All from the Srednicki solutions manual:
14.3) a) The integrand in eq. (14.52) is odd under $q \rightarrow-q$, and so vanishes when integrated. The left-hand side of eq. (14.53) is a two-index constant symmetric tensor, and so must equal $g^{\mu \nu} A$, where A is a Lorentz scalar. To determine A, we contract both sides with $g_{\mu \nu}$; since $g_{\mu \nu} g^{\mu \nu}=\delta_{\mu}{ }^{\mu}=d$, we find $C_{2}=1 / d$.
b) The result is a constant four-index completely symmetric tensor, and hence must equal $\left(g^{\mu \nu} g^{\rho \sigma}+g^{\mu \rho} g^{\sigma \nu}+g^{\mu \sigma} g^{\nu \rho}\right) B$. Contracting this with $g_{\mu \nu} g_{\rho \sigma}$, we get $\left(d^{2}+d+d\right) B=d(d+2) B$. Therefore

$$
\begin{equation*}
\int d^{d} q q^{\mu} q^{\nu} q^{\rho} q^{\sigma} f\left(q^{2}\right)=\frac{1}{d(d+2)}\left(g^{\mu \nu} g^{\rho \sigma}+g^{\mu \rho} g^{\sigma \nu}+g^{\mu \sigma} g^{\nu \rho}\right) \int d^{d} q\left(q^{2}\right)^{2} f\left(q^{2}\right) \tag{14.58}
\end{equation*}
$$

14.5) See section 31. From eq. (31.5), we have

$$
\begin{equation*}
\Pi\left(k^{2}\right)=\frac{\lambda}{16 \pi^{2}}\left[\frac{1}{\varepsilon}+\frac{1}{2}+\ln (\mu / m)\right] m^{2}-A k^{2}-B m^{2}+O\left(\lambda^{2}\right) . \tag{14.60}
\end{equation*}
$$

We see immediately that

$$
\begin{align*}
A & =O\left(\lambda^{2}\right) \\
B & =\frac{\lambda}{16 \pi^{2}}\left[\frac{1}{\varepsilon}+\frac{1}{2}+\ln (\mu / m)\right]+O\left(\lambda^{2}\right) \tag{14.61}
\end{align*}
$$

and that $\Pi\left(k^{2}\right)=0$ to $O(\lambda)$.
14.6) The only difference is that the loop has a symmetry factor of $S=1$ rather than $S=2$, so there is an extra factor of 2 in the loop correction, and hence in $B ; A$ is still zero at one loop.

