Problem 38.2

Denoting \(\beta A^\dagger \beta \), consider \(\overline{\gamma}^{\mu} \). Let’s keep in mind that \(\beta = \gamma^0 \) and that \(\gamma \)'s anticommute as \(\{ \gamma^\mu, \gamma^\nu \} = -2g^{\mu\nu} \). As Pauli matrices are Hermitian, \(\gamma^0 = \gamma^0 \) and \(\gamma^i = -\gamma^i \). Therefore, \(\overline{\gamma}^0 = \gamma^0 \) and \(\overline{\gamma}^i = -\gamma^i \). Further noting that \(\gamma^5 \) is Hermitian, and anticommutes with \(\gamma \)'s, \(\{ \gamma^\mu, \gamma^5 \} = 0 \), we proceed by considering \(i\gamma^5 \):

\[
\overline{\gamma}^5 : \quad \overline{i\gamma}^5 = -i\beta\gamma^5\beta = i\gamma^5 \\
\gamma^5 \gamma^5 : \quad \gamma^5 \gamma^5 = \beta\gamma^5\gamma^5 \beta = -\gamma^5 \gamma^5 = -\gamma^5 \gamma^5 = \gamma^5 \gamma^5 \\
i\gamma^5 S^{\mu\nu} : \quad i\gamma^5 S^{\mu\nu} = -iS^{\mu\nu} \gamma^5 = iS^{\mu\nu} \gamma^5 = i\gamma^5 S^{\mu\nu},
\]

where in the last line we twice anticommute \(\gamma^5 \) past the \(\gamma^\mu \)'s in \(S^{\mu\nu} \).

Problem 38.3

We start by recalling the equations of motion for four-component spinors

\[
(p + m)u_s(\vec{p}) = 0, \quad (-p + m)v_s(\vec{p}) = 0 \\
\bar{u}_s(\vec{p})(p + m) = 0, \quad \bar{v}_s(\vec{p})(-p + m) = 0
\]

and the convenient rewriting of \(\beta \) and \(\gamma^\mu \) orderings

\[
\gamma^\mu \beta = \frac{1}{2} \{ \gamma^\mu, \beta \} = -p^\mu - 2is^{\mu\nu} p_\nu, \quad \beta \gamma^\mu = \frac{1}{2} \{ \gamma^\mu, \beta \} + \frac{1}{2} [p, \gamma^\mu] = -p^\mu + 2is^{\mu\nu} p_\nu.
\]

Just as in the text we ‘conjugated’ the combination \((p\gamma^\mu + \gamma^\mu \beta) \) by \(u \)'s and \(v \)'s, here we might consider conjugating by \(\bar{u}_s(\vec{p}) \) and \(v_s(\vec{p}) \) to get the desired expression, we find

\[
\bar{u}_s(\vec{p})(p\gamma^\mu + \gamma^\mu \beta)v_s(-\vec{p}) = -m\bar{u}_s(\vec{p})\gamma^\mu v_s(-\vec{p}) + m\bar{u}_s(\vec{p})\gamma^\mu v_s(-\vec{p}) = 0.
\]

This vanishes, maybe to get something that doesn’t vanish we should consider the conjugation of \((p\gamma^\mu - \gamma^\mu \beta) \) by \(\bar{u}_s(\vec{p}) \) and \(v_s(-\vec{p}) \). We should also be careful about the distinction between \(p \) and
Therefore, we find that RHS are zero. We want to derive the Gordon identities. We then conjugate the expression \(\bar{u}_{s'}(\vec{p}) (\gamma^\mu - \gamma^\mu p') v_s(-\vec{p}) \).

Making use of the equations of motion, we can write this as

\[
\bar{u}_{s'}(\vec{p}) (\gamma^\mu - \gamma^\mu p') v_s(-\vec{p}) = -2m \bar{u}_{s'}(\vec{p}) \gamma^\mu v_s(-\vec{p}) .
\]

We can also make use of our convenient rewriting of \(\bar{p} \) and \(\gamma^\mu \)

\[
\bar{u}_{s'}(\vec{p}) (\gamma^\mu - \gamma^\mu p') v_s(-\vec{p}) = \bar{u}_{s'}(\vec{p}) (p' - p)^\mu + 2i S^\mu\nu (p + p'_\nu) v_s(-\vec{p}) ,
\]

and find that

\[
-2m \bar{u}_{s'}(\vec{p}) \gamma^\mu v_s(-\vec{p}) = \bar{u}_{s'}(\vec{p}) (p' - p)^\mu + 2i S^\mu\nu (p + p'_\nu) v_s(-\vec{p}) .
\]

The i components of this equation just reproduce what we should expect form the equations of motion, but the 0 component might give something interesting

\[
-2m \bar{u}_{s'}(\vec{p}) \gamma^0 v_s(-\vec{p}) = \bar{u}_{s'}(\vec{p}) \left((p_0' - p_0) + 2i(-S^{00}(p_0 + p'_0) + S^{0i}(\vec{p} - \vec{p})_i)\right) v_s(-\vec{p}) .
\]

As \(p^2 = p'^2 = -m^2 \), then \(p_0 = p'_0 \), and as \(S^{\mu\nu} \) is antisymmetric \(S^{00} = 0 \), meaning all terms on the RHS are zero

\[
\bar{u}_{s'}(\vec{p}) \gamma^0 v_s(-\vec{p}) = 0 .
\]

Equivalently, consider the conjugation of \((\gamma^\mu - \gamma^\mu p') \) by \(\bar{v}_{s'}(\vec{p}) \) and \(u_s(-\vec{p}) \)

\[
\bar{v}_{s'}(\vec{p}) (\gamma^\mu - \gamma^\mu p') u_s(-\vec{p}) = 2m \bar{v}_{s'}(\vec{p}) \gamma^\mu u_s(-\vec{p}) = \bar{v}_{s'}(\vec{p}) (p' - p)^\mu + 2i S^\mu\nu (p + p'_\nu) u_s(-\vec{p}) ,
\]

for which the 0-th component tells us that

\[
\bar{v}_{s'}(\vec{p}) \gamma^0 u_s(-\vec{p}) = 0 .
\]

Problem 38.4

We want to derive the Gordon identities. We then conjugate the expression \(p' \gamma^\mu + \gamma^\mu \bar{p} \) with \(\bar{u}_{s'}(\vec{p}') \) and \(\gamma 5 u_s(\vec{p}) \)

\[
\bar{u}_{s'}(\vec{p}') (p' \gamma^\mu + \gamma^\mu \bar{p}) \gamma 5 u_s(\vec{p}) = \bar{u}_{s'}(\vec{p}') \left(- (p + p')^\mu + 2i S^\mu\nu (p - p'_\nu)\right) \gamma 5 u_s(\vec{p}) .
\]

Using the anticommutation of \(\gamma^5 \) and plugging in the Dirac equation for the spinors, we find

\[
\text{LHS} = \left(\bar{u}_{s'}(\vec{p}') \right) \gamma^\mu \gamma 5 u_s(\vec{p}) - \bar{u}_{s'}(\vec{p}') \gamma^\mu \gamma 5 \left(\bar{p} u_s(\vec{p})\right) = -m \bar{u}_{s'}(\vec{p}') \gamma^\mu \gamma 5 u_s(\vec{p}) + m \bar{u}_{s'}(\vec{p}') \gamma^\mu \gamma 5 u_s(\vec{p}) = 0 .
\]

Likewise, conjugating \(p' \gamma^\mu + \gamma^\mu \bar{p} \) with \(\bar{v}_{s'}(\vec{p}') \) and \(\gamma 5 v_s(\vec{p}) \)

\[
\bar{v}_{s'}(\vec{p}') (p' \gamma^\mu + \gamma^\mu \bar{p}) \gamma 5 v_s(\vec{p}) = \bar{v}_{s'}(\vec{p}') \left(- (p + p')^\mu + 2i S^\mu\nu (p - p'_\nu)\right) \gamma 5 v_s(\vec{p})
\]

\[
\text{LHS} = \left(\bar{v}_{s'}(\vec{p}') \right) \gamma^\mu \gamma 5 v_s(\vec{p}) - \bar{v}_{s'}(\vec{p}') \gamma^\mu \gamma 5 \left(\bar{p} v_s(\vec{p})\right) = m \bar{v}_{s'}(\vec{p}') \gamma^\mu \gamma 5 v_s(\vec{p}) - m \bar{v}_{s'}(\vec{p}') \gamma^\mu \gamma 5 v_s(\vec{p}) = 0 .
\]

Therefore, we find that

\[
\{ \bar{u}_{s'}(\vec{p}'), \bar{v}_{s'}(\vec{p}') \} (p + p')^\mu - 2i S^\mu\nu (p' - p)_\nu \gamma 5 \{ v_s(\vec{p}), v_s(\vec{p}) \} = 0 .
\]