Ph 12c

Homework Assignment No. 2
 Due: 5pm, Thursday, 19 April 2012

Do Problems 4 and 11 in Chapter 3 of Kittel and Kroemer, plus these additional problems:

1. Model of a large reservoir

a) Consider a system \mathcal{S} divided into two subsystems \mathcal{S}_{1} and \mathcal{S}_{2} in thermal contact, sharing total energy E. If \mathcal{S}_{1} has energy E_{1} and \mathcal{S}_{2} has energy $E_{2}=E-E_{1}$, the total entropy of \mathcal{S} is

$$
S_{\text {total }}=S_{1}\left(E_{1}\right)+S_{2}\left(E_{2}\right)
$$

where S_{1} is the entropy of \mathcal{S}_{1} and S_{2} is the entropy of \mathcal{S}_{2}. Show that if E_{1} is chosen to maximize $S_{\text {total }}$ ("the most probable configuration") with the total energy E fixed, then the two subsystems have the same temperature: $\tau_{1}=\tau_{2}$. (To verify that this configuration is really a maximum rather than a minimum, check the sign of the second derivative of $S_{\text {total }}$ with respect to E_{1}, assuming the "heat capacity" $C_{i}=d E_{i} / d \tau_{i}$ is positive for both subsystems.)
b) Now suppose \mathcal{S} is divided into N subsystems $\mathcal{S}_{1}, \mathcal{S}_{2}, \ldots, \mathcal{S}_{N}$ in thermal contact; with total entropy

$$
S_{\mathrm{total}}=\sum_{i=1}^{N} S_{i}\left(E_{i}\right)
$$

where S_{i}, E_{i} are the entropy and energy of \mathcal{S}_{i}. Using mathematical induction and part (a), show that if the total energy $E=E_{1}+E_{2}+\cdots+E_{N}$ is fixed, then the total entropy $S_{\text {total }}$ is maximized when all N systems have the same temperature.
c) Now consider a large reservoir consisting of N identical subsystems, all in thermal contact with one another and each with the same entropy function $S(E)$. It follows from part (b) that in the most probable configuration all subsystems have the same temperature and all therefore have the same energy as well; hence the total entropy is

$$
S_{\text {total }}(E)=N S(E / N),
$$

where E is the total energy. If the total energy increases from E to $E+\Delta E$, find the corresponding change $\Delta S_{\text {total }}$ in the total entropy, expanded in a power series to quadratic order in ΔE. Express your answer in terms of the reservoir's temperature τ and the heat capacity $C=d E / d \tau$ of each subsystem. Argue that it is reasonable to neglect the term of order $(\Delta E)^{2}$ when the number of subsystems is $N \gg 1$.

2. Atoms and photons

$N \gg 1$ identical atoms are in equilibrium with radiation in a cavity at temperature τ. Each atom has two energy eigenstates: the ground state $|g\rangle$ with energy E_{g}, and the excited state $|e\rangle$ with energy E_{e}, where $E_{e}-E_{g}=\hbar \omega$. Occasionally an atom absorbs a photon and makes a transition from the ground state to the excited state, or emits a photon and makes a transition from the excited state to the ground state. Let $N(g)$ denote the number of atoms that occupy the ground state, let $N(e)=N-N(g)$ denote the number of atoms that occupy the excited state, let $\Gamma(g \rightarrow e)$ denote the rate (probability per unit time) for an atom in the ground state to absorb a photon, and let $\Gamma(e \rightarrow g)$ denote the rate for an atom in the excited state to emit a photon.
(a) Show that, because $N(g)$ remains constant in equilibrium, it follows that

$$
\begin{equation*}
N(g) \Gamma(g \rightarrow e)=N(e) \Gamma(e \rightarrow g) \tag{1}
\end{equation*}
$$

(b) We observe that, for atoms in equilibrium with the thermal radiation, the rate $\Gamma(g \rightarrow e)$ is half as large as the rate $\Gamma(e \rightarrow g)$. What is the temperature τ ?

3. Anisotropic well

The Hamiltonian for a particle of mass m in an anisotropic potential well is

$$
\begin{equation*}
H=\frac{1}{2 m}\left(p_{x}^{2}+p_{y}^{2}+p_{z}^{2}\right)+\frac{m}{2}\left(\omega_{1}^{2} x^{2}+\omega_{2}^{2} y^{2}+\omega_{3}^{2} z^{2}\right) . \tag{2}
\end{equation*}
$$

Since H is the sum of three one-dimensional harmonic oscillator Hamiltonians with circular frequencies $\omega_{1}, \omega_{2}, \omega_{3}$, the energy eigenvalues are

$$
\begin{equation*}
E\left(n_{1}, n_{2}, n_{3}\right)=\hbar \omega_{1} n_{1}+\hbar \omega_{2} n_{2}+\hbar \omega_{3} n_{3} \tag{3}
\end{equation*}
$$

(ignoring the zero point energy), where n_{1}, n_{2}, n_{3} are non-negative integers.
(a) Find the partition function Z_{1} for a single particle in the potential well at temperature τ.
(b) Now suppose that N distinguishable non-interacting particles are in the potential well. Express the partition function Z_{N} in terms of the single-particle partition function Z_{1}.
(c) Compute the average energy $U(\tau, N)$.
(d) Find the heat capacity $C=(\partial U / \partial \tau)_{N}$ in the high-temperature limit, $\tau \gg \hbar \omega_{1}, \hbar \omega_{2}, \hbar \omega_{3}$.

