distribution of outputs. But the computation is useful if the probability
of getting the right answer is high enough. For a decision problem, we
would like a randomized computation to accept an input x which is in
the language L with probability at least 1

2 + δ, and to accept an input
x which is not in the language with probability no greater than 1

2 − δ,
where δ > 0 is a constant independent of the input size. In that case
we can amplify the probability of success by performing the computation
many times and taking a majority vote on the outcomes. For x ∈ L, if we
run the computation N times, the probability of rejecting in more than
half the runs is no more than e−2Nδ2

(the Chernoff bound). Likewise, for
x 6∈ L, the probability of accepting in the majority of N runs is no more
than e−2Nδ2

.
Why? There are all together 2N possible sequences of outcomes in the

N trials, and the probability of any particular sequence with NW wrong
answers is (

1
2
− δ

)NW
(

1
2

+ δ

)N−NW

. (5.22)

The majority is wrong only if NW ≥ N/2, so the probability of any
sequence with an incorrect majority is no larger than(

1
2
− δ

)N/2(1
2

+ δ

)N/2

=
1

2N

(
1− 4δ2

)N/2
. (5.23)

Using 1− x ≤ e−x and multiplying by the total number of sequences 2N ,
we obtain the Chernoff bound:

Prob(wrong majority) ≤
(
1− 4δ2

)N/2 ≤ e−2Nδ2
. (5.24)

If we are willing to accept a probability of error no larger than ε, then,
it suffices to run the computation a number of times

N ≥ 1
2δ2

ln (1/ε) . (5.25)

5.2 Reversible computation 13

Because we can make the error probability very small by repeating a
randomized computation a modest number of times, the value of the con-
stant δ does not really matter for the purpose of classifying complexity,
as long as it is positive and independent of the input size. The standard
convention is to specify δ = 1/6, so that x ∈ L is accepted with proba-
bility at least 2/3 and x 6∈ L is accepted with probability no more than
1/3. This criterion defines the class BPP (“bounded-error probabilistic
polynomial time”) containing decision problems solved by polynomial-size
randomized uniform circuit families.

It is clear that BPP contains P, since a deterministic computation is a
special case of a randomized computation, in which we never consult the
source of randomness. It is widely believed that BPP=P, that randomness
does not enhance our computational power, but this has not been proven.
It is not even known whether BPP is contained in NP.

We may define a randomized class analogous to NP, called MA
(“Merlin-Arthur”), containing languages that can be checked when a ran-
domized verifier is provided with a suitable witness:

Definition. MA. A language L is in MA iff there is a polynomial-size
randomized verifier V (x, y) such that

If x ∈ L, then there exists y such that Prob(V (x, y) = 1) ≥ 2/3,
If x 6∈ L, then, for all y, Prob(V (x, y) = 1) ≤ 1/3.

The colorful name evokes a scenario in which the all-powerful Merlin uses
his magical powers to conjure the witness, allowing the mortal Arthur,
limited to polynomial time computation, to check the answer. Obviously
BPP is contained in MA, but we expect BPP 6= MA just as we expect P
6= NP.

5.2 Reversible computation

In devising a model of a quantum computer, we will generalize the cir-
cuit model of classical computation. But our quantum logic gates will
be unitary transformations, and hence will be invertible, while classical
logic gates like the AND gate are not invertible. Before we discuss quan-
tum circuits, it is useful to consider some features of reversible classical
computation.

5.2.1 Landauer’s principle

Aside from providing a bridge to quantum computation, classical re-
versible computing is interesting in its own right, because of Landauer’s
principle. Landauer observed that erasure of information is necessarily a

14 5 Classical and quantum circuits

dissipative process. His insight is that erasure always involves the com-
pression of phase space, and so is thermodynamically, as well as logically,
irreversible.

For example, I can store one bit of information by placing a single
molecule in a box, either on the left side or the right side of a partition that
divides the box. Erasure means that we move the molecule to the right
side (say) irrespective of whether it started out on the left or right. I can
suddenly remove the partition, and then slowly compress the one-molecule
“gas” with a piston until the molecule is definitely on the right side. This
procedure changes the entropy of the gas by ∆S = −k ln 2 (where k is
Boltzmann’s constant) and there is an associated flow of heat from the
box to its environment. If the process is quasi-static and isothermal at
temperature T , then work W = −kT∆S = kT ln 2 is performed on the
box, work that I have to provide. If I erase information, someone has to
pay the power bill.

Landauer also observed that, because irreversible logic elements erase
information, they too are necessarily dissipative, and therefore require an
unavoidable expenditure of energy. For example, an AND gate maps two
input bits to one output bit, with 00, 01, and 10 all mapped to 0, while
11 is mapped to one. If the input is destroyed and we can read only the
output, then if the output is 0 we don’t know for sure what the input was
— there are three possibilities. If the input bits are chosen uniformly at
random, than on average the AND gate destroys 3

4 log2 3 ≈ 1.189 bits of
information. Indeed, if the input bits are uniformly random any 2-to-1
gate must “erase” at least one bit on average. According to Landauer’s
principle, then, we need to do an amount of work at least W = kT ln 2 to
operate a 2-to-1 logic gate at temperature T .

But if a computer operates reversibly, then in principle there need be
no dissipation and no power requirement. We can compute for free! At
present this idea is not of great practical importance, because the power
consumed in today’s integrated circuits exceeds kT per logic gate by at
least three orders of magnitude. As the switches on chips continue to
get smaller, though, reversible computing might eventually be invoked to
reduce dissipation in classical computing hardware.

5.2.2 Reversible gates

A reversible computer evaluates an invertible function taking n bits to n
bits

f : {0, 1}n → {0, 1}n . (5.26)

An invertible function has a unique input for each output, and we can
run the computation backwards to recover the input from the output. We

5.2 Reversible computation 15

may regard an invertible function as a permutation of the 2n strings of
n bits — there are (2n)! such functions. If we did not insist on invert-
ibility, there would be

(
22n)n = (2n)2

n

functions taking n bits to n bits
(the number of ways to choose n Boolean functions); using the Stirling
approximation, (2n)! ≈ (2n/e)2

n
, we see that the fraction of all functions

which are invertible is quite small, about e−2n
.

Any irreversible computation can be “packaged” as an evaluation of an
invertible function. For example, for any f : {0, 1}n → {0, 1}, we can
construct f̃ : {0, 1}n+1 → {0, 1}n+1 such that

f̃(x, y) = (x, y ⊕ f(x)). (5.27)

Here y is a bit and ⊕ denotes the XOR gate (addition mod 2) — the
n-bit input x is preserved and the last bit flips iff f(x) = 1. Applying f̃
a second time undoes this bit flip; hence f̃ is invertible, and equal to its
own inverse. If we set y = 0 initially and apply f̃ , we can read out the
value of f(x) in the last output bit.

Just as for Boolean functions, we can ask whether a complicated re-
versible computation can be executed by a circuit built from simple com-
ponents — are there universal reversible gates? It is easy to see that
one-bit and two-bit reversible gates do not suffice; we will need three-bit
gates for universal reversible computation.

Of the four 1-bit → 1-bit gates, two are reversible; the trivial gate and
the NOT gate. Of the (24)2 = 256 possible 2-bit → 2-bit gates, 4! = 24
are reversible. One of special interest is the controlled-NOT (CNOT) or
reversible XOR gate that we already encountered in Chapter 4:

XOR : (x, y) 7→ (x, x⊕ y), (5.28)

x

y

x

x⊕ y

sg
This gate flips the second bit if the first is 1, and does nothing if the first
bit is 0 (hence the name controlled-NOT). Its square is trivial; hence it
inverts itself. Anticipating the notation that will be convenient for our
discussion of quantum gates, we will sometimes use Λ(X) to denote the
CNOT gate. More generally, by Λ(G) we mean a gate that applies the
operation G to a “target” conditioned on the value of a “control bit;” G
is applied if the control bit is 1 and the identity is applied if the control
bit is 0. In the case of the CNOT gate, G is the Pauli operator X, a bit
flip.

16 5 Classical and quantum circuits

The CNOT gate performs a NOT on the second bit if the first bit x is
set to 1, and it performs the copy operation if y is initially set to zero:

CNOT : (x, 0) 7→ (x, x). (5.29)

With the circuit

x

y

y

x

sg gs sg
constructed from three XOR’s, we can swap two bits:

(x, y) → (x, x⊕ y) → (y, x⊕ y) → (y, x). (5.30)

With these swaps we can shuffle bits around in a circuit, bringing them
together if we want to act on them with a “local gate” at a fixed location.

To see that the one-bit and two-bit gates are nonuniversal, we observe
that all these gates are linear. Each reversible two-bit gate has an action
of the form (

x
y

)
7→
(
x′

y′

)
= M

(
x
y

)
+
(
a
b

)
; (5.31)

the pair of bits
(

a
b

)
can take any one of four possible values, and the

matrix M is one of the six invertible matrices with binary entries

M =
(

1 0
0 1

)
,

(
0 1
1 0

)
,

(
1 1
0 1

)
,(

1 0
1 1

)
,

(
0 1
1 1

)
,

(
1 1
1 0

)
. (5.32)

(All addition is performed modulo 2.) Combining the six choices for M
with the four possible constants, we obtain 24 distinct gates, exhausting
all the reversible 2 → 2 gates.

Since the linear transformations are closed under composition, any cir-
cuit composed from reversible 2 → 2 (and 1 → 1) gates will compute a
linear function

x 7→Mx+ a. (5.33)

But for n ≥ 3, there are invertible functions on n-bits that are nonlinear.
An important example is the 3-bit Toffoli gate (or controlled-controlled-
NOT) Λ2(X)

Λ2(X) : (x, y, z) → (x, y, z ⊕ xy); (5.34)

5.2 Reversible computation 17

x

y

z

x

y

z ⊕ xy

ssg

it flips the third bit if the first two are 1 and does nothing otherwise, thus
invoking the (nonlinear) multiplication of the two bits x and y. The Λ2(·)
notation indicates that the operation acting on the target bit is triggered
only if both control bits are set to 1. Like the CNOT gate Λ(X), Λ2(X)
is its own inverse.

Unlike the reversible 2-bit gates, the Toffoli gate serves as a universal
gate for Boolean logic, if we can provide constant input bits and ignore
output bits. If we fix x = y = 1, then the Toffoli gate performs NOT
acting on the third bit, and if z is set to zero initially, then the Toffoli
gate outputs z = x ∧ y in the third bit. Since NOT/AND/OR are a
universal gate set, and we can construct OR from NOT and AND (x∨y =
¬(¬x ∧ ¬y)), this is already enough to establish that the Toffoli gate is
universal. Note also that if we fix x = 1 the Toffoli gate functions like a
CNOT gate acting on y and z; we can use it to copy.

The Toffoli gate Λ2(X) is also universal in the sense that we can build a
circuit to compute any reversible function using Toffoli gates alone (if we
can fix input bits and ignore output bits). It will be instructive to show
this directly, without relying on our earlier argument that NOT/AND/OR
is universal for Boolean functions. Specifically, we can show the following:
From the NOT gate and the Toffoli gate Λ2(X), we can construct any
invertible function on n bits, provided we have one extra bit of scratchpad
space available.

The first step is to show that from the three-bit Toffoli-gate Λ2(X) we
can construct an n-bit Toffoli gate Λn−1(X) that acts as

(x1, x2, . . . xn−1, y) → (x1, x2, . . . , xn−1, y ⊕ x1x2 . . . xn−1) (5.35)

using one extra bit of scratch space. For example, we construct Λ3(X)
from Λ2(X)’s with the circuit

18 5 Classical and quantum circuits

x1

x2

0

x3

y

x1

x2

0

x3

y ⊕ x1x2x3

ssg ssg

ssg

The purpose of the last Λ3(X) gate is to reset the scratch bit back to
its original value 0. Actually, with one more gate we can obtain an im-
plementation of Λ3(X) that works irrespective of the initial value of the
scratch bit:

x1

x2

w

x3

y

x1

x2

w

x3

y ⊕ x1x2x3

ssg ssg

ssg ssg
We can see that the scratch bit really is necessary, because Λ3(X)

is an odd permutation (in fact a transposition) of the 4-bit strings —
it transposes 1111 and 1110. But Λ2(X) acting on any three of the
four bits is an even permutation; e.g., acting on the last three bits it
transposes both 0111 with 0110 and 1111 with 1110. Since a product of
even permutations is also even, we cannot obtain Λ3(X) as a product of
Λ2(X)’s that act only on the four bits.

This construction of Λ3(X) from four Λ2(X)’s generalizes immediately
to the construction of Λn−1(X) from two Λn−2(X)’s and two Λ2(X)’s
(just expand x1 to several control bits in the above diagram). Iterating
the construction, we obtain Λn−1(X) from a circuit with 2n−2 + 2n−3− 2
Λ2(X)’s. Furthermore, just one bit of scratch suffices. (With more scratch
space, we can build Λn−1(X) from Λ2(X)’s much more efficiently — see
Exercise 5.1.)

The next step is to note that, by conjugating Λn−1(X) with NOT gates,
we can in effect modify the value of the control string that “triggers” the
gate. For example, the circuit

5.2 Reversible computation 19

x1

x2

x3

y

g
g

sssg

g
g

flips the value of y if x1x2x3 = 010, and it acts trivially otherwise. Thus
this circuit transposes the two strings 0100 and 0101. In like fashion, with
Λn−1(X) and NOT gates, we can devise a circuit that transposes any two
n-bit strings that differ in only one bit. (The location of the bit where
they differ is chosen to be the target of the Λn−1(X) gate.)

But in fact a transposition that exchanges any two n-bit strings can
be expressed as a product of transpositions that interchange strings that
differ in only one bit. If a0 and as are two strings that are Hamming
distance s apart (differ in s places), then there is a sequence of strings

a0, a1, a2, a3, . . . , as, (5.36)

such that each string in the sequence is Hamming distance one from its
neighbors. Therefore, each of the transpositions

(a0a1), (a1a2), (a2a3), . . . , (as−1as), (5.37)

can be implemented as a Λn−1(X) gate conjugated by NOT gates. By
composing transpositions we find

(a0as) = (as−1as)(as−2as−1) . . . (a2a3)(a1a2)(a0a1)(a1a2)(a2a3)
. . . (as−2as−1)(as−1as); (5.38)

we can construct the Hamming-distance-s transposition from 2s − 1
Hamming-distance-one transpositions. It follows that we can construct
(a0as) from Λn−1(X)’s and NOT gates.

Finally, since every permutation is a product of transpositions, we have
shown that every invertible function on n-bits (every permutation of the
n-bit strings) is a product of Λn−1(X)’s and NOT’s, using just one bit of
scratch space.

Of course, a NOT can be performed with a Λ2(X) gate if we fix two
input bits at 1. Thus the Toffoli gate Λ2(X) is universal for reversible
computation, if we can fix input bits and discard output bits.

20 5 Classical and quantum circuits

5.2.3 Saving space: the pebble game

We have seen that with Toffoli and NOT gates we can compute any in-
vertible function using very little scratch space, and also that by fixing
constant input bits and ignoring output bits, we can simulate any (irre-
versible) Boolean circuit using only reversible Toffoli gates. In the latter
case, though, we generate two bits of junk every time we simulate an
AND gate. Our memory gradually fills with junk, until we reach the
stage where we cannot continue with the computation without erasing
some bits to clear some space. At that stage, we will finally have to pay
the power bill for the computing we have performed, just as Landauer
had warned.

Fortunately, there is a general procedure for simulating an irreversible
circuit using reversible gates, in which we can erase the junk without
using any power. We accumulate and save all the junk output bits as
the simulation proceeds, and when we reach the end of the computation
we make a copy of the output. The COPY operation, which is logically
reversible, can be done with a CNOT or Toffoi gate. Then we run the
full computation in reverse, executing the circuit in the opposite order
and replacing each gate by its inverse. This procedure cleans up all the
junk bits, and returns all registers to their original settings, without any
irreversible erasure steps. Yet the result of the computation has been
retained, because we copied it before reversing the circuit.

Because we need to run the computation both forward and backward,
the reversible simulation uses roughly twice as many gates as the irre-
versible circuit it simulates. Far worse than that, this simulation method
requires a substantial amount of memory, since we need to be able to
store about as many bits as the number of gates in the circuit before we
finally start to clear the memory by reversing the computation.

It is possible, though, at the cost of modestly increasing the simula-
tion time, to substantially reduce the space required. The trick is to
clear space during the course of the simulation by running a part of the
computation backward. The resulting tradeoff between time and space is
worth discussing, as it illustrates both the value of “uncomputing” and
the concept of a recursive simulation.

We imagine dividing the computation into steps of roughly equal size.
When we run step k forward, the first thing we do is make a copy of
the output from the previous step, then we execute the gates of step k,
retaining all the junk accumulated by those gates. We cannot run step k
forward unless we have previously completed step k−1. Furthermore, we
will not be able to run step k backward if we have already run step k− 1
backward. The trouble is that we will not be able to reverse the COPY
step at the very beginning of step k unless we have retained the output

5.2 Reversible computation 21

from step k − 1.
To save space in our simulation we want to minimize at all times the

number of steps that have already been computed but have not yet been
uncomputed. The challenge we face can be likened to a game — the
reversible pebble game. The steps to be executed form a one-dimension
directed graph with sites labeled 1, 2, 3, . . . , T . Execution of step k is
modeled by placing a pebble on the kth site of the graph, and executing
step k in reverse is modeled as removal of a pebble from site k. At the
beginning of the game, no sites are covered by pebbles, and in each turn
we add or remove a pebble. But we cannot place a pebble at site k (except
for k = 1) unless site k− 1 is already covered by a pebble, and we cannot
remove a pebble from site k (except for k = 1) unless site k−1 is covered.
The object is to cover site T (complete the computation) without using
more pebbles than necessary (generating a minimal amount of garbage).

We can construct a recursive procedure that enables us to reach site
t = 2n using n+1 pebbles and leaving only one pebble in play. Let F1(k)
denote placing a pebble at site k, and F1(k)−1 denote removing a pebble
from site k. Then

F2(1, 2) = F1(1)F1(2)F1(1)−1, (5.39)

leaves a pebble at site k = 2, using a maximum of two pebbles at inter-
mediate stages. Similarly

F3(1, 4) = F2(1, 2)F2(3, 4)F2(1, 2)−1, (5.40)

reaches site k = 4 using three pebbles, and

F4(1, 8) = F3(1, 4)F3(5, 8)F3(1, 4)−1, (5.41)

reaches k = 8 using four pebbles. Proceeding this way we construct
Fn(1, 2n) which uses a maximum of n + 1 pebbles and leaves a single
pebble in play.

Interpreted as a routine for simulating Tirr = 2n steps of an irreversible
computation, this strategy for playing the pebble game represents a re-
versible simulation requiring space Srev scaling like

Srev ≈ Sstep log2 (Tirr/Tstep) , (5.42)

where Tstep is the number of gates is a single step, and Sstep is the amount
of memory used in a single step. How long does the simulation take?
At each level of the recursive procedure described above, two steps for-
ward are replaced by two steps forward and one step back. Therefore,
an irreversible computation with Tirr/Tstep = 2n steps is simulated in
Trev/Tstep = 3n steps, or

Trev = Tstep (Tirr/Tstep)
log 3/ log 2 = Tstep(Tirr/Tstep)1.58, (5.43)

22 5 Classical and quantum circuits

a modest power law slowdown.
We can improve this slowdown to

Trev ∼ (Tirr)1+ε, (5.44)

for any ε > 0. Instead of replacing two steps forward with two forward
and one back, we replace ` forward with ` forward and ` − 1 back. A
recursive procedure with n levels reaches site `n using a maximum of
n(`− 1) + 1 pebbles. Now we have Tirr ∝ `n and Trev ∝ (2`− 1)n, so that

Trev = Tstep(Tirr/Tstep)log(2`−1)/ log `; (5.45)

the power characterizing the slowdown is

log(2`− 1)
log `

=
log 2`+ log

(
1− 1

2`

)
log `

' 1 +
log 2
log `

≡ 1 + ε, (5.46)

and the space requirement scales as

Srev/Sstep ≈ `n ≈ 21/ε log` (Tirr/Tstep) ≈ ε 21/ε log2 (Tirr/Tstep) , (5.47)

where 1/ε = log2 `. The required space still scales as Srev ∼ log Tirr, yet
the slowdown is no worse than Trev ∼ (Tirr)1+ε. By using more than the
minimal number of pebbles, we can reach the last step faster.

You might have worried that, because reversible computation is
“harder” than irreversible computation, the classification of complexity
depends on whether we compute reversibly or irreversibly. But don’t
worry — we’ve now seen that a reversible computer can simulate an irre-
versible computer pretty easily.

5.3 Quantum Circuits

Now we are ready to formulate a mathematical model of a quantum com-
puter. We will generalize the circuit model of classical computation to
the quantum circuit model of quantum computation.

A classical computer processes bits. It is equipped with a finite set of
gates that can be applied to sets of bits. A quantum computer processes
qubits. We will assume that it too is equipped with a discrete set of
fundamental components, called quantum gates. Each quantum gate is
a unitary transformation that acts on a fixed number of qubits. In a
quantum computation, a finite number n of qubits are initially set to the
value |00 . . . 0〉. A circuit is executed that is constructed from a finite
number of quantum gates acting on these qubits. Finally, an orthogonal
measurement of all the qubits (or a subset of the qubits) is performed,

5.3 Quantum Circuits 23

projecting each measured qubit onto the basis {|0〉, |1〉}. The outcome of
this measurement is the result of the computation.

Several features of this model invite comment:
(1) Preferred decomposition into subsystems. It is implicit but impor-

tant that the Hilbert space of the device has a preferred decomposition
into a tensor product of low-dimensional subsystems, in this case the
qubits. Of course, we could have considered a tensor product of, say,
qutrits instead. But anyway we assume there is a natural decomposition
into subsystems that is respected by the quantum gates — the gates act
on only a few subsystems at a time. Mathematically, this feature of the
gates is crucial for establishing a clearly defined notion of quantum com-
plexity. Physically, the fundamental reason for a natural decomposition
into subsystems is locality; feasible quantum gates must act in a bounded
spatial region, so the computer decomposes into subsystems that interact
only with their neighbors.

(2) Finite instruction set. Since unitary transformations form a contin-
uum, it may seem unnecessarily restrictive to postulate that the machine
can execute only those quantum gates chosen from a discrete set. We
nevertheless accept such a restriction, because we do not want to invent a
new physical implementation each time we are faced with a new computa-
tion to perform. (When we develop the theory of fault-tolerant quantum
computing we will see that only a discrete set of quantum gates can be
well protected from error, and we’ll be glad that we assumed a finite gate
set in our formulation of the quantum circuit model.)

(3) Unitary gates and orthogonal measurements. We might have allowed
our quantum gates to be trace-preserving completely positive maps, and
our final measurement to be a POVM. But since we can easily simulate
a TPCP map by performing a unitary transformation on an extended
system, or a POVM by performing an orthogonal measurement on an
extended system, the model as formulated is of sufficient generality.

(4) Simple preparations. Choosing the initial state of the n input qubits
to be |00 . . . 0〉 is merely a convention. We might want the input to be
some nontrivial classical bit string instead, and in that case we would just
include NOT gates in the first computational step of the circuit to flip
some of the input bits from 0 to 1. What is important, though, is that
the initial state is easy to prepare. If we allowed the input state to be a
complicated entangled state of the n qubits, then we might be hiding the
difficulty of executing the quantum algorithm in the difficulty of preparing
the input state. We start with a product state instead, regarding it as
uncontroversial that preparation of a product state is easy.

(5) Simple measurements. We might allow the final measurement to be
a collective measurement, or a projection onto a different basis. But

24 5 Classical and quantum circuits

any such measurement can be implemented by performing a suitable
unitary transformation followed by a projection onto the standard ba-
sis {|0〉, |1〉}n. Complicated collective measurements can be transformed
into measurements in the standard basis only with some difficulty, and it
is appropriate to take into account this difficulty when characterizing the
complexity of an algorithm.

(6) Measurements delayed until the end. We might have allowed mea-
surements at intermediate stages of the computation, with the subsequent
choice of quantum gates conditioned on the outcome of those measure-
ments. But in fact the same result can always be achieved by a quan-
tum circuit with all measurements postponed until the end. (While we
can postpone the measurements in principle, it might be very useful in
practice to perform measurements at intermediate stages of a quantum
algorithm.)

A quantum gate, being a unitary transformation, is reversible. In fact,
a classical reversible computer is a special case of a quantum computer.
A classical reversible gate

x→ y = f(x), (5.48)

implementing a permutation of k-bit strings, can be regarded as a unitary
transformation U acting on k qubits, which maps the “computational
basis” of product states

{|xi〉, i = 0, 1, . . . 2k − 1} (5.49)

to another basis of product states {|yi〉} according to

U |xi〉 = |yi〉. (5.50)

Since U maps one orthonormal basis to another it is manifestly unitary.
A quantum computation constructed from such reversible classical gates
takes |0 . . . 0〉 to one of the computational basis states, so that the outcome
of the final measurement in the {|0〉, |1〉} basis is deterministic.

There are four main issues concerning our model that we would like to
address in this Chapter. The first issue is universality. The most general
unitary transformation that can be performed on n qubits is an element of
U(2n). Our model would seem incomplete if there were transformations
in U(2n) that we were unable to reach. In fact, we will see that there
are many ways to choose a discrete set of universal quantum gates. Using
a universal gate set we can construct circuits that compute a unitary
transformation coming as close as we please to any element in U(2n).

Thanks to universality, there is also a machine independent notion
of quantum complexity. We may define a new complexity class BQP

5.3 Quantum Circuits 25

(“bounded-error quantum polynomial time”) — the class of languages
that can be decided with high probability by polynomial-size uniform
quantum circuit families. Since one universal quantum computer can
simulate another efficiently, the class does not depend on the details of
our hardware (on the universal gate set that we have chosen).

Notice that a quantum computer can easily simulate a probabilistic clas-
sical computer: it can prepare 1√

2
(|0〉+ |1〉) and then project to {|0〉, |1〉},

generating a random bit. Therefore BQP certainly contains the class BPP.
But as we discussed in Chapter 1, it seems quite reasonable to expect
that BQP is actually larger than BPP, because a probabilistic classical
computer cannot easily simulate a quantum computer. The fundamental
difficulty is that the Hilbert space of n qubits is huge, of dimension 2n,
and hence the mathematical description of a typical vector in the space
is exceedingly complex.

Our second issue is to better characterize the resources needed to sim-
ulate a quantum computer on a classical computer. We will see that,
despite the vastness of Hilbert space, a classical computer can simulate
an n-qubit quantum computer even if limited to an amount of memory
space that is polynomial in n. This means the BQP is contained in the
complexity class PSPACE, the decision problems that can be solved with
polynomial space, but may require exponential time. We also know that
NP is contained in PSPACE, because we can determine whether a verifier
V (x, y) accepts the input x for any witness y by running the verifier for all
possible witnesses. Though there are an exponential number of candidate
witnesses to interrogate, each one can be checked in polynomial time and
space.

The third important issue we should address is accuracy. The class
BQP is defined formally under the idealized assumption that quantum
gates can be executed with perfect precision. Clearly, it is crucial to relax
this assumption in any realistic implementation of quantum computation.
A polynomial size quantum circuit family that solves a hard problem
would not be of much interest if the quantum gates in the circuit were
required to have exponential accuracy. In fact, we will show that this is
not the case. An idealized T -gate quantum circuit can be simulated with
acceptable accuracy by noisy gates, provided that the error probability
per gate scales like 1/T .

The fourth important issue is coverage. We saw that polynomial-size
classical circuits can reach only a tiny fraction of all Boolean functions,
because there are many more functions than circuits. A similar issue
arises for unitary transformations — the unitary group acting on n qubits
is vast, and there are not nearly enough polynomial-size quantum circuits
to explore it thoroughly. Most quantum states of n qubits can never

26 5 Classical and quantum circuits

be realized in Nature, because they cannot be prepared using reasonable
resources.

Despite this limited reach of polynomial-size quantum circuits, quan-
tum computers nevertheless pose a serious challenge to the strong Church–
Turing thesis, which contends that any physically reasonable model of
computation can be simulated by probabilistic classical circuits with at
worst a polynomial slowdown. We have good reason to believe that clas-
sical computers are unable in general to simulate quantum computers
efficiently, in complexity theoretic terms that

BPP 6= BQP, (5.51)

yet this remains an unproven conjecture. Proving BPP 6= BQP is a great
challenge, and no proof should be expected soon. Indeed, a corollary
would be

BPP 6= PSPACE, (5.52)

which would settle a long-standing and pivotal open question in classical
complexity theory.

It might be less unrealistic to hope for a proof that BPP 6= BQP follows
from another standard conjecture of complexity theory such as P 6= NP,
though no such proof has been found so far. The most persuasive evidence
we have suggesting that BPP 6= BQP is that there are some problems
which seem to be hard for classical circuits yet can be solved efficiently
by quantum circuits.

It seems likely, then, that the classification of complexity will be dif-
ferent depending on whether we use a classical computer or a quantum
computer to solve problems. If such a separation really holds, it is the
quantum classification that should be regarded as the more fundamental,
for it is better founded on the physical laws that govern the universe.

5.3.1 Accuracy

Let’s discuss the issue of accuracy. We imagine that we wish to implement
a computation in which the quantum gates U1,U2, . . . ,UT are applied
sequentially to the initial state |ϕ0〉. The state prepared by our ideal
quantum circuit is

|ϕT 〉 = UT UT−1 . . .U2U1|ϕ0〉. (5.53)

But in fact our gates do not have perfect accuracy. When we attempt
to apply the unitary transformation U t, we instead apply some “nearby”
unitary transformation Ũ t. If we wish to include environmental deco-
herence in our model of how the actual unitary deviates from the ideal

5.3 Quantum Circuits 27

one, we may regard Ũ t as a transformation acting jointly on the system
and environment, where the ideal unitary is a product U t ⊗V t, with U t

acting on the computer and V t acting on the environment.
The errors cause the actual state of the computer to wander away from

the ideal state. How far does it wander? After one step, the ideal state
would be

|ϕ1〉 = U1|ϕ0〉. (5.54)

But if the actual transformation Ũ1 where applied instead the state would
be

Ũ1|ϕ0〉 = |ϕ1〉+ |E1〉, (5.55)

where
|E1〉 = (Ũ1 −U1)|ϕ0〉 (5.56)

is an unnormalized vector. (We could also suppose that the initial state
deviates from |ϕ0〉, which would contribute an additional error to the
computation that does not depend on the size of the circuit. We’ll ignore
that error because we are trying to understand how the error scales with
the circuit size.)

Now, if Ũ t denotes the actual gate applied at step t, |ϕ̃t〉 denotes the
actual state after t steps, and |ϕt〉 denotes the ideal state, then we may
write

|ϕ̃t〉 = Ũ t|ϕ̃t−1〉 = U t|ϕt−1〉+
(
Ũ t −U t

)
|ϕt−1〉+ Ũ t (|ϕ̃t−1〉 − |ϕt−1〉)

= |ϕt〉+ |Et〉+ Ũ t (|ϕ̃t−1〉 − |ϕt−1〉) , (5.57)

where |Et〉 =
(
Ũ t −U t

)
|ϕt−1〉. Hence,

|ϕ̃2〉 = Ũ2|ϕ̃1〉 = |ϕ2〉+ |E2〉+ Ũ2|E1〉,
|ϕ̃3〉 = Ũ3|ϕ̃2〉 = |ϕ3〉+ |E3〉+ Ũ3|E2〉+ Ũ3Ũ2|E1〉, (5.58)

and so forth, and after T steps we obtain

|ϕ̃T 〉 = |ϕT 〉+ |ET 〉+ ŨT |ET−1〉+ ŨT ŨT−1|ET−2〉
+ . . .+ ŨT ŨT−1 . . . Ũ2|E1〉. (5.59)

Thus we have expressed the difference between |ϕ̃T 〉 and |ϕT 〉 as a sum of
T remainder terms. The worst case yielding the largest deviation of |ϕ̃T 〉
from |ϕT 〉 occurs if all remainder terms line up in the same direction, so
that the errors interfere constructively. Therefore, we conclude that

‖ |ϕ̃T 〉 − |ϕT 〉 ‖ ≤ ‖ |ET 〉 ‖ + ‖ |ET−1〉 ‖
+ . . .+ ‖ |E2〉 ‖ + ‖ |E1〉 ‖, (5.60)

28 5 Classical and quantum circuits

where we have used the property ‖ U |Et〉 ‖=‖ |Et〉 ‖ for any unitary U .
Let ‖ A ‖sup denote the sup norm of the operator A — that is, the

largest eigenvalue of
√

A†A. We then have

‖ |Et〉 ‖=‖
(
Ũ t −U t

)
|ϕt−1〉 ‖ ≤ ‖ Ũ t −U t ‖sup (5.61)

(since |ϕt−1〉 is normalized). Now suppose that, for each value of t, the
error in our quantum gate is bounded by

‖ Ũ t −U t ‖sup ≤ ε; (5.62)

then after T quantum gates are applied, we have

‖ |ϕ̃T 〉 − |ϕT 〉 ‖ ≤ Tε; (5.63)

in this sense, the accumulated error in the state grows linearly with the
length of the computation.

The distance bounded in eq.(5.62) can equivalently be expressed as
‖ W t − I ‖sup, where W t = Ũ tU

†
t . Since W t is unitary, each of its

eigenvalues is a phase eiθ, and the corresponding eigenvalue of W t − I
has modulus

|eiθ − 1| = (2− 2 cos θ)1/2, (5.64)

so that eq.(5.62) is the requirement that each eigenvalue satisfies

cos θ > 1− ε2/2, (5.65)

(or |θ| <∼ ε, for ε small). The origin of eq.(5.63) is clear. In each time
step, |ϕ̃〉 rotates relative to |ϕ〉 by (at worst) an angle of order ε, and the
distance between the vectors increases by at most of order ε.

How much accuracy is good enough? In the final step of our compu-
tation, we perform an orthogonal measurement, and the probability of
outcome a, in the ideal case, is

p(a) = |〈a|ϕT 〉|2. (5.66)

Because of the errors, the actual probability is

p̃(a) = |〈a|ϕ̃T 〉|2. (5.67)

It is shown in Exercise 2.5 that the L1 distance between the ideal and
actual probability distributions satisfies

1
2
‖p̃− p‖1 =

1
2

∑
a

|p̃(a)− p(a)| ≤ ‖ |ϕ̃T 〉 − |ϕT 〉 ‖ ≤ Tε. (5.68)

5.3 Quantum Circuits 29

Therefore, if we keep Tε fixed (and small) as T gets large, the error in
the probability distribution also remains fixed (and small).

If we use a quantum computer to solve a decision problem, we want the
actual quantum circuit to get the right answer with success probability
1
2 + δ̃, where δ̃ is a positive constant. If the ideal quantum circuit con-
tains T gates and has success probability 1

2 + δ, where δ > 0, eq.(5.68)
shows that δ̃ is also positive provided ε < δ/T . We should be able to
solve hard problems using quantum computers as long as we can improve
the accuracy of the gates linearly with the circuit size. This is still a de-
manding requirement, since performing very accurate quantum gates is a
daunting challenge for the hardware builder. Fortunately, we will be able
to show, using the theory of quantum fault tolerance, that physical gates
with constant accuracy (independent of T) suffice to achieve logical gates
acting on encoded quantum states with accuracy improving like 1/T , as
is required for truly scalable quantum computing.

5.3.2 BQP ⊆ PSPACE

A randomized classical computer can simulate any quantum circuit if we
grant the classical computer enough time and storage space. But how
much memory does the classical computer require? Naively, since the
simulation of an n-qubit circuit involves manipulating matrices of size 2n,
it may seem that an amount of memory space exponential in n is needed.
But we will now show that the classical simulation of a quantum computer
can be done to acceptable accuracy (albeit very slowly!) in polynomial
space. This means that the quantum complexity class BQP is contained
in the class PSPACE of problems that can be solved with polynomial
space on a classical computer.

The object of the randomized classical simulation is to sample from
a probability distribution that closely approximates the distribution of
measurement outcomes for the specified quantum circuit. We will actually
exhibit a classical simulation that performs a potentially harder task —
estimating the probability p(a) for each possible outcome a of the final
measurement, which can be expressed as

p(a) = |〈a|U |0〉|2, (5.69)

where
U = UT UT−1 . . .U2U1, (5.70)

is a product of T quantum gates. Each U t, acting on the n qubits, can
be represented by a 2n×2n unitary matrix, characterized by the complex
matrix elements

〈y|U t|x〉, (5.71)

30 5 Classical and quantum circuits

where x, y ∈ {0, 1 . . . , 2n − 1}. Writing out the matrix multiplication
explicitly, we have

〈a|U |0〉 =
∑
{xt}

〈a|UT |xT−1〉〈xT−1|UT−1|xT−2〉 . . .

. . . 〈x2|U2|x1〉〈x1|U1|0〉. (5.72)

Eq.(5.72) is a sort of “path integral” representation of the quantum com-
putation – the probability amplitude for the final outcome a is expressed
as a coherent sum of amplitudes for each of a vast number (2n(T−1)) of
possible computational paths that begin at 0 and terminate at a after T
steps.

Our classical simulator is to add up the 2n(T−1) complex numbers in
eq.(5.72) to compute 〈a|U |0〉. The first problem we face is that finite
size classical circuits do integer arithmetic, while the matrix elements
〈y|U t|x〉 need not be rational numbers. The classical simulator must
therefore settle for an approximate calculation to reasonable accuracy.
Each term in the sum is a product of T complex factors, and there are
2n(T−1) terms in the sum. The accumulated errors are sure to be small
if we express the matrix elements to m bits of accuracy, with m large
compared to nT log T . Therefore, we can replace each complex matrix
element by pairs of signed integers — the binary expansions, each m bits
long, of the real and imaginary parts of the matrix element.

Our simulator will need to compute each term in the sum eq.(5.72) and
accumulate a total of all the terms. But each addition requires only a
modest amount of scratch space, and furthermore, since only the accu-
mulated subtotal need be stored for the next addition, not much space is
needed to sum all the terms, even though there are exponentially many.

So it only remains to consider the evaluation of a typical term in the
sum, a product of T matrix elements. We will require a classical circuit
that evaluates

〈y|U t|x〉; (5.73)

this circuit receives the 2n-bit input (x, y), and outputs the 2m-bit value of
the (complex) matrix element. Given a circuit that performs this function,
it will be easy to build a circuit that multiplies the complex numbers
together without using much space.

This task would be difficult if U t were an arbitrary 2n × 2n unitary
transformation. But now we may appeal to the properties we have de-
manded of our quantum gate set — the gates from a discrete set, and each
gate acts on a bounded number of qubits. Because there are a fixed finite
number of gates, there are only a fixed number of gate subroutines that
our simulator needs to be able to call. And because the gate acts on only
a few qubits, nearly all of its matrix elements vanish (when n is large),

5.3 Quantum Circuits 31

and the value 〈y|U t|x〉 can be determined (to the required accuracy) by
a simple circuit requiring little memory.

For example, in the case of a single-qubit gate acting on the first qubit,
we have

〈yn−1 . . . y1y0|U t|xn−1 . . . x1x0〉 = 0 if yn−1 . . . y1 6= xn−1 . . . x1. (5.74)

A simple circuit can compare x1 with y1, x2 with y2, etc., and output zero
if the equality is not satisfied. In the event of equality, the circuit outputs
one of the four complex numbers

〈y0|U t|x0〉, (5.75)

to m bits of precision. A simple classical circuit can encode the 8m bits
of this 2× 2 complex-valued matrix. Similarly, a simple circuit, requiring
only space polynomial in m, can evaluate the matrix elements of any gate
of fixed size.

We see, then, that a classical computer with memory space scaling like
nT log T suffices to simulate a quantum circuit with T gates acting on n
qubits. If we wished to consider quantum circuits with superpolynomial
size T , we would need a lot of memory, but for a quantum circuit families
with size poly(n), a polynomial amount of space is enough. We have
shown that BQP ⊆ PSPACE.

But it is also evident that the simulation we have described requires
exponential time, because we need to evaluate the sum of 2n(T−1) complex
numbers (where each term in the sum is a product of T complex numbers).
Though most of these terms vanish, there are still an exponentially large
number of nonvanishing terms to sum.

5.3.3 Most unitary transformations require large quantum circuits

We saw that any Boolean function can be computed by an exponential-
size classical circuit, and also that exponential-size circuits are needed to
compute most functions. What are the corresponding statements about
unitary transformations and quantum circuits? We will postpone for now
consideration of how large a quantum circuit suffices to reach any uni-
tary transformation, focusing instead on showing that exponential-size
quantum circuits are required to reach most unitaries.

The question about quantum circuits is different than the correspond-
ing question about classical circuits because there is a finite set of Boolean
functions acting on n input bits, and a continuum of unitary transforma-
tions acting on n qubits. Since the quantum circuits are countable (if the
quantum computer’s gate set is finite), and the unitary transformations

32 5 Classical and quantum circuits

are not, we can’t reach arbitrary unitaries with finite-size circuits. We’ll
be satisfied to accurately approximate an arbitrary unitary.

As noted in our discussion of quantum circuit accuracy, to ensure that
we have a good approximation in the L1 norm to the probability distri-
bution for any measurement performed after applying a unitary trans-
formation, it suffices for the actual unitary Ũ to be close to the ideal
unitary U in the sup norm. Therefore we will say that Ũ is δ-close to U
if ‖Ũ −U‖sup ≤ δ. How large should the circuit size T be if we want to
approximate any n-qubit unitary to accuracy δ?

If we imagine drawing a ball of radius δ (in the sup norm) centered at
each unitary achieved by some circuit with T gates, we want the balls to
cover the unitary group U(N), where N = 2n. The number Nballs of balls
needed satisfies

Nballs ≥
Vol(U(N))
Vol(δ−ball)

, (5.76)

where Vol(U(N)) means the total volume of the unitary group and
Vol(δ−ball) means the volume of a single ball with radius δ. The ge-
ometry of U(N) is actually curved, but we may safely disregard that
subtlety — all we need to know is that U(N)) contains a ball centered
at the identity element with a small but constant radius C (independent
of N). Ignoring the curvature, because U(N) has real dimension N2, the
volume of this ball (a lower bound on the volume of U(N)) is ΩN2CN2

,
where ΩN2 denotes the volume of a unit ball in flat space; likewise, the
volume of a δ-ball is ΩN2δN2

. We conclude that

Nballs ≥
(
C

δ

)N2

. (5.77)

On the other hand, if our universal set contains a constant number of
quantum gates (independent of n), and each gate acts on no more than
k qubits, where k is a constant, then the number of ways to choose the
quantum gate at step t of a circuit is no more than constant ×

(
n
k

)
=

poly(n). Therefore the number NT of quantum circuits with T gates
acting on n qubits is

NT ≤ (poly(n))T . (5.78)

We conclude that if we want to reach every element of U(N) to accuracy
δ with circuits of size T , hence NT ≥ Nballs, we require

T ≥ 22n log(C/δ)
log(poly(n))

; (5.79)

the circuit size must be exponential. With polynomial-size quantum cir-
cuits, we can achieve a good approximation to unitaries that occupy only
an exponentially small fraction of the volume of U(2n)!

5.4 Universal quantum gates 33

Reaching any desired quantum state by applying a suitable quantum
circuit to a fixed initial (e.g., product) state is easier than reaching any
desired unitary, but still hard, because the volume of the 2n-dimensional
n-qubit Hilbert space is exponential in n. Hence, circuits with size ex-
ponential in n are required. Future quantum engineers will know the joy
of exploring Hilbert space, but no matter how powerful their technology,
most quantum states will remain far beyond their grasp. It’s humbling.

5.4 Universal quantum gates

We must address one more fundamental question about quantum compu-
tation; how do we construct an adequate set of quantum gates? In other
words, what constitutes a universal quantum computer?

We will find a pleasing answer. Any generic two-qubit gate suffices for
universal quantum computation. That is, for all but a set of measure
zero of 4× 4 unitary matrices, if we can apply that matrix to any pair of
qubits, then we can construct a circuit acting on n qubits which computes
a transformation coming as close as we please to any element of U(2n).

Mathematically, this is not a particularly deep result, but physically it is
significant. It means that, in the quantum world, as long as we can devise
a generic interaction between any two qubits, and we can implement that
interaction accurately, we can build up any quantum computation, no
matter how complex. Nontrivial computation is ubiquitous in quantum
theory.

Aside from this general result, it is also of some interest to exhibit
particular universal gate sets that might be particularly easy to implement
physically. We will discuss a few examples.

5.4.1 Notions of universality

In our standard circuit model of quantum computation, we imagine that
our circuit has a finite set of “hard-wired” quantum gates

G = {U1,U2, . . . ,Um}, (5.80)

where U j acts on kj qubits, and kj ≤ k (a constant) for each j. Nor-
mally we also assume that the gate U j can be applied to any kj of the n
qubits in the computer. Actually, placing some kind of geometric locality
constraints on the gates would not drastically change our analysis of com-
plexity, as long as we can construct (a good approximation to a) a SWAP
gate (which swaps the positions of two neighboring qubits) using our gate
set. If we want to perform U j on kj qubits that are widely separated, we
may first perform a series of SWAP gates to bring the qubits together,

34 5 Classical and quantum circuits

then perform the gate, and finally perform SWAP gates to return the
qubits to their original positions.

When we say the gate set G is universal we mean that the unitary
transformations that can be constructed as quantum circuits using this
gate set are dense in the unitary group U(2n), up to an overall phase.
That is for any V ∈ U(2n) and any δ > 0, there is a unitary Ṽ achieved
by a finite circuit such that

‖Ṽ − eiφV ‖sup ≤ δ (5.81)

for some phase eiφ. (It is natural to use the sup norm to define the
deviation of the circuit from the target unitary, but we would reach similar
conclusions using any reasonable topology on U(2n).) Sometimes it is
useful to relax this definition of universality; for example we might settle
for encoded universality, meaning that the circuits are dense not in U(2n)
but rather some subgroup U(N), where N is exponential (or at least
superpolynomial) in n.

There are several variations on the notion of universality that are note-
worthy, because they illuminate the general theory or are useful in appli-
cations.

(1) Exact universality. If we are willing to allow uncountable gate sets,
then we can assert that for certain gate sets we can construct a circuit
that achieves an arbitrary unitary transformation exactly. We will see
that two-qubit gates are exactly universal — any element of U(2n) can be
constructed as a finite circuit of two qubit gates. Another example is that
the two-qubit CNOT gate, combined with arbitrary single-qubit gates, is
exactly universal (Exercise 5.2).

In fact the CNOT gate is not special in this respect. Any “entangling”
two-qubit gate, when combined with arbitrary single-qubit gates, is uni-
versal (Exercise 5.6). We say a two-qubit gate is entangling if it maps
some product state to a state which is not a product state.

An example of a two-gate which is not entangling is a “local gate” —
a product unitary V = A ⊗B; another example is the SWAP gate, or
any gate “locally equivalent” to SWAP, i.e., of the form

V = (A⊗B) (SWAP) (C ⊗D) . (5.82)

In fact these are the only non-entangling two-qubit gates. Every two-qubit
unitary which is not local or locally equivalent to SWAP is entangling,
and hence universal when combined with arbitrary single-qubit gates.

(2) Generic universality. Gates acting on two or more qubits which are
not local are typically universal. For example, almost any two-qubit gate
is universal, if the gate can be applied to any pair of the n qubits. By
“almost any” we mean except for a set of measure zero in U(4).

5.4 Universal quantum gates 35

(3) Particular finite universal gate sets. It is shown in the Exercises
5.3-5.5 that each one of the following gate sets is universal:

G = {H,Λ(S)}, {H,T ,Λ(X)}, {H,S,Λ2(X)}, (5.83)

where H, S, T are the single-qubit gates

H =
1√
2

(
1 1
1 −1

)
, S =

(
e−iπ/4 0

0 eiπ/4

)
, T =

(
e−iπ/8 0

0 eiπ/8

)
.

(5.84)
In Bloch sphere language, the “Hadamard gate” H = 1√

2
(X + Z) is a

rotation by π about the axis x̂+ ẑ, S = exp
(
−iπ4 Z

)
is a rotation by π/2

about the ẑ axis, and T = exp
(
−iπ8 Z

)
is a rotation by π/4 about the ẑ

axis. By Λ(S) we mean the two-qubit in which S is applied to the target
qubit iff the control qubit is |1〉. More generally, we use the notation
Λ(U), where U is a single-qubit gate, to denote the two-qubit gate

Λ(U) = |0〉〈0| ⊗ I + |1〉〈1| ⊗U ; (5.85)

likewise we use Λ2(U) to denote the three-qubit gate

Λ2(U) = (I − |11〉〈11|)⊗ I + |11〉〈11| ⊗U , (5.86)

etc.
That particular finite gates sets are universal is especially important

in the theory of quantum fault tolerance, in which highly accurate logi-
cal gates acting on encoded quantum states are constructed from noisy
physical gates. As we’ll discuss in Chapter 8, only a discrete set of log-
ical gates can be well protected against noise, where the set depends on
how the quantum information is encoded. The goal of fault-tolerant gate
constructions is to achieve a universal set of such protected gates.

(4) Efficient circuits of universal gates. The above results concern only
the “reachability” of arbitrary n-qubit unitaries; they say nothing about
the circuit size needed for a good approximation. Yet the circuit size is
highly relevant if we want to approximate one universal gate set by using
another one, or if we want to approximate the steps in an ideal quantum
algorithm to acceptable accuracy.

We already know that circuits with size exponential in n are needed to
approximate arbitrary n-qubit unitaries using a finite gate set. However,
we will see that, for any fixed k, a k-qubit unitary can be approximated to
accuracy ε using a circuit whose size scales with the error like polylog(1/ε).
This result, the Solovay-Kitaev theorem, holds for any universal gate set
which is “closed under inverse” — that is, such that the inverse of each
gate in the set can be constructed exactly using a finite circuit.

36 5 Classical and quantum circuits

The Solovay-Kitaev theorem (which we prove in §5.4.4) tells us that
one universal gate set can accurately approximate another one at a mod-
est cost; therefore a characterization of the complexity of a computation
based on quantum circuit size is not very sensitive to how the universal
gate set is chosen. For example, suppose I build a unitary transformation
U using T gates chosen from gate set G1, and I want to approximate
U to constant accuracy ε using gates chosen from gate set G2. It will
suffice to approximate each gate from G1 to accuracy ε/T , which can be
achieved using a circuit of polylog(T/ε) gates from G2. Therefore U can
be approximated with all together O(T polylog(T)) G2 gates.

Another consequence of the Solovay-Kitaev theorem concerns our con-
clusion that polynomial-size circuits can reach (to constant accuracy) only
a tiny fraction of U(2n). How is the conclusion modified if we build circuits
using arbitrary k-qubit unitaries (where k is constant) rather than gates
chosen from a finite gate set? Because approximating the k-qubit uni-
taries using the finite gate set inflates the circuit size by only a polylog(T)
factor, if we can achieve an accuracy-δ approximation using a circuit of
size T built from arbitrary k-qubit unitaries, then we can also achieve an
accuracy-(2δ) approximation using a circuit of size T polylog(T/δ) built
from a finite gate set. Thus the criterion eq.(5.79) for reaching all uni-
taries to accuracy δ using circuits of size T constructed from the finite
gate set is replaced by

T polylog(T/δ) ≥ 22n log(C/2δ)
log n

. (5.87)

if we use circuits constructed from arbitrary k-qubit gates. The required
circuit size is smaller than exponential by only a poly(n) factor. The group
U(2n) is unimaginably vast not because we are limited to a discrete set
of gates, but rather because we are unable to manipulate more than a
constant number of qubits at a time.

5.4.2 Two-qubit gates are exactly universal

We will show in two steps that an arbitrary element of U(2n) can be
achieved by a finite circuit of two-qubit gates. First we will show how
to express an element of U(N) as a product of “2 × 2” unitaries; then
we will show how to obtain any 2× 2 unitary from a circuit of two-qubit
unitaries.

What is a 2 × 2 unitary? Fix a standard orthonormal basis
{|0〉, |1〉, |2〉, . . . |N − 1〉} for an N -dimensional space. We say a unitary
transformation U is 2×2 if it acts nontrivially only in the two-dimensional
subspace spanned by two basis elements |i〉 and |j〉; that is, U decomposes

5.4 Universal quantum gates 37

as a direct sum
U = U (2) ⊕ I(N−2), (5.88)

where U (2) is a 2 × 2 unitary matrix acting on the span of |i〉 and |j〉,
and I(N−2) is the identity matrix acting on the complementary (N − 2)-
dimensional subspace.

We should be careful not to confuse a 2 × 2 unitary with a two-qubit
unitary acting on the n-qubit space of dimension N = 2n. A two-qubit
unitary U decomposes as a tensor product

U = U (4) ⊗ I(2n−2), (5.89)

where U (4) is a 4×4 unitary matrix acting on a pair of qubits, and I(2n−2)

is the identity matrix acting on the remaining n−2 qubits. We can regard
the two-qubit unitary as a direct sum of 2n−2 4×4 blocks, with each block
labeled by a basis state of the (n−2)-qubit Hilbert space, and U (4) acting
on each block.

Let’s see how to express U ∈ U(N) as a product of 2 × 2 unitaries.
Consider the action of U on the basis state |0〉:

U |0〉 =
N−1∑
i=0

ai|i〉. (5.90)

We can see that U |0〉 can be written as W 0|0〉, where W 0 is a product
of (N − 1) 2× 2 unitaries which act as follows:

|0〉 7→ a0|0〉+ b0|1〉,
b0|1〉 7→ a1|1〉+ b1|2〉,
b1|2〉 7→ a2|2〉+ b2|3〉,
. . .

bN−2|N−2〉 7→ aN−2|N−2〉+ aN−1|N−1〉.
(5.91)

Next define U1 = W−1
0 U , and note that U1|0〉 = |0〉, so U1 acts

nontrivially only in the (N−1)-dimensional span of {|1〉, |2〉, . . . |N − 1〉}.
By the same construction as above, we construct W 1 as a product of
(N−2) 2 × 2 unitaries such that W 1|0〉 = |0〉 and W 1|1〉 = U1|1〉, then
define U2 = W−1

1 U1 such that U2 preserves both |0〉 and |1〉. Proceeding
in this way we construct W 2, W 3, . . . W N−2 such that

W−1
N−2W

−1
N−3 . . .W

−1
1 W−1

0 U = I; (5.92)

that is, we may express U as

U = W 0W 1 . . .W N−3W N−2 , (5.93)

38 5 Classical and quantum circuits

a product of (N − 1)+ (N − 2)+ · · ·+2+1 = 1
2N(N − 1) 2× 2 unitaries.

Now it remains to show that we can construct any 2 × 2 unitary as a
circuit of two-qubit unitaries. It will be helpful to notice that the three-
qubit gate Λ2(U2) can be constructed as a circuit of Λ(U), Λ(U †), and
Λ(X) gates. Using the notation

U

s

for the Λ(U) gate, the circuit

x

y

x

y

x

y

ss
U2

= s
U

sg s
U †

sg s
U

does the job. We can check that the power of U applied to the third qubit
is

y − (x⊕ y) + x = y − (x+ y − 2xy) + x = 2xy. (5.94)

That is, U2 is applied if x = y = 1, and the identity is applied otherwise;
hence this circuit achieves the Λ2(U2) gate. Since every unitary V has
a square root U such that V = U2, the construction shows that, using
two-qubit gates, we can achieve Λ2(V) for any single-qubit V .

Generalizing this construction, we can find a circuit that constructs
Λm(U2) using Λm−1(U), Λm−1(X), Λ(U), and Λ(U †) gates. If we replace
the Λ(X) gates in the previous circuit by Λm−1(X) gates, and replace
the last Λ(U) gate by Λn−1(U), then, if we denote the m control bits by
x1, x2, x3, . . . xm, the power of U applied to the last qubit is

xm + x1x2x3 . . . xm−1 − (xm ⊕ x1x2x3 . . . xm−1)
= xm + x1x2x3 . . . xm−1

− (xm + x1x2x3 . . . xm−1 − 2x1x2x3 . . . xm−1xm)
= 2x1x2x3 . . . xm−1xm, (5.95)

where we have used the identity x⊕y = x+y−2xy. Now U2 is applied if
x1 = x2 = · · · = xm = 1 and the identity is applied otherwise; this circuit
achieves the Λm(U2) gate.

5.4 Universal quantum gates 39

Using the construction recursively, we see that with two-qubit gates
we can construct Λ2(V) for any V , then with these gates and two-qubit
gates we can construct Λ3(V) for any V , which allows us to construct
Λ4(V) for any V and so on. We have shown, therefore, how to construct
the n-qubit gate Λn−1(V) for any V using a circuit of two-qubit gates.

To complete the argument showing that any element of U(2n) is a
product of two-qubit unitaries, it will suffice to show that arbitrary 2× 2
unitaries can be constructed from Λn−1(V) and two-qubit gates. Note
that Λn−1(V) is, in fact, a 2 × 2 unitary — it applies V in the two-
dimensional space spanned by the two computational basis states

{|111 . . . 110〉 , |111 . . . 111〉} . (5.96)

If we wish to apply V in the space spanned by computational states
{|x〉, |y〉} instead, we can use a permutation Σ of the computational basis
states with the action

Σ : |x〉 7→ |111 . . . 110〉 ,
|y〉 7→ |111 . . . 111〉 , (5.97)

constructing
Σ−1 ◦ Λn−1(V) ◦Σ . (5.98)

This is to be read from right to left, with Σ acting first and Σ−1 acting
last. But we have already seen in §5.2.2 how to construct an arbitrary per-
mutation of computational basis states using Λn−1(X) gates and (single-
qubit) NOT gates, and we now know how to construct Λn−1(X) (a special
case of Λn−1(U)) from two-qubit gates. Therefore, using two-qubit gates,
we have constructed the general 2× 2 unitary (in the computational ba-
sis) as in eq.(5.98). That completes the proof that any element of U(2n)
can be achieved by a circuit of two-qubit gates. In fact we have proven a
somewhat stronger result: that the two-qubit gates {Λ(U)}, where U is
an arbitrary single-qubit gate, constitute an exactly universal gate set.

5.4.3 Finite universal gate sets

Denseness on the circle. A finite gate set is universal if circuits con-
structed using that gate set are dense in U(2n). As a first simple example
of denseness, consider the group U(1) of rotations of the circle, e.g. the
rotations of the Bloch sphere about the ẑ axis:{

U(θ) = exp
(
i
θ

2
σ3

)
, θ ∈ [0, 4π)

}
. (5.99)

40 5 Classical and quantum circuits

We claim that the positive integer powers of U(4πα) are dense in U(1) if
α ∈ [0, 1) is irrational. Equivalently, the points

{nα (mod 1), n = 1, 2, 3, . . . , } (5.100)

are dense in the unit interval.
To see why, first note that the points {nα (mod 1)} are all distinct,

since nα = mα + k for integers k and n 6= m would imply that α is a
rational number α = k/(n−m). Now consider open intervals of width ε
centered on each of the N points {nα (mod 1), n = 1, 2, 3, . . . , N}. For
Nε > 1, at least two of these intervals must intersect — if all intervals
were disjoint then their total length Nε would exceed the length of the
interval. Hence there exist distinct positive integers n and m less than
1/ε such that |n−m|α (mod 1) < ε; in other words, the positive integer
r = |n − m| < 1/ε satisfies rα (mod 1) < ε. Now the positive integer
multiples of rα (mod 1) are equally spaced points on the unit interval
separated by less than ε. Therefore, for sufficiently large M , the intervals
of width ε centered on the points {krα (mod 1), k = 1, 2, 3, . . . ,M} fill
the unit interval. Since ε can be any positive real number, we conclude
that the points {nα (mod 1), n = 1, 2, 3, . . . } are dense in the interval.

Powers of a generic gate. Generalizing this argument, consider the
positive integer powers of a generic element of U(N). In a suitable basis,
U ∈ U(N) is diagonal, with eigenvalues

{eiθ1/2, eiθ2/2, . . . , eiθN/2}. (5.101)

Since rational numbers are countable and real numbers are not, for a
generic U (that is, for all elements of U(N) except for a set of measure
zero) each θi/π and θi/θj is an irrational number. For each positive integer
k, the eigenvalues {e−ikθi/2, i = 1, 2, . . . , N} of Uk define a point on the
N -dimensional torus (the product of N circles), and as k ranges over all
positive integers, these points densely fill the whole N -torus. We conclude
that for any generic U , the elements {Uk, k = 1, 2, 3, . . . } are dense in
the group U(1)N , i.e., come as close as we please to every unitary matrix
which is diagonal in the same basis as U .

Note that this argument does not provide any upper bound on how
large k must be for Uk to be ε-close to any specified element of U(1)N .
In fact, the required value of k could be extremely large if, for some m
and i, |mθi (mod 4π)| << ε. It might be hard (that is, require many
gates) to approximate a specified unitary transformation with circuits of
commuting quantum gates, because the unitary achieved by the circuit
only depends on how many times each gate is applied, not on the order
in which the gates are applied. It is much easier (requires fewer gates)
to achieve a good approximation using circuits of noncommuting gates.

5.4 Universal quantum gates 41

If the gates are noncommuting, then the order in which the gates are
applied matters, and many more unitaries can be reached by circuits of
specified size than if the gates are noncommuting.

Reaching the full Lie algebra. Suppose we can construct the two gates
U = exp (iA) ,V = exp (iB) ∈ U(N), where A and B are N × N
Hermitian matrices. If these are generic gates, positive powers of U come
as close as we please to eiαA for any real α and positive powers of V come
as close as we please to eiβB for any real β. That is enough to ensure
that there is a finite circuit constructed from U and V gates that comes
as close as we please to eiC , where C is any Hermitian element of the Lie
algebra generated by A and B.

We say that a unitary transformation U is reachable if for any ε > 0
there is a finite circuit achieving Ũ which is ε-close to U in the sup norm.
Noting that

lim
n→∞

(eiαA/neiβB/n)n = lim
n→∞

(
1 +

i

n
(αA + βB) +O

(
1
n2

))n

= ei(αA+βB), (5.102)

we see that any ei(αA+βB) is reachable if each eiαA/n and eiβB/n is reach-
able. Furthermore, because

lim
n→∞

(
eiA/

√
neiB/

√
ne−iA/

√
ne−iB/

√
n
)n

= lim
n→∞

(
1− 1

n
(AB −BA) +O

(
1

n3/2

))n

= e−[A,B], (5.103)

we see that e−[A,B] is also reachable.
For example, positive integer powers of a generic element of SU(2) allow

us to reach a U(1) subgroup; if we orient our axes on the Bloch sphere
appropriately, this is the subgroup generated by the Pauli operator Z.
Positive integer powers of a second generic element of SU(2) allow us to
reach a different U(1) subgroup, generated by X̃ = X + γZ (for some
real γ) with an appropriate choice of axes. Because [Z,X] = iY , the
elements {Z, X̃,−i[Z, X̃]} span the three-dimensional SU(2) Lie algebra.
It follows that circuits built from any two generic elements of SU(2) suffice
to reach any element of SU(2).

This observation applies to higher-dimensional Lie algebras as well.
For example, the SU(4) Lie algebra is 15 dimensional. It contains various
lower-dimensional subalgebras, such as the Lie algebras of the SU(4) sub-
groups U(1)3, SU(2)×SU(2)×U(1), SU(3)×U(1), etc. But two generic
elements of the SU(4) Lie algebra already suffice to general the full Lie
algebra. The generated algebra closes on one of the lower-dimensional

42 5 Classical and quantum circuits

subalgebras only if some nested commutators vanish “by accident,” a cri-
terion satisfied by only a set of measure zero among all pairs of SU(4)
generators. Actually, as we have already noted, a generic element of
SU(4) allows us to reach the torus U(1)3, and no nontrivial subgroup
of SU(4) contains two generic U(1)3 subgroups. Therefore, circuits built
from two generic two-qubit gates suffice to reach any two-qubit gate (up
to an overall phase). And since we can reach any element of U(2n) with
two-qubit gates, a pair of generic two-qubit gates provides a universal
gate set, assuming we can apply the gates to any pair of qubits.

But in fact just one generic two-qubit gate is already enough, if we are
free to choose not just the pair of qubits on which the gate acts but also
the ordering of the qubits. That is, a generic two-qubit gate does not
commute with the operator SWAP which interchanges the two qubits.
If U is a generic two-qubit gate, then

V = SWAP ◦U ◦ SWAP (5.104)

(the same gate applied to the same two qubits, but in the opposite order)
is another two-qubit gate not commuting with U . Positive powers of U
reach one U(1)3 subgroup of SU(4) while positive powers of V reach a
different U(1)3, so that circuits built from U and V reach all of SU(4).

Even nongeneric universal gates, in particular gates whose eigenvalues
are all rational multiples of π, can suffice for universality. One example
discussed in the homework is the gate set {CNOT,H,T }, where H ro-
tates the Bloch sphere by the angle π about the axis 1√

2
(x̂+ x̂), and T

rotates the Bloch sphere by the angle π/4 about the ẑ axis. If we replaced
T with the π/2 rotation T 2, then the gate set would not be universal; in
that case the only achievable single-qubit rotations would be those in a
finite subgroup of SU(2), the symmetry group of the cube. But SU(2)
has few such finite nonabelian subgroups (the only finite nonabelian sub-
groups of the rotation group SO(3) are the symmetry groups of regular
polygons and of regular three-dimensional polyhedra, the platonic solids).
If the gate set reaches beyond these finite subgroups it will reach either a
U(1) subgroup of SU(2) or all of SU(2).

5.4.4 The Solovay-Kitaev approximation

Up until now our discussion of universal gates has focused on reachability
and has ignored complexity. But when we have a finite universal gate
set, we want to know not only whether we can approximate a desired
unitary transformation to accuracy ε, but also how hard it is to achieve
that approximation. How large a circuit suffices? The question really has
two parts. (1) Given a unitary transformation U , how large a quantum

5.4 Universal quantum gates 43

circuit is needed to construct Ũ such that ‖Ũ − eiφU‖sup ≤ ε? (2) How
large a classical circuit is needed to find the quantum circuit that achieves
Ũ? We will see that, for any universal set of gates (closed under inverse)
used to approximate elements of a unitary group of constant dimension,
the answer to both questions is polylog(1/ε). We care about the answer
to the second question because it would not be very useful to know that
U can be well approximated by small quantum circuits if these circuits
are very hard to find.

We will prove this result by devising a recursive algorithm which
achieves successively better and better approximations. We say that a
finite repertoire of unitary transformations R is an “ε-net” in U(N) if
every element of U(N) is no more than distance ε away (in the sup norm)
from some element of R, and we say that R is “closed under inverse” if
the inverse of every element of R is also in R. The key step of the recur-
sive algorithm is to show that if R is an ε-net, closed under inverse, then
we can construct a new repertoire R′, also closed under inverse, with the
following properties: (1) each element of R′ is achieved by a circuit of at
most 5 gates from R. (2) R′ is an ε′-net, where

ε′ = Cε3/2 , (5.105)

and C is a constant.
Before explaining how this step works, let’s see why it ensures that we

can approximate any unitary using a quantum circuit with size polylog-
arithmic in the accuracy. Suppose to start with that we have found an
ε0-net R0, closed under inverse, where each element of R0 can be achieved
by a circuit with no more than L0 gates chosen from our universal gate
set. If ε0 < 1/C2, then we can invoke the recursive step to find an ε1-net
R1, where ε1 < ε0, and each element of R1 can be achieved by a circuit
of L1 = 5L0 gates. By repeating this step k times, we can make the error
εk much smaller than the level-0 error ε0. Iterating the relation

C2εk =
(
C2εk−1

)3/2 (5.106)

k times we obtain

C2εk =
(
C2ε0

)(3/2)k

, (5.107)

and by taking logs of both sides we find(
3
2

)k

=
log
(
1/C2εk

)
log (1/C2ε0)

. (5.108)

After k recursive steps the circuit size for each unitary in the εk-net Rk

44 5 Classical and quantum circuits

is no larger than Lk where

Lk/L0 = 5k =

((
3
2

)k
)log 5/ log(3/2)

=

(
log
(
1/C2εk

)
log (1/C2ε0)

)log 5/ log(3/2)

.

(5.109)

Thus the circuit size scales with the accuracy εk as [log(1/εk)]
3.97.

Now let’s see how the ε′-net R′ is constructed from the ε-net R. For
any U ∈ SU(N) there is an element Ũ ∈ R such that ‖U − Ũ‖sup ≤ ε,
or equivalently ‖UŨ

−1 − I‖sup ≤ ε. Now we will find W , constructed
as a circuit of 4 elements of R, such that ‖UŨ

−1 − W |sup ≤ ε′, or
equivalently ‖U −WŨ |sup ≤ ε′. Thus U is approximated to accuracy ε′

by WŨ , which is achieved by a circuit of 5 elements of R.
We may write UŨ

−1
= eiA, where A = O(ε). (By A = O(ε) we mean

‖A‖sup = O(ε), i.e., ‖A‖sup is bounded above by a constant times ε for ε
sufficiently small.) It is possible to find Hermitian B, C, both O(ε1/2),
such that [B,C] = −iA. Furthermore, because R is an ε-net, there is an
element eiB̃ of R which is ε-close to eiB, and an element eiC̃ of R which
is ε-close to eiC . It follows that B − B̃ = O(ε) and C − C̃ = O(ε).

Now we consider the circuit

W = eiB̃eiC̃e−iB̃e−iC̃ = I − [B̃, C̃] +O(ε3/2); (5.110)

the remainder term is cubic order in B̃ and C̃, hence O(ε3/2). First note
that the inverse of this circuit, eiC̃eiB̃e−iC̃e−iB̃, can also be constructed
as a size-4 circuit of gates from R. Furthermore,

W = I − [B +O(ε),C +O(ε)] +O(ε3/2) = I + iA +O(ε3/2)

= eiA +O(ε3/2); (5.111)

thus W , a circuit of 4 gates from R, approximates UŨ
−1

to O(ε3/2)
accuracy, as we wanted to show.

Finally, let’s consider the classical computational cost of finding the
quantum circuit which approximates a unitary transformation. The clas-
sical algorithm receives a unitary transformation U as input, and pro-
duces as output a quantum circuit evaluating Ũ , which approximates U
to accuracy ε. To improve the accuracy of the approximation to ε′, we
need to call the accuracy-ε algorithm three times, to find circuits evalu-
ating Ũ , eiB̃, and eiC̃ . Therefore, if the classical cost of the accuracy-ε
algorithm is t, the classical cost of the improved accuracy-ε′ algorithm is
t′ = 3t+constant, where the additive constant is needed to cover the cost

5.5 Summary 45

of tasks that do not scale with ε, such as finding the matrices B and C
satisfying [B,C] = −iA. After k iterations, the classical cost scales like

O(3k) = O
(
[log(1/εk)]

log 3/ log(3/2)
)

= O
(
[log(1/εk)]

2.71
)
, (5.112)

polylogarithmic in the accuracy achieved by the level-k version of the
algorithm.

What we have accomplished is a bit surprising. By composing unitary
transformations with O(ε) errors we have obtained unitary transforma-
tions with smaller O(ε3/2) errors. How could we achieve such sharp results
with such blunt tools? The secret is that we have constructed our circuit
so that the O(ε) errors cancel, leaving only the higher-order errors. This
would not have worked if R had not been closed under inverse. If instead
of the inverses of eiB̃ and eiC̃ we had been forced to use O(ε) approxima-
tions to these inverses, the cancellations would not have occurred, and our
quest for an improved approximation would have failed. But if our uni-
versal gate set allows us to construct the exact inverse of each element of
the gate set, then we can use the Solovay-Kitaev approach to recursively
improve the approximation.

This scheme works for any universal gate set that is closed under in-
verse. For particular gate sets improved approximations are possible. For
example, the gate set {H,T } can be used to approximate an arbitrary
single-qubit unitary to accuracy ε using O(log(1/ε)) gates, a substantial
improvement over O([log(1/ε)]3.97) established by the general argument,
and the circuits achieving this improved overhead cost can be efficiently
constructed.

5.5 Summary

Classical circuits. The complexity of a problem can be characterized
by the size of a uniform family of logic circuits that solve the problem:
The problem is hard if the size of the circuit is a superpolynomial func-
tion of the size of the input, and easy otherwise. One classical universal
computer can simulate another efficiently, so the classification of com-
plexity is machine independent. The 3-bit Toffoli gate is universal for
classical reversible computation. A reversible computer can simulate an
irreversible computer without a significant slowdown and without unrea-
sonable memory resources.

Quantum Circuits. Although there is no proof, it seems likely
that polynomial-size quantum circuits cannot be simulated in general
by polynomial-size randomized classical circuits (BQP 6= BPP); however,
polynomial space is sufficient (BQP ⊆ PSPACE). A noisy quantum circuit
can simulate an ideal quantum circuit of size T to acceptable accuracy

46 5 Classical and quantum circuits

if each quantum gate has an accuracy of order 1/T . Any n-qubit uni-
tary transformation can be constructed from two-qubit gates. A generic
two-qubit quantum gate, if it can act on any two qubits in a device, is
sufficient for universal quantum computation. One universal quantum
computer can simulate another to accuracy ε with a polylog(1/ε) over-
heard cost; therefore the complexity class BQP is machine independent.

Do the Exercises to learn more about universal sets of quantum gates.

5.6 Exercises

5.1 Linear simulation of Toffoli gate.

In §5.2.2 we constructed the n-bit Toffoli gate Λn−1(X) from 3-bit
Toffoli gates (Λ2(X)’s). The circuit required only one bit of scratch
space, but the number of gates was exponential in n. With more
scratch, we can substantially reduce the number of gates.

a) Find a circuit family with 2n − 5 Λ2(X)’s that evaluates
Λn−1(X). (Here n − 3 scratch bits are used, which are set
to 0 at the beginning of the computation and return to the
value 0 at the end.)

b) Find a circuit family with 4n − 12 Λ2(X)’s that evaluates
Λn−1(X), which works irrespective of the initial values of the
scratch bits. (Again the n−3 scratch bits return to their initial
values, but they don’t need to be set to zero at the beginning.)

5.2 An exactly universal quantum gate set.

The purpose of this exercise is to complete the demonstration that
the controlled-NOT gate Λ(X) and arbitrary single-qubit gates con-
stitute an exactly universal set.

a) If U is any unitary 2 × 2 matrix with determinant one, find
unitary A,B, and C such that

ABC = I (5.113)

AXBXC = U . (5.114)

Hint: From the Euler angle construction, we know that

U = Rz(ψ)Ry(θ)Rz(φ), (5.115)

where, e.g., Rz(φ) denotes a rotation about the z-axis by the
angle φ. We also know that, e.g.,

XRz(φ)X = Rz(−φ). (5.116)

5.6 Exercises 47

b) Consider a two-qubit controlled phase gate which applies U =
eiα1 to the second qubit if the first qubit has value |1〉, and
acts trivially otherwise. Show that it is actually a one-qubit
gate.

c) Draw a circuit using Λ(X) gates and single-qubit gates that im-
plements Λ(U), where U is an arbitrary 2 × 2 unitary trans-
formation.

Since the argument in §5.4.2 shows that the gate set {Λ(U)} is
exactly universal, we have shown that Λ(X) together with single-
qubit gates are an exactly universal set.

5.3 Universal quantum gates I

In this exercise and the two that follow, we will establish that several
simple sets of gates are universal for quantum computation.

The Hadamard transformation H is the single-qubit gate that acts
in the standard basis {|0〉, |1〉} as

H =
1√
2

(
1 1
1 −1

)
; (5.117)

in quantum circuit notation, we denote the Hadamard gate as

H

The single-qubit phase gate S acts in the standard basis as

S =
(

1 0
0 i

)
, (5.118)

and is denoted

S

A two-qubit controlled phase gate Λ(S) acts in the standard basis
{|00〉, 01〉, |10〉, |11〉} as the diagonal 4× 4 matrix

Λ(S) = diag(1, 1, 1, i) (5.119)

and can be denoted

S

s

48 5 Classical and quantum circuits

Despite this misleading notation, the gate Λ(S) actually acts sym-
metrically on the two qubits:

S

s
=

Ss
We will see that the two gates H and Λ(S) comprise a universal gate
set – any unitary transformation can be approximated to arbitrary
accuracy by a quantum circuit built out of these gates.

a) Consider the two-qubit unitary transformations U1 and U2 de-
fined by quantum circuits

U1 =
H s

S

H

and

U2 =
H sS H

Let |ab〉 denote the element of the standard basis where a labels
the upper qubit in the circuit diagram and b labels the lower
qubit. Write out U1 and U2 as 4× 4 matrices in the standard
basis. Show that U1 and U2 both act trivially on the states

|00〉, 1√
3

(|01〉+ |10〉+ |11〉) . (5.120)

b) Thus U1 and U2 act nontrivially only in the two-dimensional
space spanned by{

1√
2

(|01〉 − |10〉) , 1√
6

(|01〉+ |10〉 − 2|11〉)
}
. (5.121)

Show that, expressed in this basis, they are

U1 =
1
4

(
3 + i

√
3(−1 + i)√

3(−1 + i) 1 + 3i

)
, (5.122)

and

U2 =
1
4

(
3 + i

√
3(1− i)√

3(1− i) 1 + 3i

)
. (5.123)

5.6 Exercises 49

c) Now express the action of U1 and U2 on this two-dimensional
subspace in the form

U1 =
√
i

(
1√
2
− i

1√
2
n̂1 · ~σ

)
, (5.124)

and

U2 =
√
i

(
1√
2
− i

1√
2
n̂2 · ~σ

)
. (5.125)

What are the unit vectors n̂1 and n̂2?

d) Consider the transformation U−1
2 U1 (Note that U−1

2 can also
be constructed from the gates H and Λ(S).) Show that it
performs a rotation with half-angle θ/2 in the two-dimensional
space spanned by the basis eq.(5.121), where cos(θ/2) = 1/4.

5.4 Universal quantum gates II

We have seen in Exercise 5.3 how to compose the quantum gates
H and Λ(S) to perform, in a two-dimensional subspace of the four-
dimensional Hilbert space of two qubits, a rotation with cos(θ/2) =
1/4. In this exercise, we will show that the angle θ is not a rational
multiple of π. Equivalently, we will show that

eiθ/2 ≡ cos(θ/2) + i sin(θ/2) =
1
4

(
1 + i

√
15
)

(5.126)

is not a root of unity: there is no finite integer power n such that
(eiθ/2)n = 1.

Recall that a polynomial of degree n is an expression

P (x) =
n∑

k=0

akx
k (5.127)

with an 6= 0. We say that the polynomial is rational if all of the ak’s
are rational numbers, and that it is monic if an = 1. A polynomial
is integral if all of the ak’s are integers, and an integral polynomial
is primitive if the greatest common divisor of {a0, a1, . . . , an} is 1.

a) Show that the monic rational polynomial of minimal degree that
has eiθ/2 as a root is

P (x) = x2 − 1
2
x+ 1 . (5.128)

The property that eiθ/2 is not a root of unity follows from the result
(a) and the

50 5 Classical and quantum circuits

Theorem If a is a root of unity, and P (x) is a monic rational
polynomial of minimal degree with P (a) = 0, then P (x) is integral.

Since the minimal monic rational polynomial with root eiθ/2 is not
integral, we conclude that eiθ/2 is not a root of unity. In the rest of
this exercise, we will prove the theorem.

b) By “long division” we can prove that if A(x) and B(x) are ra-
tional polynomials, then there exist rational polynomials Q(x)
and R(x) such that

A(x) = B(x)Q(x) +R(x) , (5.129)

where the “remainder” R(x) has degree less than the degree
of B(x). Suppose that an = 1, and that P (x) is a rational
polynomial of minimal degree such that P (a) = 0. Show that
there is a rational polynomial Q(x) such that

xn − 1 = P (x)Q(x) . (5.130)

c) Show that if A(x) and B(x) are both primitive integral polyno-
mials, then so is their product C(x) = A(x)B(x). Hint: If
C(x) =

∑
k ckx

k is not primitive, then there is a prime num-
ber p that divides all of the ck’s. Write A(x) =

∑
l alx

l, and
B(x) =

∑
m bmx

m, let ar denote the coefficient of lowest order
in A(x) that is not divisible by p (which must exist if A(x) is
primitive), and let bs denote the coefficient of lowest order in
B(x) that is not divisible by p. Express the product arbs in
terms of cr+s and the other al’s and bm’s, and reach a contra-
diction.

d) Suppose that a monic integral polynomial P (x) can be factored
into a product of two monic rational polynomials, P (x) =
A(x)B(x). Show that A(x) and B(x) are integral. Hint:
First note that we may write A(x) = (1/r) · Ã(x), and
B(x) = (1/s) · B̃(x), where r, s are positive integers, and Ã(x)
and B̃(x) are primitive integral; then use (c) to show that
r = s = 1.

e) Combining (b) and (d), prove the theorem.

What have we shown? Since U−1
2 U1 is a rotation by an irrational

multiple of π, the powers of U−1
2 U1 are dense in a U(1) subgroup.

Similar reasoning shows that U1U
−1
2 is a rotation by the same angle

about a different axis, and therefore its powers are dense in another
U(1) subgroup. Products of elements of these two noncommuting

5.6 Exercises 51

U(1) subgroups are dense in the SU(2) subgroup that contains both
U1 and U2.

Furthermore, products of

Λ(S)U−1
2 U1Λ(S)−1 and Λ(S)U1U

−1
2 Λ(S)−1 (5.131)

are dense in another SU(2), acting on the span of{
1√
2
(|01〉 − |10〉), 1√

6
(|01〉+ |10〉 − 2i|11〉)

}
. (5.132)

Together, these two SU(2) subgroups close on the SU(3) subgroup
that acts on the three-dimensional space orthogonal to |00〉. Con-
jugating this SU(3) by H ⊗ H we obtain another SU(3) act-
ing on the three-dimensional space orthogonal to |+,+〉, where
|+〉 = 1√

2
(|0〉 + |1〉). The only subgroup of SU(4) that contains

both of these SU(3) subgroups is SU(4) itself.

Therefore, the circuits constructed from the gate set {H,Λ(S)}
are dense in SU(4) — we can approximate any two-qubit gate to
arbitrary accuracy, which we know suffices for universal quantum
computation. Whew!

5.5 Universal quantum gates III

We have shown in Exercises 5.3 and 5.4 that the gate set {H,Λ(S)}
is universal. Thus any gate set from which both H and Λ(S) can
be constructed is also universal. In particular, we can see that
{H,S,Λ2(X)} and {H,T ,Λ(X)} are universal gates sets, where
T = exp

(
−iπ8 Z

)
.

a) It is sometimes convenient to characterize a quantum gate by
specifying the action of the gate when it conjugates a Pauli
operator. Show that H and S have the properties

HXH = Z , HY H = −Y , HZH = X , (5.133)

and

SXS−1 = Y , SY S−1 = −X , SZS−1 = Z . (5.134)

b) Note that, since S−1 = S3, the gate K = HS−1HSH can be
constructed using H and S. Show that

KXK = Y , KY K = X , KZK = −Z . (5.135)

52 5 Classical and quantum circuits

c) Construct circuits for Λ2(Y) and Λ2(Z) using the gate set
{H,S,Λ2(X)}. Then complete the proof of universality for
this gate set by constructing Λ(S) ⊗ I using Λ2(X), Λ2(Y),
and Λ2(Z).

d) Show that {H,T ,Λ(X)} is a universal gate set by constructing
a circuit for Λ(S) from Λ(X) and T . Hint: Observe that
T 2 = e−iπ/4S, then use the construction suggested in Exercise
5.2, noting that T−1T−1T 2 = I and T−1XT−1XT 2 = T 2.

The Toffoli gate Λ2(X) is universal for reversible classical compu-
tation. What must be added to realize the full power of quantum
computing? We have just seen that the single-qubit gates H and S,
together with the Toffoli gate, are adequate for reaching any unitary
transformation. But in fact, just H and Λ2(X) suffice to efficiently
simulate any quantum computation.

Of course, since H and Λ2(X) are both real orthogonal matrices,
a circuit composed from these gates is necessarily real — there are
complex n-qubit unitaries that cannot be constructed with these
tools. But a 2n-dimensional complex vector space is isomorphic to
a 2n+1–dimensional real vector space. A complex vector can be
encoded by a real vector according to

|ψ〉 =
∑

x

ψx|x〉 7→ |ψ̃〉 =
∑

x

(Re ψx)|x, 0〉+(Im ψx)|x, 1〉 , (5.136)

and the action of the unitary transformation U can be represented
by a real orthogonal matrix UR defined as

UR : |x, 0〉 7→ (Re U)|x〉 ⊗ |0〉+ (Im U)|x〉 ⊗ |1〉 ,
|x, 1〉 7→ −(Im U)|x〉 ⊗ |0〉+ (Re U)|x〉 ⊗ |1〉 .(5.137)

To show that the gate set {H,Λ2(X)} is “universal,” it suffices
to demonstrate that the real encoding Λ(S)R of Λ(S) can be con-
structed from Λ2(X) and H.

d) Verify that Λ(S)R = Λ2(XZ).

e) Use Λ2(X) and H to construct a circuit for Λ2(XZ).

Thus, the classical Toffoli gate does not need much help to unleash
the power of quantum computing. In fact, any nonclassical single-
qubit gate (one that does not preserve the computational basis),
combined with the Toffoli gate, is sufficient.

5.6 Exercises 53

5.6 Universality from any entangling two-qubit gate

We say that a two-qubit unitary quantum gate is local if it is a tensor
product of single-qubit gates, and that the two-qubit gates U and
V are locally equivalent if one can be transformed to the other by
local gates:

V = (A⊗B)U(C ⊗D) . (5.138)

It turns out (you are not asked to prove this) that every two-qubit
gate is locally equivalent to a gate of the form:

V (θx, θy, θz) = exp [i (θxX ⊗X + θyY ⊗ Y + θzZ ⊗Z)] ,
(5.139)

where
−π/4 < θx ≤ θy ≤ θz ≤ π/4 . (5.140)

a) Show that V (π/4, π/4, π/4) is (up to an overall phase) the
SWAP operation that interchanges the two qubits:

SWAP (|ψ〉 ⊗ |φ〉) = |φ〉 ⊗ |ψ〉 . (5.141)

b) Show that V (0, 0, π/4) is locally equivalent to the CNOT gate
Λ(X).

As shown in Exercise 5.2, the CNOT gate Λ(X) together with ar-
bitrary single-qubit gates form an exactly universal gate set. But in
fact there is nothing special about the CNOT gate in this regard.
Any two-qubit gate U , when combined with arbitrary single-qubit
gates, suffices for universality unless U is either local or locally
equivalent to SWAP.
To demonstrate that U is universal when assisted by local gates it
suffices to construct Λ(X) using a circuit containing only local gates
and U gates.
Lemma If U is locally equivalent to V (θx, θy, θz), then Λ(X) can
be constructed from a circuit using local gates and U gates except in
two cases: (1) θx = θy = θz = 0 (U is local), (2) θx = θy = θz = π/4
(U is locally equivalent to SWAP)..
You will prove the Lemma in the rest of this exercise.

c) Show that:

(I ⊗X)V (θx, θy, θz)(I ⊗X)V (θx, θy, θz) = V (2θx, 0, 0) ,
(I ⊗ Y)V (θx, θy, θz)(I ⊗ Y)V (θx, θy, θz) = V (0, 2θy, 0) ,
(I ⊗Z)V (θx, θy, θz)(I ⊗Z)V (θx, θy, θz) = V (0, 0, 2θz) .

(5.142)

54 5 Classical and quantum circuits

d) Show that V (0, 0, θ) is locally equivalent to the controlled ro-
tation Λ[R(n̂, 4θ)], where R(n̂, 4θ) = exp[−2iθ(n̂ · ~σ)], for an
arbitrary axis of rotation n̂. (Here ~σ = (X,Y ,Z).)

e) Now use the results of (c) and (d) to prove the Lemma.

