Ph 12c

Homework Assignment No. 1

Due: 5pm, Thursday, 12 April 2012
Do Problem 3 in Chapter 2 of Kittel and Kroemer, plus these three additional problems:

1. The moment-generating function and the central limit theorem.

Suppose that x is a random variable taking values on the real line, and $p(x)$ is a probability distribution for x. We say that

$$
X_{n} \equiv\left\langle x^{n}\right\rangle=\int_{-\infty}^{\infty} d x p(x) x^{n}
$$

is the nth moment of the probability distribution, and that

$$
\bar{X}(t)=\left\langle e^{t x}\right\rangle=\sum_{n=0}^{\infty} \frac{X_{n} t^{n}}{n!}
$$

is the moment-generating function of the distribution.
a) Compute the moment-generating function for the normalized Gaussian distribution with mean zero and variance σ^{2},

$$
\begin{equation*}
q(x)=\frac{e^{-x^{2} / 2 \sigma^{2}}}{\sqrt{2 \pi \sigma^{2}}} . \tag{1}
\end{equation*}
$$

(Note that it is easy to do the integral $\bar{X}(t)=\int_{-\infty}^{\infty} d x q(x) e^{t x}$ by shifting the integration variable by a constant.)
b) By expanding $\bar{X}(t)$ in a power series, show that for the normalized Gaussian distribution $\left\langle x^{n}\right\rangle=0$ for n odd, and find an expression for $\left\langle x^{2 n}\right\rangle$ for each nonnegative integer n.
c) Now suppose that $\left\{x_{1}, x_{2}, x_{3}, \ldots, x_{N}\right\}$ are independent random variables, all identically distributed with probability distribution $p(x)$. Consider the random variable

$$
u_{N}=\frac{1}{\sqrt{N}} \sum_{i=1}^{N} x_{i},
$$

which (aside from the non-standard but conveniently chosen normalization), represents the result of sampling the same distribution N times and averaging the results. The moment generating function for u_{N} is
$\bar{U}_{N}(t)=\int_{-\infty}^{\infty} d x_{1} \int_{-\infty}^{\infty} d x_{2} \cdots \int_{-\infty}^{\infty} d x_{N} p\left(x_{1}\right) p\left(x_{2}\right) \cdots p\left(x_{N}\right) e^{t u_{N}} ;$
express $\bar{U}_{N}(t)$ in terms of \bar{X}, the moment generating function for the distribution $p(x)$.
d) Assuming that the distribution $p(x)$ has mean zero $(\langle x\rangle=0)$, show that $\bar{U}_{N}(t)$ can be approximated as

$$
\bar{U}_{N}(t) \approx\left(1+\frac{t^{2}}{2 N} X_{2}+O\left(N^{-3 / 2}\right)\right)^{N}
$$

and show that in the limit $N \rightarrow \infty, \bar{U}_{N}(t)$ becomes the momentgenerating function of a Gaussian distribution with mean zero. What is the variance of this Gaussian?
2. Biased coin. When a biased coin is flipped the outcome is heads with probability p and tails with probability $1-p$. If this coin is flipped N times, the probability that the total number of heads is n is

$$
p(n)=\binom{N}{n} p^{n}(1-p)^{N-n} .
$$

The most likely value of n is $n=p N$, but there are fluctuations about this most likely value.

Denote $n=N p+s$, and suppose that $N \gg 1$. In this limit, $p(n)$, regarded as a function of s, approaches a Gaussian with mean zero and some variance σ_{p}^{2}; hence,

$$
\ln [p(n)]=\text { constant }-\frac{s^{2}}{2 \sigma_{p}^{2}}+O\left(s^{4}\right)
$$

where "constant" means a term independent of s. Calculate σ_{p}^{2} using the Stirling approximation and the approximations $s \ll p N$ and $s \ll$ $(1-p) N$. To save work, notice that you only need to find the coefficient of s^{2} in the expansion of $\ln [p(n)]$; you don't need to worry about the constant terms or the linear terms. Compare your value of σ_{p}^{2} with the result $\sigma^{2}=N / 4$ found in class for the case $p=1 / 2$.
3. Probability of a large deviation. For the Gaussian distribution Eq. (1), x is not likely to deviate from zero by an amount much larger than σ. To estimate the probability of a large deviation, we observe that probability for x to have a value exceeding t,

$$
P(x \geq t)=\int_{t}^{\infty} d x q(x)
$$

has an asymptotic expansion for $t^{2} \gg \sigma^{2}$.
a) Integrate by parts repeatedly to show that

$$
P(x \geq t)=\sqrt{\frac{\sigma^{2}}{2 \pi t^{2}}} e^{-t^{2} / 2 \sigma^{2}}\left(A-B \frac{\sigma^{2}}{t^{2}}+O\left(\frac{\sigma^{4}}{t^{4}}\right)\right),
$$

where A and B are positive constants, and find A and B.
b) Estimate the probability that x is 10σ or larger.

