New Paths in the String Theory Landscape

Magdalena Larfors

Uppsala University, Dept. of Theoretical Physics
Based on
U. Danielsson, N. Johansson and M.L., hep-th/0612222

2008-01-18
Motivation

String theory lives in 10D, we live in 4D.

- Compactify.
- Fluxes.
- Branes.

⇒ string theory landscape of vacua
Motivation

Natural questions:
How many vacua?
Distribution?
Continuously connected?
Barriers?

Effects from topography
Tunneling, domain walls, inflation, finiteness...
Flux compactifications 1

Flux vacua

Ingredients: manifolds, fluxes, branes... enormous landscape!

A landscape model

Type IIB SUGRA on (conformal) CY 3–fold.

Calabi–Yau manifolds

Complex, Kähler, Ricci flat.
$h^{2,1}$ Complex structure (CS) moduli.
$h^{1,1}$ Kähler moduli.
Flux compactifications 1

Flux vacua

Ingredients: manifolds, fluxes, branes... enormous landscape!

A landscape model

Type IIB SUGRA on (conformal) CY 3–fold.

Calabi–Yau manifolds

Complex, Kähler, Ricci flat.
$h^{2,1}$ Complex structure (CS) moduli.
$h^{1,1}$ Kähler moduli.
Flux compactifications 1

Flux vacua
Ingredients: manifolds, fluxes, branes... enormous landscape!

A landscape model
Type IIB SUGRA on (conformal) CY 3–fold.

Calabi–Yau manifolds
Complex, Kähler, Ricci flat.
$h^{2,1}$ Complex structure (CS) moduli.
$h^{1,1}$ Kähler moduli.
Fixing the complex structure

Complex structure \sim holomorphic 3-form $\Omega(z)$.

3–cycles

3-cycles basis A_I, B_J.

$$\int_{A_i} \alpha_J = \int_{B_i} \beta_J = \int \alpha_I \wedge \beta_J = \delta_{IJ}$$

- Periods $\Pi_i(z) = \int_{C_i} \Omega(z)$
- z: CS moduli
- $\Pi(z) = (\Pi_1(z), \Pi_2(z), \ldots \Pi_N(z))$

3–flux

- IIB: RR F and NS $H \Rightarrow G = F - \tau H$
- Quantized:
 $$\int_{C_i} F \sim F_i, \int_{C_i} H \sim H_i, \quad F_i, H_i \in \mathbb{Z}$$
- D3 tadpole condition:
 $$\int_{CY} F \wedge H = N_{D3}$$
The potential for CS moduli

- **Fluxes** wrapping non-trivial cycles \rightarrow potential V.

- $V = e^K (\|DW\|^2 - 3|W|^2)$
 - Kähler potential $e^K = \frac{1}{\text{Im}(\rho)} \Pi^\dagger \cdot Q \cdot \Pi$
 - Superpotential $W = G \cdot \Pi(z)$

- CS moduli and τ fixed at minima of potential.
- No-scale: Kähler moduli unfixed perturbatively.
Paths between vacua

Paths between flux vacua (hep-th/0612222)

CS moduli space is complicated:
- singularities, branch cuts, non-trivial loops
- monodromies of 3-cycles.

Idea: Use monodromies to continuously connect vacua.
Paths between vacua

Monodromies

- Period monodromies \(\Pi(z) \rightarrow T \cdot \Pi(z) \)
- \(T \in \mathcal{M} \subset Sp(N, \mathbb{Z}) \)

E.g. **Mirror Quintic**
- \(h^{2,1} = 1 \) CS modulus
- \(h^{1,1} = 101 \) Kähler moduli
Recall: \(V = e^K \left(||DW||^2 - 3|W|^2 \right), \ W = G \cdot \Pi(z) \)

Thus \(\Pi(z) \rightarrow T \cdot \Pi(z) \)

\(\rightarrow V \) has branch cuts in CS moduli space.

Traverse cuts \(\rightarrow \) paths between minima.

\(\Pi \rightarrow T \cdot \Pi \) or \(G \rightarrow G \cdot T \)

\(T \in \mathcal{M} \subset Sp(N, \mathbb{Z}) \rightarrow \)

\(\int F \wedge H \) unchanged.
Several **continuously connected minima** found:

No **infinite** series of minima found.

What about flux minima **not** related by monodromies ("islands")?
Extend moduli space

An extended landscape model 0710.0620

Monodromies: important for topography.
Larger moduli space ⇒ more monodromies.

Geometric transitions:
Moduli spaces of different Calabi–Yau 3-folds are connected

Idea: extend $\mathcal{M}_{101,1}$ CS moduli space. Connect it to what?

\[
\begin{align*}
\mathcal{M}_{1,101} & \quad \text{Mirror} \\
\mathcal{M}_{101,1} & \quad \text{Mirror} \\
\mathcal{M}_{2,86} & \quad \text{Mirror} \\
\mathcal{M}_{86,2} &
\end{align*}
\]
Geometric transitions

Mirror symmetry $\rightarrow \mathcal{M}_{(86,2)} \xleftarrow{GT} \mathcal{M}_{(101,1)}$

- $\mathcal{M}_{(86,2)}$ shrinks 16 3-cycles A_i
- $A_1 - A_2 = \delta D_1$
- ...$
- A_{15} - A_{16} = \delta D_{15}$

- $\mathcal{M}_{(101,1)}$ blow up 16 2-cycles a_i
- $\sum a_i = \delta B$
- $\delta D_i = 0$
Motivation
Flux compactifications
Paths between vacua
Extend moduli space
Geometric transitions with fluxes
Infinite series of minima
Conclusions and Outlook

Extend moduli space
Extend moduli space

We need to:

- Construct $M_{(86,2)}$ (using toric geometry)

- Compute **periods** of $M_{(86,2)}$

- **Embed** $M_{(101,1)}$ in $M_{(86,2)}$

- Compute new **monodromies**

Geometric transitions with flux?
Infinite series of string theory vacua?
Toric geometry

Construct CY: zero locus of polynomial equations on toric variety.
Toric variety: \(\frac{(\mathbb{C}^*)^n - \mathbb{Z}}{G} \)
Fans and polytopes \(\leftrightarrow \) toric variety and equations.

Batyrev’s mirror construction

\(M_{(2,86)} \): Cl in \(\mathbb{P}^1 \times \mathbb{P}^4 \) \(\Rightarrow \) Polytope for \(M_{(2,86)} \): \(\nabla = \nabla_1 + \nabla_2 \)
Mirror construction:
Polytope for \(M_{(86,2)} \): \(\Delta = \Delta_1 + \Delta_2, \langle \nabla_k, \Delta_j \rangle \geq -\delta_{k,j} \)

\(M_{(86,2)} \)

\[f_1 \equiv 1 - a_1 t_1 - a_2 t_3 - a_3 t_4 - a_4 t_5 - a_5 / t_2 t_3 t_4 t_5 \]
\[f_2 \equiv 1 - a_6 / t_1 - a_7 t_2, \]
CS moduli \(\sim a_i \):
\[\phi_1 = a_1 a_6, \phi_2 = a_2 a_3 a_4 a_5 a_7. \]
Toric geometry

Construct CY: zero locus of polynomial equations on toric variety.
Toric variety: \((\mathbb{C}^*)^n / G \)
Fans and polytopes \(\leftrightarrow \) toric variety and equations.

Batyrev’s mirror construction

\(\mathcal{M}_{(2,86)} \): CI in \(\mathbb{P}^1 \times \mathbb{P}^4 \) \(\Rightarrow \) Polytope for \(\mathcal{M}_{(2,86)} \): \(\nabla = \nabla_1 + \nabla_2 \)
Mirror construction:
Polytope for \(\mathcal{M}_{(86,2)} \): \(\Delta = \Delta_1 + \Delta_2 \), \(\langle \nabla_k, \Delta_j \rangle \geq -\delta_{k,j} \)

\(\mathcal{M}_{(86,2)} \)

\(f_1 = 1 - a_1 t_1 - a_2 t_3 - a_3 t_4 - a_4 t_5 - a_5 / t_2 t_3 t_4 t_5 \)
\(f_2 = 1 - a_6 / t_1 - a_7 t_2 \),
CS moduli \(\sim a_i \):
\(\phi_1 = a_1 a_6 \), \(\phi_2 = a_2 a_3 a_4 a_5 a_7 \).
Toric geometry

Construct CY: zero locus of polynomial equations on toric variety.
Toric variety: \((\mathbb{C}^*)^n/G\)
Fans and polytopes ↔ toric variety and equations.

Batyrev’s mirror construction

\(\mathcal{M}_{(2,86)}\): CI in \(\mathbb{P}^1 \times \mathbb{P}^4\) ⇒ Polytope for \(\mathcal{M}_{(2,86)}\): \(\nabla = \nabla_1 + \nabla_2\)
Mirror construction:
Polytope for \(\mathcal{M}_{(86,2)}\): \(\Delta = \Delta_1 + \Delta_2, \langle \nabla_k, \Delta_j \rangle \geq -\delta_{k,j}\)

\(\mathcal{M}_{(86,2)}\)

\(f_1 \equiv 1 - a_1 t_1 - a_2 t_3 - a_3 t_4 - a_4 t_5 - a_5 / t_2 t_3 t_4 t_5\)
\(f_2 \equiv 1 - a_6 / t_1 - a_7 t_2,\)
CS moduli \(\sim a_i: \phi_1 = a_1 a_6, \phi_2 = a_2 a_3 a_4 a_5 a_7.\)
The fundamental period

$$\omega_0 = \frac{1}{(2\pi i)^5} \int_\gamma \frac{1}{f_1 f_2} \frac{dt_1}{t_1} \wedge ... \wedge \frac{dt_5}{t_5}$$

Near $\phi_1 = \phi_2 = 0$

$$\omega_0(\phi) = \sum_{n_1, n_2} c(n_1, n_2) \phi_1^{n_1} \phi_2^{n_2}, \text{ where } c(n_1, n_2) = \frac{(n_1+4n_2)! (n_1+n_2)!}{(n_1)!^2 (n_2)!^5}$$

Picard–Fuchs equations

Recall $\Pi_i = \oint_{C_i} \Omega$

$H^3 = H^{3,0} \oplus H^{2,1} \oplus H^{1,2} \oplus H^{0,3}$ is finite

$\Rightarrow L_k \Omega = d\eta$

$\Rightarrow L_k \Pi_i = \oint_{C_i} L_k \Omega = \oint_{C_i} d\eta = 0$

We get: 2 DE of degree 2 and 3

$\rightarrow 6$ linearly indep. solutions ~ 6 periods.
The fundamental period

$$\omega_0 = \frac{1}{(2\pi i)^5} \int_\gamma \frac{1}{f_1 f_2} \frac{dt_1}{t_1} \wedge \ldots \wedge \frac{dt_5}{t_5}$$

Near $\phi_1 = \phi_2 = 0$

$$\omega_0(\phi) = \sum_{n_1,n_2} c(n_1,n_2) \phi_1^{n_1} \phi_2^{n_2}, \text{ where } c(n_1,n_2) = \frac{(n_1+4n_2)!(n_1+n_2)!}{(n_1!)^2(n_2!)^5}$$

Picard–Fuchs equations

Recall $\Pi_i = \oint_{C_i} \Omega$

$H^3 = H^{3,0} \oplus H^{2,1} \oplus H^{1,2} \oplus H^{0,3}$ is finite

$\Rightarrow L_k \Omega = d\eta$

$\Rightarrow L_k \Pi_i = \oint_{C_i} L_k \Omega = \oint_{C_i} d\eta = 0$

We get: 2 DE of degree 2 and 3

\rightarrow 6 linearly indep. solutions \sim 6 periods.
Motivation
Flux compactifications
Paths between vacua
Extend moduli space
Geometric transitions with fluxes
Infinite series of minima
Conclusions and Outlook

\[M_{(86,2)} \] periods: 2

The Frobenius method

\(\phi_1 = \phi_2 = 0 \) regular singular point

\(\rightarrow \) five solutions with logarithmic singularities:

Using \(\omega(\rho, \phi) = \sum_{n_1, n_2} c(n_1 + \rho_1, n_2 + \rho_2) \phi_1^{n_1+\rho_1} \phi_2^{n_2+\rho_2} \)

we get all periods as: (hep-th/9406055)

\[
\begin{align*}
\omega_1 &= \partial_{\rho_1} \omega \big|_{\rho=0}, \\
\omega_2 &= \partial_{\rho_2} \omega \big|_{\rho=0}, \\
\omega_3 &= \kappa_{1jk} \partial_{\rho_j} \partial_{\rho_k} \omega \big|_{\rho=0}, \\
\omega_4 &= \kappa_{2jk} \partial_{\rho_j} \partial_{\rho_k} \omega \big|_{\rho=0}, \\
\omega_5 &= \kappa_{ijk} \partial_{\rho_i} \partial_{\rho_j} \partial_{\rho_k} \omega \big|_{\rho=0}
\end{align*}
\]

\(\kappa_{ijk} = \int J_i \wedge J_j \wedge J_k \) classical intersection numbers.

Want integral and symplectic monodromies: change basis.
(No details here).
Embed $M_{(101,1)}$ in $M_{(86,2)}$

$M_{(86,2)}$

Recall:

$$f_1 ≡ 1 - a_1 t_1 - a_2 t_3 - a_3 t_4 - a_4 t_5 - a_5/t_2 t_3 t_4 t_5 = 0$$

$$f_2 ≡ 1 - a_6/t_1 - a_7 t_2 = 0.$$

$M_{(101,1)}$

Substitute f_2 into f_1

$$b_0 + b_1 u_1 + b_2 u_2 + b_3 u_3 + b_4 u_4 + \frac{b_5}{u_1 u_2 u_3 u_4} + \frac{b_6}{u_1 u_2 u_3} = 0$$

Redefined CS moduli

$$z_1 = \frac{b_1 b_2 b_3 b_6}{b_0^4} = \frac{\phi_2}{(1-\phi_1)^4} \quad \text{and} \quad z_2 = -\frac{b_1 b_2 b_3 b_4 b_5}{b_0^5} = \frac{\phi_1 \phi_2}{(1-\phi_1)^5}$$

Take $z_1 \rightarrow 0$: Mirror quintic equation!
New Paths in the String Theory Landscape

Magdalena Larfors

Motivation
Flux compactifications
Paths between vacua
Extend moduli space
Geometric transitions with fluxes
Infinite series of minima
Conclusions and Outlook

Embed $\mathcal{M}_{(101,1)}$ in $\mathcal{M}_{(86,2)}$

$\mathcal{M}_{(86,2)}$

Recall: $f_1 \equiv 1 - a_1 t_1 - a_2 t_3 - a_3 t_4 - a_4 t_5 - a_5 / t_2 t_3 t_4 t_5 = 0$

$f_2 \equiv 1 - a_6 / t_1 - a_7 t_2 = 0$.

$\mathcal{M}_{(101,1)}$

Substitute f_2 into f_1

$b_0 + b_1 u_1 + b_2 u_2 + b_3 u_3 + b_4 u_4 + \frac{b_5}{u_1 u_2 u_3 u_4} + \frac{b_6}{u_1 u_2 u_3} = 0$

Redefined CS moduli

$z_1 = \frac{b_1 b_2 b_3 b_6}{b_0^4} = \frac{\phi_2}{(1-\phi_1)^4}$ and $z_2 = -\frac{b_1 b_2 b_3 b_4 b_5}{b_0^5} = \frac{\phi_1 \phi_2}{(1-\phi_1)^5}$

Take $z_1 \to 0$: Mirror quintic equation!
The mirror quintic locus

The MQ locus $z_1 \to 0$: Which period vanish?
Monodromy around the locus?

Analytically continue $\omega_0 \Rightarrow$

$$\omega_0 = \sum_{m_1,m_2=0}^{\infty} \frac{(4m_1+5m_2)!}{((m_1+m_2)!)^3 m_1!(m_2!)^2} Z_1^{m_1} Z_2^{m_2}.$$

$z_1 \to 0$: MQ fundamental period.
Other periods:
Analytically continue ω_i: focus on derivatives.
The mirror quintic locus

The MQ locus $z_1 \to 0$:
Which period vanish?
Monodromy around the locus?

Analytically continue $\omega_0 \Rightarrow$

$$\omega_0 = \sum_{m_1,m_2=0}^{\infty} \frac{(4m_1+5m_2)!}{((m_1+m_2)!)^3m_1!(m_2!)^2} z_1^{m_1} z_2^{m_2}. $$

$z_1 \to 0$: MQ fundamental period.
Other periods:
Analytically continue ω_i: focus on derivatives.
Embedded periods and monodromies

Periods

Integral and symplectic basis:

\[\Pi_{(86,2)} = \begin{pmatrix} \Pi_1 \\ \Pi_2 \\ \Pi_3 \\ \Pi_4 \\ \Pi_5 \\ \Pi_6 \end{pmatrix} \rightarrow \begin{pmatrix} \Pi_1^{MQ} \\ \Pi_2^{MQ} \\ \Pi_3^{MQ} \\ \Pi_4^{MQ} \\ 0 \\ \sum c_i \Pi_i^{MQ} \end{pmatrix} \]

New paths between vacua

4 new monodromies.
Geometric transitions.
→ New series of MQ vacua
Geometric transitions with fluxes

Need to be careful:

\[M_{(86,2)} \] monodromy might yield flux through *A* or *B*!

Flux through A hep-th/9811131, 0008142...

RR/NS–flux through **shrinking** 3–cycle *A*:

→ D5/NS5–branes on new 2–cycles.

Positions of 5–branes ∼ new **open string moduli**.

← New period: \[\Pi_B(t, z) = \int_B \Omega \rightarrow V_{MQ}(z) \rightarrow \tilde{V}_{MQ}(t, z) \].
Geometric transitions with fluxes

Flux through B 0709.4277, hep-th/0510042

RR/NS Flux through torn 3-cycle $B \rightarrow$ D1/F1-instantons?
No new terms in the MQ potential.
Geometric transitions with fluxes

Flux through both 3–cycles A and B

- **New open string moduli**
- Tadpole condition:
 \[\int F \wedge H \text{ might change } \rightarrow \text{ D3–branes.} \]

Examples

Flux potential at transition

Near transition point: $V_{(86,2)}(z_1, z_2) = V_1(z_1, z_2) + V_2(z_2)$;
$V_2(z_2) \xrightarrow{z_1 \to 0} V_{MQ}(z)$
With flux through A: $V_1(z_1, z_2) \xrightarrow{z_1 \to 0} \infty$
Without flux through A: $V_1(z_1, z_2) \xrightarrow{z_1 \to 0} 0$

No flux through shrinking cycle \rightarrow geometric transition controlled.
Look for connected minima without such flux.
Infinite series of minima

Requirements

Apply monodromy \(n \) times:
\[
F_0 \rightarrow F_0 T^n
\]
If \(T = 1 + \Theta \), \(\Theta^2 = 0 \)
\[
\leftrightarrow F_0 T^n = F_0 + nF_0 T
\]
Start flux \(F_0, H_0 \)

- \(F_0 T = F_L \)

Limit flux \(F_L, H_L \)

- has minimum
- \(F_L \wedge H_L = 0 \)
- \(F_L T = F_L \)

\[
F_0 = F_0 + nF_L, \ H_0 = H_0 + nH_L \Rightarrow \text{infinite number of minima.}
\]
N.B. Kähler moduli not fixed.
Conclusions and Outlook

Semi-discrete landscape.
- Topography → dynamics.
- Monodromies connect vacua.
- New, continuous paths.

The new paths allow us to
- connect more vacua continuously.
- find infinite series of minima.
- describe domain walls.
- use connected moduli spaces.

Outlook
- Kähler moduli dynamics. Back reaction.
- Transition with fluxes.
- Tunnelling between minima.
- Inflation.