Solution to final exam problem I

(a) In electrostatics, the electric field is related to the electric potential according to \(\vec{E} = -\nabla V \). In spherical polar coordinates in the presence of rotational symmetry, this gives

\[
\vec{E} = -\frac{\partial V}{\partial r} \hat{r}.
\]

(1)

Therefore the electric field for the given potential is

\[
\vec{E} = \frac{Q}{4\pi\epsilon_0} \frac{e^{-r/\lambda}}{r^2} \left(1 + \frac{r}{\lambda}\right) \hat{r}.
\]

(2)

(b) By Gauss’s Law, the net charge contained within a sphere of radius \(R \) is the total electric flux through the surface of this sphere, times \(\epsilon_0 \). That is,

\[
Q_{\text{encl}} = \epsilon_0 \Phi = \epsilon_0 \int \vec{E} \cdot d\vec{A}.
\]

(3)

The electric field in Eq. (2) is constant for constant \(R \) and always points in the radial direction. Therefore the electric flux is simply \(|\vec{E}(R)| \) times the surface area of a sphere of radius \(R \), \(4\pi R^2 \). This gives

\[
Q_{\text{encl}} = Qe^{-R/\lambda} \left(1 + \frac{R}{\lambda}\right).
\]

(4)

In the limit \(R \to 0 \), \(Q_{\text{encl}} \to Q \); whereas in the limit \(R \to \infty \), \(Q_{\text{encl}} \to 0 \).

(c) The electric field is defined so that the force on a particle of charge \(q \) in the presence of an electric field \(\vec{E} \) is \(\vec{F} = q\vec{E} \). Label the two \(Q \)-charges \(A \) and \(B \) and consider the force from \(A \) onto \(B \). Charge \(B \) attracts opposite charges to surround and screen it; however these charges are distributed symmetrically and do not exert a net force \(B \). Alternatively, Newton’s third law asserts that \(B \) cannot exert a force on itself. On the other hand, charge \(A \) exerts a force on \(B \), as do the charges that screen \(A \). These charges combine to create the electric field calculated in part (a). Therefore the force on \(B \) (located at \(r = d \)) is

\[
\vec{F} = \frac{Q^2}{4\pi\epsilon_0} \frac{e^{-d/\lambda}}{d^2} \left(1 + \frac{d}{\lambda}\right) \hat{r}.
\]

(5)