1. The Todd genus is the Chern genus corresponding to the analytic function \(f(z) = z/(e^z - 1) \). Express the Todd genus in terms of Chern classes up to and including terms of cohomological degree 6.

2. Let \(S^2 \) be the 2-sphere with the standard Riemannian metric \(ds^2 = d\theta^2 + \sin^2 \theta d\phi^2 \).

 (a) It is well known that using the stereographic projection one can parameterize the sphere minus a point by a complex coordinate \(z \). So one can use \(z \) and \(\bar{z} \) as complex coordinates on \(S^2 \). Compute the metric, the corresponding connection 1-form, and the curvature tensor of the tangent bundle of \(S^2 \) in terms of these coordinates. Note that \(TS^2 \) can be regarded as a complex rank-one bundle whose local trivialization is given by \(\frac{\partial}{\partial \bar{z}} \).

 (b) Compute the connection 1-form for the spinor bundle \(\Delta \) on \(S^2 \) and verify that the rank-two complex vector bundle \(\Delta \) with its connection decomposes into a sum \(\Delta_+ \oplus \Delta_- \), where \(\Delta_+ \otimes \Delta_+ \) is isomorphic to \(TS^2 \) (as a complex vector bundle with a connection), and \(\Delta_- \otimes \Delta_- \) is isomorphic to its dual.

 (c) Show that there are no nonzero harmonic spinors on \(S^2 \), in agreement with the index theorem.