1a) \(P_{l} + \frac{\tau_{l}}{r_{l}} \) \(V = (p_{1} - p_{2})(V_{g} - V_{e}) \), work done by enclosed area

6) Heat added at \(T_{1} \) is \(L \)
\[W = (p_{1} - p_{2})(V_{g} - V_{e}) = \frac{L}{T_{i}} \frac{T_{1} - T_{e}}{T_{1}} \]
\[\Rightarrow \frac{p_{1} - p_{2}}{T_{1} - T_{e}} = \frac{L}{T_{i}} \frac{T_{1} - T_{e}}{T_{1}} \]
This agrees with Clausius-Clapeyron in the limit \(T_{e} \rightarrow T_{1} \).

\(\left(\frac{dp}{dT} \right)_{coex} = \frac{L}{T_{i}} \frac{V AV}{C_{p}} \) It is a derivative of \(C_{p} \) since cycle is reversible.

c) Power \(W = 4 \eta \frac{L}{sec} \times \left(\frac{mole}{sec} \right) \), \(\eta = \frac{T_{1} - T_{e}}{T_{1}} \)
\[\frac{Vol}{sec} = \frac{mole}{sec} \times \frac{m^3}{mole} = \frac{mole}{sec} \times (18 \times 10^{-6}) \]
\(= 18 \) molecular wt. of \(H_{2}O \)
\[\frac{height}{sec} = \frac{Vol}{area} \frac{sec}{sec} = \frac{1}{A} (18 \times 10^{-6}) \frac{W}{\eta L} \]
\[\frac{height}{day} = (24 \times 3600) \times (18 \times 10^{-6}) \frac{W}{AL\eta} \]
\[= 1.56 \frac{W}{AL\eta} \]

d) \(\eta = \frac{T_{1} - T_{e}}{T_{1}} = \frac{300 - 200}{300} = \frac{1}{3} \)
\[\frac{height}{day} = (1.56)(3) \frac{2 \times 10^{14} \text{Wh/day}}{(10^4 \text{m}^2)(41 \times 10^{3} \text{J/m}^2\text{C}^2)} = 2.2 \frac{m}{\text{day}} \]
9 inches of rain per day — sounds about right
Physics 12c, Problem Set 7 Solutions

May 2016

[2] Scaling hypothesis from Landau theory

From
\[G(\epsilon, \lambda) = [F(\epsilon, \xi) - \lambda \xi] \] stat wrt \(\xi \)
and
\[F(\epsilon, \xi) = \frac{1}{2} A \epsilon \xi^2 + \frac{1}{4} B \xi^4, \]
we infer that
\[G(\Omega p \epsilon, \Omega q \lambda) = \left[\frac{1}{2} A \epsilon \xi^2 + \frac{1}{4} B \xi^4 - \lambda \Omega \xi \right] \] stat wrt \(\xi \).

Now we want to show that the right-hand side becomes \(\Omega G(\epsilon, \lambda) \) for an appropriate choice of \(p \) and \(q \). In fact if we choose \((p-1)/2 = -1/4 \) and \(q-1 = -1/4 \), then the quantity inside the square brackets becomes a function of \(\Omega^{-1/4} \xi \), and we have
\[G(\Omega p \epsilon, \Omega q \lambda) = \left[\frac{1}{2} A \epsilon \left(\Omega^{-1/4} \xi \right)^2 + \frac{1}{4} B \left(\Omega^{-1/4} \xi \right)^4 - \lambda \left(\Omega^{-1/4} \xi \right) \right] \] stat wrt \(\xi \).

But rescaling \(\xi \) by \(\Omega^{-1/4} \) does not change the value of the quantity in square brackets at its stationary point, and so we find
\[G(\Omega p \epsilon, \Omega q \lambda) = \Omega G(\epsilon, \lambda) \]
when we choose
\[p = 1/2, \quad q = 3/4. \]

[3] Critical exponents from the scaling hypothesis

(a) The order parameter is given by \(\xi = -\left(\frac{\partial G}{\partial \lambda} \right)_\tau \). Differentiating the scaling hypothesis with respect to \(\lambda \) gives:
\[\Omega^q \xi(\Omega^p \epsilon, \Omega^q \lambda) = \Omega \xi(\epsilon, \lambda) \] (S1)

We set \(\lambda = 0 \), and take the limit \(\epsilon \to 0^- \) (i.e. approach \(\tau_C \) from below) while holding \(\Omega^p \epsilon \) fixed. This means that \(\Omega \propto |\epsilon|^{-1/p} = (-\epsilon)^{-1/p} \) since \(\epsilon < 0 \) in this case\(^1\). Furthermore, for \(\Omega^p \epsilon \) fixed, \(\xi(\Omega^p \epsilon, 0) \) is just a constant. Therefore,
\[\xi \sim \Omega^{q-1} \sim (-\epsilon)^{\frac{1-q}{p}} \quad \Rightarrow \quad \beta = \frac{1-q}{p}. \]

\(^1\) We usually want to study the scaling behavior while on the same side of \(\tau_C \), hence we can take \(\Omega \) as a positive quantity.
(b) Set $\epsilon = 0$ in eq. (S1), and take the limit $\lambda \to 0$, while holding Ω^ξ fixed, i.e. $\Omega \propto \lambda^{1/q}$. Therefore, we get

$$\xi \sim \Omega^{q-1} \sim \lambda^{-\frac{q-1}{q}}$$

$$\Rightarrow \quad \lambda \sim \xi^{\frac{q}{q-1}} \quad \Rightarrow \quad \delta = \frac{q}{1-q}.$$

(c) Recall that $\sigma = -\left(\frac{\partial G}{\partial \tau}\right)_\lambda$, so the heat capacity is given by $C_\lambda = -\tau \left(\frac{\partial^2 G}{\partial \tau^2}\right)_\lambda$.

Differentiating the scaling hypothesis twice with respect to τ, we get

$$\Omega^{2p} C_\lambda(\Omega^p \epsilon, \Omega^q \lambda) = \Omega^p C_\lambda(\epsilon, \lambda).$$

Set $\lambda = 0$, and take the limit $\epsilon \to 0$ while holding $\Omega^p \epsilon$ fixed, i.e. $\Omega \propto |\epsilon|^{-1/p}$. Then,

$$C_\lambda \sim \Omega^{2p-1} \sim |\epsilon|^{-\frac{2p-1}{p}} \Rightarrow \alpha = 2 - \frac{1}{p}.$$

(d) For $p = 1/2$ and $q = 3/4$, we find $\alpha = 0$, $\beta = 1/2$, $\gamma = 1$, $\delta = 3$ as expected.

(e) Using the expressions for β and δ from problem 2, we can write:

$$\delta = \frac{q}{1-q} \quad \Rightarrow \quad q = \frac{\delta}{1+\delta},$$

$$\beta = \frac{1-q}{p} = 2 - \alpha - \frac{q}{p} \quad \Rightarrow \quad \frac{1}{p} = \beta(1+\delta).$$

Therefore, $\alpha = 2 - \frac{1}{p} = 2 - \beta(1+\delta)$, which is known as the Griffiths relation.

(f) Using the expressions for α and β from problem 2, we can write:

$$\alpha = 2 - \frac{1}{p} \quad \Rightarrow \quad \frac{1}{p} = 2 - \alpha,$$

$$\beta = \frac{1-q}{p} = 2 - \alpha - \frac{q}{p} \quad \Rightarrow \quad \frac{q}{p} = 2 - \alpha - \beta.$$

Therefore, $\gamma = \frac{2q}{p} - \frac{1}{p} = 2(2 - \alpha - \beta) - (2 - \alpha) = 2 - \alpha - 2\beta$, which is known as the Rushbrooke relation.

[4] Equation of state from the scaling hypothesis

(a) Differentiating both sides of the scaling hypothesis

$$G(\epsilon, \lambda) = \Omega^{-1} G(\Omega^p \epsilon, \Omega^q \lambda),$$

we find

$$\xi(\epsilon, \lambda) = -\left(\frac{\partial G}{\partial \lambda}\right)_\tau = \Omega^{q-1} \xi(\Omega^p \epsilon, \Omega^q \lambda).$$

Now choose Ω so that $\Omega^p = \epsilon^{-1}$, or $\Omega = \epsilon^{-1/p}$, and we have

$$\xi(\epsilon, \lambda) = \epsilon^{(1-q)/p} \xi \left(1, \frac{\epsilon^{-q/p} \lambda}{\epsilon^{(1-q)/p}}\right) \Rightarrow \xi(\epsilon, \lambda) = \xi \left(1, \frac{\lambda}{\epsilon^{(1-q)/p}}\right) = f \left(\frac{\lambda}{\epsilon^{(1-q)/p}}\right).$$

Therefore,

$$a = \frac{1-q}{p} = \beta, \quad b = \frac{q}{p} = \beta \delta.$$

2
(b) Differentiating we find

\[\lambda = \frac{\partial}{\partial \xi} F(\epsilon, \xi) = A\epsilon \xi + B\xi^3, \]

and therefore

\[\lambda \epsilon^{-b} = A\epsilon^{1-b} \xi + B\epsilon^{-b} \xi^3 = A (\epsilon^{1-b} \xi) + B \left(\epsilon^{-b/3} \xi \right)^3; \]

This has the form \(h(\xi/\epsilon^a) \) if \(a = b - 1 = b/3 \), which has the solution \(b = 3/2 \) and \(a = 1/2 \). The function \(h \) is

\[h(x) = Ax + Bx^3. \]

To check: in Landau theory, where \(p = 1/2 \) and \(q = 3/4 \), the result from (a) becomes

\[a = \frac{1 - q}{p} = \frac{1/4}{1/2} = 1/2, \quad b = \frac{q}{p} = \frac{3/4}{1/2} = 3/2. \]