1. **Quantized rotor.** A wheel spinning in a plane can be described as a Hamiltonian dynamical system with one degree of freedom: the coordinate is the angular orientation θ taking values in the interval $[0, 2\pi)$, and the conjugate momentum is the angular momentum L. The Hamiltonian H is
\[H = \frac{L^2}{2I}, \]
where I is the moment of inertia.

- **a)** What are the Hamilton equations of motion for this system? Is there a conserved constant of the motion? What is the associated symmetry?

In quantum mechanics, the Hilbert space for this system is the space of square-integrable periodic functions of θ, i.e. functions with the properties
\[\psi(\theta + 2\pi) = \psi(\theta), \quad \int_0^{2\pi} d\theta |\psi(\theta)|^2 < \infty. \]

The angular momentum operator becomes
\[\hat{L} = -i\hbar \frac{d}{d\theta}. \]

- **b)** Find the eigenvalues and normalized eigenfunctions of the operator \hat{L}. That is, find all values of λ and functions $\psi_{\lambda}(\theta)$ such that
\[\hat{L}\psi_{\lambda}(\theta) = \lambda\psi_{\lambda}(\theta), \quad \psi_{\lambda}(\theta + 2\pi) = \psi_{\lambda}(\theta), \quad \int_0^{2\pi} d\theta |\psi_{\lambda}(\theta)|^2 = 1. \]

- **c)** Verify that the eigenfunctions with distinct eigenvalues are mutually orthogonal:
\[\int_0^{2\pi} d\theta \psi_{\lambda}(\theta)^* \psi_{\lambda'}(\theta) = 0 \quad \text{for} \quad \lambda \neq \lambda'. \]

- **d)** What are the eigenvalues and eigenfunctions of the Hamiltonian $\hat{H} = \hat{L}^2/2I$?
e) The expectation value of the angular momentum is

\[\langle \hat{L} \rangle = \int_{0}^{2\pi} d\theta \, \psi(\theta)^* \hat{L} \psi(\theta). \]

Show that if the wavefunction \(\psi(\theta) \) is real (i.e. \(\psi(\theta) = \psi(\theta)^* \)), then \(\langle \hat{L} \rangle = 0 \).

2. **Twisted rotor.** Now consider a nonstandard way to quantize the spinning wheel — the wavefunction \(\psi(\theta) \) is not periodic, but instead “periodic up to a phase”:

\[\psi(\theta + 2\pi) = e^{i\alpha} \psi(\theta), \]

where \(e^{i\alpha} \) is a fixed complex number with modulus one. For this “twisted rotor,” repeat parts (b)–(d) of Problem 1.

3. **More eigenfunctions.** For square-integrable functions on the real line, consider the Hermitian operator

\[\hat{H} = -\frac{d^2}{dx^2} + x^2. \]

a) Show that the functions

\[\psi_0(x) = e^{-x^2/2}, \quad \psi_1(x) = xe^{-x^2/2} \]

are eigenfunctions of \(\hat{H} \), and find their eigenvalues. Check that \(\psi_0(x) \) and \(\psi_1(x) \) are orthogonal functions.

b) Find a real value of \(C \) such that

\[\psi_2(x) = (x^2 + C)e^{-x^2/2} \]

is an eigenfunction of \(\hat{H} \), and find its eigenvalue.

c) Check that \(\psi_2 \) is orthogonal to \(\psi_0 \) and \(\psi_1 \). It’s useful to recall that

\[\int_{-\infty}^{\infty} dx \, e^{-x^2} = \sqrt{\pi}, \quad \int_{-\infty}^{\infty} dx \, x^2 e^{-x^2} = \sqrt{\pi}/2. \]

4. **The qubit.** A qubit is a quantum system whose Hilbert space is two dimensional; linear operators acting on a qubit are \(2 \times 2 \) matrices.
a) Show that the most general Hermitian operator acting on a qubit can be expressed as

\[a\hat{I} + b\hat{\sigma}(\theta, \phi) \]

where

\[\hat{\sigma}(\theta, \phi) = \begin{pmatrix} \cos \theta & e^{-i\phi} \sin \theta \\ e^{i\phi} \sin \theta & -\cos \theta \end{pmatrix}. \]

Here \(\hat{I} \) is the 2 \(\times \) 2 identity matrix, \(a \) is an arbitrary real number, \(b \) is a nonnegative real number, \(\theta \) is a real number in the interval \([0, \pi]\), and \(\phi \) is a real number in the interval \([0, 2\pi]\).

b) Find the eigenvalues and eigenvectors of the operator \(\hat{\sigma}(\theta, \phi) \). It is convenient to express the eigenvectors in terms of \(\cos(\theta/2) \), \(\sin(\theta/2) \), \(e^{i\phi/2} \) and \(e^{-i\phi/2} \).

The 2 \(\times \) 2 Pauli spin matrices are the Hermitian operators

\[\hat{\sigma}_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \hat{\sigma}_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \hat{\sigma}_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}. \]

c) For both of the eigenvectors found in (b), evaluate the expectation values

\[\langle \hat{\sigma}_1 \rangle, \quad \langle \hat{\sigma}_2 \rangle, \quad \langle \hat{\sigma}_3 \rangle. \]

It is convenient to express the expectation values in terms of \(\cos \theta \), \(\sin \theta \), \(\cos \phi \), \(\sin \phi \).

d) If the observable \(\hat{\sigma}_3 \) is measured, the outcome can be either one of its eigenvalues, +1 or −1. For both of the eigenvectors found in part (b), find the probability \(P(+) \) for the +1 outcome of a \(\hat{\sigma}_3 \) measurement and the probability \(P(−) \) for the −1 outcome of a \(\hat{\sigma}_3 \) measurement.