Global Warming

Sunlight passes through atmosphere, intensity \(I_s \) absorbed by earth (reflected light not included in \(I_s \)).

Earth radiates in IR with intensity \(I_e \); a fraction \(a \) of this IR radiation is absorbed by atmosphere.

Atmosphere radiates intensity \(I_a \) both into space and down to earth. Earth absorbs radiation from atm.

Earth in equilibrium: \(I_e = I_s + I_a \)

(absorbed intensity matches radiated intensity).

Intensity emerging from atm matches intensity incident from sun:

\[I_s = I_a + (1-a)I_e \]

Eliminate \(I_a \):

\[I_s = (I_e - I_s) + (1-a)I_e = (2-a)I_e - I_s \]

\[\Rightarrow I_e = \left(\frac{2}{2-a} \right)I_s \]

Limiting cases: \(a = 0 \Rightarrow I_e = I_s \) (earth radiates at rate it absorbs.)

\(a = 1 \Rightarrow I_e = 2I_s \) (Now radiation from atm matches solar intensity, on earth, equal intensity from sun and atm.)

\(a \) is increasing as \(\text{CO}_2 \) in atm increases \(\Rightarrow \) earth warms. We know

\(a \approx 0.75, \ a_{\text{CO}_2} \approx 0.07, \ a_{\text{CO}_2} \propto \text{concentration of CO}_2 \)
\[N = 400 \text{ ppm} \]
\[\Delta N = 2 \text{ ppm/yr} \implies \Delta T_E \approx 0.02^\circ/\text{yr} \]

Why?

\[I_E = 6B \frac{1}{T_E^4} \implies T_E \propto \left(\frac{2}{2-a} \right)^{\frac{1}{4}} \]

\[\implies \Delta T_E = \Delta a \frac{1}{4} (2-a)^{\frac{5}{4}} \frac{1}{T_E} \approx \frac{1}{5} \Delta a \frac{T_E}{2} \quad (a \approx 0.75) \]

\[\Delta a_{\text{CO}_2} = a_{\text{CO}_2} \left(\frac{\Delta a}{a} \right)_{\text{CO}_2} \]

\[= 0.07 \frac{2 \text{ ppm}}{400 \text{ ppm}} \]

\[\implies \Delta T_E = \frac{1}{5} (0.07) \frac{2}{400} \left(T_E \approx 300^\circ \text{K} \right) \]

\[\approx (7 \times 10^{-5}) (300) \approx 0.02^\circ/\text{yr} \quad \left(^\circ \text{C} \right) \]

*Earth warms 1°C in 50 years, assuming \(\Delta N = 2 \text{ ppm/year} \) and \(a_{\text{CO}_2} \propto N_{\text{CO}_2} \).

(Of course, model is vastly oversimplified...)