1. What are the momentum space Feynman rules for QED?

2. In quantum electrodynamics, calculate the renormalization constant \(Z_e \) using dimensional regularization with minimal subtraction.

3. Argue that for an integral of the form
\[
\int \frac{d^n k}{(2\pi)^n} k^\alpha k^\beta k^\mu k^\nu f(k^2)
\]
you can make the replacement
\[
k^\alpha k^\beta k^\mu k^\nu \to \frac{1}{n(n+2)} [g^{\alpha\beta} g^{\mu\nu} + g^{\alpha\mu} g^{\beta\nu} + g^{\alpha\nu} g^{\beta\mu}] (k^2)^2
\]
in the integrand. Where \(g^{\mu\nu} \) are n dimensional spacetime metric, in flat spacetime it is simply \(\eta^{\mu\nu} \).

4. A bonus problem
 (You are not required to do this problem, but it’s good to do more practice and to gain extra points :))

 Consider a theory with Lagrangian density
\[
\mathcal{L} = \mathcal{L}_0 + \mathcal{L}_{int}
\]
\[
\mathcal{L}_0 = \partial_\mu \phi^* \partial^\mu \phi - m^2 \phi^* \phi + \sum_{k=1}^2 \bar{\psi}_k (i\gamma_5 - m_k) \psi_k
\]
\[
\mathcal{L}_{int} = -g(\phi^* \psi_1 \psi_2 + h.c.) - \frac{\lambda}{4!} (\phi^* \phi)^2
\]
where \(\phi \) is a complex scalar field and \(\psi_k \)’s are Dirac fields.

 a) What are the Feynman rules?

 b) Calculate the renormalization \(Z \) factors for this theory. Use dimensional regularization with minimal subtraction. Work to order \(\lambda \) and order \(g^2 \).