The Operator Product Expansion for Deep Inelastic Scattering

Key variable $x = \frac{Q^2}{2p_\perp}$ is defined by

$$x = \frac{Q^2}{2p_\perp}$$

Deep inelastic cross section is cross section in limit of Q^2 large and x fixed. The nontrivial hadronic part of cross section came from

$$\sum_x (2\pi)^4 \delta^4 (q + p - px) \langle p | J^m(0) | x \rangle \langle x | J^v(0) | p \rangle$$

Spin averaging undisturbed here. Usually define hadronic tensor

$$W^{\mu \nu}(p, q) = \frac{i}{4\pi} \int d^4x e^{ix \cdot \phi} \langle p | [J^{\mu}(x), J^{\nu}(0)] | p \rangle$$

Inserting a complete set of states

$$W^{\mu \nu}(p, q) = i \sum_x (2\pi)^4 \delta^4 (q + p + px) \langle p | J^m(0) | x \rangle \langle x | J^v(0) | p \rangle$$

$$-\langle p | J^v(0) | x \rangle \langle x | J^m(0) | p \rangle$$

$$<x| J^m(0)| p > = <x| J^m(0)| p > e^{i(p-x)\cdot x}$$

$$e^{i(p-x)\cdot x}$$

$$W^{\mu \nu}(p, q) = \frac{i}{4\pi} \sum_x (2\pi)^4 \delta^4 (q + p - px) \langle p | J^m(0) | x \rangle \langle x | J^v(0) | p \rangle - e^{i(p-x)\cdot x}$$
\[\langle p | J^\mu(0) | x \rangle \langle x | J^\nu(0) | p \rangle \]

The only states allowed here, \(p_x \neq 0 \), since baryon number is conserved. So for \(g_0 \geq 0 \) second delta function is not satisfied. For \(g_0 > 0 \) only first \(\delta (l) \) term contributes. Comparing with what we had before \(W = M W^\mu \), so we write

\[W_{\mu \nu} = F_1 \left(-m_1 + \frac{g_0 g_2}{8} \right) + F_2 \left(\frac{F_{\mu \nu}}{P^2} \right) \]

The usual quantity you can derive Feynman rules for is the time ordered product matrix element

\[T_{\mu \nu} = \langle p \bar{u} \gamma_{\mu} | T \{ J^\mu(0) J^\nu(0) \} | p \rangle \]

\[= i \int d^4x \ e^{ig_2 \Phi(x)} \left[T \{ J^\mu(0) J^\nu(0) \} \bar{u} \right] \]

\[= i \int d^4x \ e^{ig_2 \Phi(x)} \left[\Theta(2\pi) \langle p | J^\mu(0) J^\nu(0) | p \rangle \right. \]

\[+ \Theta(-2\pi) \langle p | J^\nu(0) J^\mu(0) | p \rangle \]
Feynman diagrams

Write

\[T_{mn} = \left(-g_{\mu\nu} + \frac{q_{\mu} q_{\nu}}{q^2} \right) T_1 + \frac{1}{p \cdot q} \left(p_{\mu} - q_{\mu} \frac{p \cdot q}{q^2} \right) \left(p_{\nu} - \frac{q_{\nu}}{q^2} \right) T_2 \]

\[T_{1,2} = T_{1,2} \left(q^2, p \cdot q \right) \]

Graph 1

\[m_x^2 = (p + q)^2 = q^2 + 2p \cdot q + m_p^2 = -q^2 \left(\frac{1}{x} - 1 \right) + m_p^2 \]

Since \(m_x^2 \geq m_p^2 \)

Cut for \(x \in [0, 1] \), since \(q^2 < 0 \).

Graph 2

\[m_x^2 = (p - q)^2 = -q^2 \left(\frac{1}{x} - 1 \right) + m_p^2 \geq m_p^2 \]

Cut for \(x \in [-1, 0] \)
Want to work on expression for time ordered product. Recall

$$\Theta(z) = \frac{-1}{2\pi i} \oint_{0} e^{-i\omega z}$$

For $z < 0$ close in upper half plane and get zero.
For $z > 0$ close in lower half plane and use residue theorem.

$$\Theta(z) = 0, \quad z < 0$$

$$\Theta(z) = -\frac{1}{2\pi i} (2\pi i) \frac{1}{z} = 1, \quad z > 0$$

Let's use that expression for T_{ν}

$$T_{\nu} = \frac{-1}{2\pi i} \int_{0} d\omega \int d^4 z e^{i\omega z} \frac{\langle p | J_{\nu}(z) J_{\nu}(0) | p \rangle}{\omega + i\epsilon}$$

Next insert a complete set of states between the currents.
\[
T_n = \frac{1}{2\pi} \sum \int \int \int \int e^{i \varphi_2 - i \omega \varphi_2} \left< \rho \left| J_n(\varphi) \right| x(p_\varphi) \right> \frac{\left< x(p_\varphi) \left| J_n(\varphi) \right| x(p_\varphi) \right>}{\omega + i \epsilon}
\]

\[
\left< x(p_\varphi) \left| J_n(\varphi) \right| x(p_\varphi) \right>
\]

\[
= \frac{1}{2\pi} \sum \int \int \int \int e^{i \varphi_2 - i \omega \varphi_2} e^{i \hat{P}_2} \left< \rho \left| e^{i J_n(\varphi) e^{-i \hat{P}_2}} \right| \rho \right> \frac{\left< x(p_\varphi) \left| e^{i J_n(\varphi) e^{-i \hat{P}_2}} \right| x(p_\varphi) \right>}{\omega + i \epsilon}
\]

\[
\left< x(p_\varphi) \left| e^{i \hat{P}_2} J_n(\varphi) e^{-i \hat{P}_2} \right| x(p_\varphi) \right>
\]

\[
= \frac{1}{2\pi} \sum \int \int \int \int e^{i \varphi_2 - i \omega \varphi_2} \left< \rho \left| e^{i \hat{P}_2} J_n(\varphi) e^{-i \hat{P}_2} \right| x(p_\varphi) \right> \frac{\left< x(p_\varphi) \left| e^{i \hat{P}_2} J_n(\varphi) e^{-i \hat{P}_2} \right| x(p_\varphi) \right>}{\omega + i \epsilon}
\]

\[
\left< x(p_\varphi) \left| e^{i \hat{P}_2} J_n(\varphi) e^{-i \hat{P}_2} \right| x(p_\varphi) \right>
\]
\[\text{Do } d \frac{\partial}{\partial z} \text{ integrals} \]
\[= -i \sum_{x} \frac{(2 \pi)^{3} \delta^{3}(z - px + p)}{8^{0} + p^{0} + px + i \epsilon} \langle \rho | J_{\mu}(\omega) | x(\omega) \rangle \langle x(\omega) | T_{\mu}(0) | \rho \rangle \]
\[- \sum_{x} \frac{(2 \pi)^{3} \delta^{3}(z - px + p)}{8^{0} + p^{0} + px + i \epsilon} \langle \rho | J_{\mu}(\omega) | x(\omega) \rangle \langle x(\omega) | T_{\mu}(0) | \rho \rangle \]

Now
\[\frac{1}{i \omega + i \epsilon} = \text{PP} \left(\frac{1}{\omega} \right) - i \pi \delta(\omega) \]

Some lan

\[T_{\mu} = \text{principal part piece} \]
\[+ i \pi \sum_{x} (2 \pi)^{3} \delta^{3}(z - px + p) \langle \rho | J_{\mu}(\omega) | x(\omega) \rangle \langle x(\omega) | T_{\mu}(0) | \rho \rangle \]
\[+ i \pi \sum_{x} (2 \pi)^{3} \delta^{3}(z - px + p) \langle \rho | J_{\mu}(\omega) | x(\omega) \rangle \langle x(\omega) | T_{\mu}(0) | \rho \rangle \]

\[q^{0} > 0 \quad \text{second term does not contribute} \]

\[\text{Im } T_{\nu} = 2 \pi W_{\nu} \]
\[\text{Im } T_{\mu} = 2 \pi F_{\mu} \]
Consider the actual product of local operators
squared by \(z \) :

\[
T[O_\alpha(2) O_\beta(0)]
\]

For small \(z \) the product is practically a sum over a product of operators, can be written

\[
T[O_\alpha(2) O_\beta(0)] = \sum_{\alpha} \text{Caut} O_\alpha(0)
\]

Coefficients \(\text{Caut} \) depend on \(z \). Low momentum (compared with \(z \)) matrix elements of \(\text{LHS} \) are approximated to those of \(\text{RHS} \). The coefficients \(\text{Caut} \) don't depend on all matrix elements depending on \(\text{Caut} \) in operator equal contractions. In \(\text{QCD} \) the coupling constant is small because of asymptotic freedom. Can compute coefficients functions of small \(z \) momentum perturbation theory with great gluon states. The momentum space version of \(\text{QCD} \)

\[
\int dz e^{i z - \lambda} T[O_\alpha(2) O_\beta(0)]
\]

\[
= \sum_\alpha \text{Caut}(z) O_\alpha(0)
\]

valid if large \(\lambda \). Valid for all matrix elements provided \(z \) is much than external momenta.

We will use the momentum space form of
Now let's come on case. The operators might be non-trivial and will have a spin. Convoluted spin n + dimension can be deduced on some matter & nucleon like combination m_{n-1}.

$$\langle 0 | \mathcal{O}_{m...n} | \rho \rangle \propto \frac{d_{m-2}}{\sqrt{m_{n...m}}}$$

$$\langle \rho | \rho \rangle = (\alpha \pi)^3 L^3 (\pi)$$

$$\langle \rho | | = \frac{\pi}{2} \pi$$

$$\langle \mathcal{T}_{m...n} | \mathcal{O}_{n,n} | \rho \rangle \propto \left(\frac{\alpha \pi}{\pi} \right)^{2-d} \frac{d_{m-2}}{\frac{d_{m}}{m}}$$

$$\mathcal{T}_{m...n} \propto \frac{d_{n-1}}{m} \pi$$

$$+ \alpha \pi = \text{dimension} \times \text{spin}$$

Lowest twist dominates.

Want to make gauge invariant operators.
Conventional bag 1 twist 2 quark operators that contribute in deep inelastic electron processes (spin averaged): \[
O_{q,v} = \frac{1}{2} \left(\frac{i}{2} \right)^{n-2} \sum_{\text{h.m.}} \langle \bar{Q} \gamma^{\mu_1} D_{\mu_2} \cdots D_{\mu_{n-2}} G \gamma^{\nu} \rangle
\]
\[
\rightarrow D^x B = \tilde{A} D^x B - \tilde{A} D^x B \quad \text{no chiral limit change}
\]

Also gluon operators:
\[
O_{g,v} = -\frac{1}{2} \left(\frac{i}{2} \right)^{n-2} \sum_{\text{h.m.}} \langle G_{\mu_1} D_{\mu_2} \cdots D_{\mu_{n-1}} G_{\nu} \rangle
\]

We will work to lowest order in α_s and the gluon operators don't arise. Most general form is then consistent with current conservation.

\[
\tau_{q,v} = \sum_{m,n} \left(-\delta_{m1} + \epsilon_{m2} \epsilon_{n2} \right) \frac{2 \delta_{m1} \delta_{n1}}{\Delta_{q,v}} \frac{1}{(-\Delta_{q,v})^n}
\]
\[
\Theta_{q,v} + \sum_{m,n} \left(\delta_{m1} - \epsilon_{m2} \epsilon_{n2} \right) \frac{2 \delta_{m1} \delta_{n1}}{\Delta_{q,v}} \frac{1}{(-\Delta_{q,v})^n}
\]

Determine $C_{q,v}^{\mu_1}$, $C_{g,v}^{\mu_1}$ from matching and check using quark matrix elements.