1. Light bulb in a refrigerator

A refrigerator that draws 50 W of power is contained in a room at temperature 300ºK. A 100 W light bulb is left burning inside the refrigerator. Find the steady-state temperature inside the refrigerator assuming it operates reversibly and is perfectly insulated.

2. One refrigerator inside another

A (not necessarily reversible) air conditioner cools a room to temperature $\tau_m < \tau_h$, where τ_h is the temperature outdoors. Meanwhile, a (not necessarily reversible) refrigerator in the room cools drinks to temperature $\tau_l < \tau_m$. Thus the refrigerator and air conditioner, working together in series, move heat from the inside of the refrigerator to outdoors — the refrigerator does work W_1 to remove heat Q_l from inside the refrigerator, while releasing heat Q_m into the room, and the air conditioner does work W_2 to remove the heat Q_m from the room, while releasing Q_h outdoors. The refrigerator has coefficient of performance $\gamma_1 = Q_l/W_1$, and the air conditioner has coefficient of performance $\gamma_2 = Q_m/W_2$.

(a) Draw a diagram indicating the work done and the heat flow produced by the refrigerator and air conditioner. Your diagram should display three reservoirs at temperatures τ_l, τ_m, and τ_h — show the work done by the refrigerator and air conditioner, and the quantities of heat Q_l, Q_m, and Q_h. Use arrows to indicate clearly the direction of the work done and the heat flow.

(b) The combined system of refrigerator and air conditioner uses work $W_1 + W_2$ to move heat Q_l from inside the refrigerator to outdoors. Express the reciprocal of the coefficient of performance γ_{comb}^{-1} for this combined system in terms of γ_1^{-1} and γ_2^{-1}. (You will need to do some algebra to find an expression for γ_{comb}^{-1} in terms of γ_1^{-1} and γ_2^{-1}, involving no other variables. This algebra is a bit easier if you work with the reciprocals of the coefficients of performance instead of the coefficients of performance themselves.)
(c) Suppose now that both the refrigerator and the air conditioner operate reversibly; hence each achieves the ideal Carnot coefficient of performance. Use your answer from part (b) to express $\gamma_{\text{comb}}^{-1}$ in terms of the temperatures of the reservoirs τ_l, τ_m, and τ_h. Explain why your answer makes sense.

3. Photonic heat engine

Consider a heat engine undergoing a Carnot cycle, where the working fluid is a photon gas rather than a classical ideal gas. In the first stroke the gas expands isothermally at temperature τ_h from the initial volume V_1 to the final volume V_2. In the second stroke it expands isentropically to volume V_3, cooling to temperature τ_l. In the third stroke it is compressed isothermally at temperature τ_l to volume V_4, and in the fourth stroke it is compressed isentropically back to volume V_1, heating to temperature τ_h.

(a) The energy per unit volume of a photon gas is $U/V = A\tau^4$, where $A = \pi^2/15h^3c^3$. Use the thermodynamic identity

$$dU = \tau d\sigma - PdV$$

to find the entropy σ of the gas, expressed in terms of A, τ, and V. Assume that the entropy is zero at $\tau = 0$.

(b) Use the thermodynamic identity again to express the pressure P in terms of A, τ, and V.

(c) Calculate the work done W_{12} and the heat added Q_{12} during the first stroke of the cycle, expressed in terms of A, τ_h, V_1 and V_2. Verify that $Q_{12} - W_{12}$ is the change in the internal energy of the gas.

(d) Express the work W_{34} done by the gas in the third stroke (a negative number), in terms of A, τ_l, V_3 and V_4.

(e) Use the condition $\sigma = \text{constant}$ during the isentropic strokes to express V_3 and V_4 in terms of τ_h, τ_l, V_1, and V_2.

(f) Find the work W_{23} done during the second stroke and the work W_{41} done during the fourth stroke.

(g) Express the net work $W = W_{12} + W_{23} + W_{34} + W_{41}$ done during the complete cycle in terms of A, τ_h, τ_l, V_1 and V_2. Comparing to Q_{12}, check that the engine achieves the ideal Carnot efficiency.
4. Bose condensation in two dimensions

Consider an ideal gas of non-relativistic spin-0 bosons, at temperature τ, in a two-dimensional box of side L.

(a) Find the two-dimensional density of states factor $D(\varepsilon)$.

(b) Express the activity $\lambda \equiv e^{\mu/T}$ in terms of N_0, the number of particles in the ground orbital. Use the convention that the energy of the ground orbital is $\epsilon_0 = 0$.

(c) Find $N_e(\tau)$, the number of particles in excited orbitals. You may assume that the box is big enough so that the sum over states can be replaced by an integral. Be sure to use the formula found in (b) for λ, not the $N_0 \to \infty$ limit of that formula. Your answer for N_e will therefore be expressed in terms of N_0. **Hint:** $\int dx (ae^x - 1) = \ln(a - e^{-x})$.

(d) Find the two-dimensional Einstein condensation temperature τ_E. This is the smallest temperature such that, for $\tau > \tau_E$, the fraction $N_0/(N_0 + N_e)$ of particles in the ground orbital vanishes in the limit $L \to \infty$. (The limit is to be taken with the density $(N_0 + N_e)/L^2$ held fixed.)

5. Heat capacity of graphene

Geim and Novoselov received the 2010 Nobel Prize in Physics for their studies of graphene, a single layer of carbon atoms bonded into a two-dimensional hexagonal lattice. Remarkably, electrons in graphene behave like relativistic massless fermions; for each value of the wavenumber $\vec{k} = (k_x, k_y)$, there are two single-particle orbitals, with energies

$$\epsilon_{\pm}(\vec{k}) = \pm \hbar v |\vec{k}|.$$

The Fermi energy is $\epsilon_F = 0$; hence at zero temperature the orbitals with negative energy are occupied, and the orbitals with positive energy are empty.

Assuming the electrons can be treated at an ideal gas, and that there are two spin states for each orbital, the internal energy of the electrons has the form

$$U(\tau) - U(0) = \frac{1}{3} \gamma A \tau^3,$$

where A denotes the area, and hence the electron heat capacity is $C = A \tau^2$. Find γ. (**Hint:** $\int_0^{\infty} dx \, x^2/(e^x + 1) = 1.803$.)