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9
Topological quantum computation

9.1 Anyons, anyone?

A central theme of quantum theory is the concept of indistinguishable

particles (also called identical particles). For example, all electrons in the
world are exactly alike. Therefore, for a system with many electrons,
an operation that exchanges two of the electrons (swaps their positions)
is a symmetry — it leaves the physics unchanged. This symmetry is
represented by a unitary transformation acting on the many-electron wave
function.

For the indistinguishable particles in three-dimensional space that we
normally talk about in physics, particle exchanges are represented in one
of two distinct ways. If the particles are bosons (like, for example, 4He
atoms in a superfluid), then an exchange of two particles is represented by
the identity operator: the wave function is invariant, and we say the par-
ticles obey Bose statistics. If the particles are fermions (like, for example,
electrons in a metal), than an exchange is represented by multiplication
by (−1): the wave function changes sign, and we say that the particles
obey Fermi statistics.

The concept of identical-particle statistics becomes ambiguous in one
spatial dimension. The reason is that for two particles to swap positions
in one dimension, the particles need to pass through one another. If the
wave function changes sign when two identical particles are exchanged,
we could say that the particles are noninteracting fermions, but we could
just as well say that the particles are interacting bosons, such that the
sign change is induced by the interaction as the particles pass one an-
other. More generally, the exchange could modify the wavefunction by
a multiplicative phase eiθ that could take values other than +1 or −1,
but we could account for this phase change by describing the particles as
either bosons or fermions.

4
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Thus, identical-particle statistics is a rather tame concept in three (or
more) spatial dimensions and also in one dimension. But in between these
two dull cases, in two dimensions, a remarkably rich variety of types of
particle statistics are possible, so rich that we have far to go before we
can give a useful classification of all of the possibilities.

Indistinguishable particles in two dimensions that are neither bosons
nor fermions are called anyons. Anyons are a fascinating theoretical con-
struct, but do they have anything to do with the physics of real systems
that can be studied in the laboratory? The remarkable answer is: “Yes!”
Even in our three-dimensional world, a two-dimensional gas of electrons
can be realized by trapping the electrons in a thin layer between two slabs
of semiconductor, so that at low energies, electron motion in the direction
orthogonal to the layer is frozen out. In a sufficiently strong magnetic field
and at sufficiently low temperature, and if the electrons in the material
are sufficiently mobile, the two-dimensional electron gas attains a pro-
foundly entangled ground state that is separated from all excited states
by a nonzero energy gap. Furthermore, the low-energy particle excitations
in the systems do not have the quantum numbers of electrons; rather they
are anyons, and carry electric charges that are fractions of the electron
charge. The anyons have spectacular effects on the transport properties
of the sample, manifested as the fractional quantum Hall effect.

Anyons will be our next topic. But why? True, I have already said
enough to justify that anyons are a deep and fascinating subject. But this
is not a course about the unusual behavior of exotic phases attainable in
condensed matter systems. It is a course about quantum computation.

In fact, there is a connection, first appreciated by Alexei Kitaev in
1997: anyons provide an unusual, exciting, and perhaps promising means
of realizing fault-tolerant quantum computation.

So that sounds like something we should be interested in. After all,
I have already given 12 lectures on the theory of quantum error correc-
tion and fault-tolerant quantum computing. It is a beautiful theory; I
have enjoyed telling you about it and I hope you enjoyed hearing about
it. But it is also daunting. We’ve seen that an ideal quantum circuit
can be simulated faithfully by a circuit with noisy gates, provided the
noisy gates are not too noisy, and we’ve seen that the overhead in cir-
cuit size and depth required for the simulation to succeed is reasonable.
These observations greatly boost our confidence that large scale quantum
computers will really be built and operated someday. Still, for fault tol-
erance to be effective, quantum gates need to have quite high fidelity (by
the current standards of experimental physics), and the overhead cost of
achieving fault tolerance is substantial. Even though reliable quantum
computation with noisy gates is possible in principle, there always will
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be a strong incentive to improve the fidelity of our computation by im-
proving the hardware rather than by compensating for the deficiencies of
the hardware through clever circuit design. By using anyons, we might
achieve fault tolerance by designing hardware with an intrinsic resistance
to decoherence and other errors, significantly reducing the size and depth
blowups of our circuit simulations. Clearly, then, we have ample motiva-
tion for learning about anyons. Besides, it will be fun!

In some circles, this subject has a reputation (not fully deserved in my
view) for being abstruse and inaccessible. I intend to start with the basics,
and not to clutter the discussion with details that are mainly irrelevant to
our central goals. That way, I hope to keep the presentation clear without
really dumbing it down.

What are these goals? I will not be explaining how the theory of anyons
connects with observed phenomena in fractional quantum Hall systems.
In particular, abelian anyons arise in most of these applications. From
a quantum information viewpoint, abelian anyons are relevant to robust
storage of quantum information (and we have already gotten a whiff of
that connection in our study of toric quantum codes). We will discuss
abelian anyons here, but our main interest will be in nonabelian anyons,
which as we will see can be endowed with surprising computational power.

Kitaev (quant-ph/9707021) pointed out that a system of nonabelian
anyons with suitable properties can efficiently simulate a quantum circuit;
this idea was elaborated by Ogburn and me (quant-ph/9712048), and gen-
eralized by Mochon (quant-ph/0206128, quant-ph/0306063). In Kitaev’s
original scheme, measurements were required to simulate some quantum
gates. Freedman, Larsen and Wang (quant-ph/000110) observed that if
we use the right kind of anyons, all measurements can be postponed until
the readout of the final result of the computation. Freedman, Kitaev,
and Wang (quant-ph/0001071) also showed that a system of anyons can
be simulated efficiently by a quantum circuit; thus the anyon quantum
computer and the quantum circuit model have equivalent computational
power. The aim of these lectures is to explain these important results.

We will focus on the applications of anyons to quantum computing, not
on the equally important issue of how systems of anyons with desirable
properties can be realized in practice.∗ It will be left to you to figure that
out!

∗ Two interesting approaches to realizing nonabelian anyons — using superconduct-
ing junction arrays and using cold atoms trapped in optical lattices — have been
discussed in the recent literature.
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9.2 Flux-charge composites

For those of us who are put off by abstract mathematical constructions, it
will be helpful to begin our exploration of the theory of anyons by thinking
about a concrete model. So let’s start by recalling a more familiar concept,
the Aharonov-Bohm effect.

Imagine electromagnetism in a two-dimensional world, where a “flux
tube” is a localized “pointlike” object (in three dimensions, you may en-
vision a plane intersecting a magnetic solenoid directed perpendicular to
the plane). The flux might be enclosed behind an impenetrable wall, so
that an object outside can never visit the region where the magnetic field
is nonzero. But even so, the magnetic field has a measurable influence on
charged particles outside the flux tube. If an electric charge q is adiabat-
ically transported (counterclockwise) around a flux Φ, the wave function
of the charge acquires a topological phase eiqΦ (where we use units with
h̄ = c = 1). Here the word “topological” means that the Aharonov-Bohm
phase is robust when we deform the trajectory of the charged particle —
all that matters is the “winding number” of the charge about the flux.

The concept of topological invariance arises naturally in the study of
fault tolerance. Topological properties are those that remain invariant
when we smoothly deform a system, and a fault-tolerant quantum gate is
one whose action on protected information remains invariant (or nearly
so) when we deform the implementation of the gate by adding noise. The
topological invariance of the Aharonov-Bohm phenomenon is the essential
property that we hope to exploit in the design of quantum gates that are
intrinsically robust.

We usually regard the Aharonov-Bohm effect as a phenomenon that
occurs in quantum electrodynamics, where the photon is exactly mass-
less. But it is useful to recognize that Aharonov-Bohm phenomena can
also occur in massive theories. For example, we might consider a “super-
conducting” system composed of charge e particles, such that composite
objects with charge ne form a condensate (where n is an integer). In
this superconductor, there is a quantum of flux Φ0 = 2π/ne, the minimal
nonzero flux such that a charge-(ne) particle in the condensate, when
transported around the flux, acquires a trivial Aharonov-Bohm phase.
An isolated region that contains a flux quantum is an island of normal
material surrounded by the superconducting condensate, prevented from
spreading because the magnetic flux cannot penetrate into the supercon-
ductor. That is, it is a stable particle, what we could call a “fluxon.”
When one of the charge-e particles is transported around a fluxon, its
wave function acquires the nontrivial topological phase eieΦ0 = e2πi/n.
But in the superconductor, the photon acquires a mass via the Higgs
mechanism, and there are no massless particles. That topological phases



8 9 Topological quantum computation

are compatible with massive theories is important, because massless par-
ticles are easily excited, a potentially copious source of decoherence.

Now, let’s imagine that, in our two-dimensional world, flux and electric
charge are permanently bound together (for some reason). A fluxon can
be envisioned as flux Φ confined inside an impenetrable circular wall,
and an electric charge q is stuck to the outside of the wall. What is
the angular momentum of this flux-charge composite? Suppose that we
carefully rotate the object counterclockwise by angle 2π, returning it to
its original orientation. In doing so, we have transported the charge q
about the flux Φ, generating a topological phase eiqΦ. This rotation by
2π is represented in Hilbert space by the unitary transformation

U (2π) = e−i2πJ = eiqΦ , (9.1)

where J is the angular momentum. We conclude, then, that the possible
eigenvalues of angular momentum are

J = m− qΦ

2π
(m = integer) . (9.2)

We can characterize this spectrum by an angular variable θ ∈ [0, 2π),
defined by θ = qΦ (mod 2π), and say that the eigenvalues are shifted
away from integer values by −θ/2π. We will refer to the phase eiθ that
represents a counterclockwise rotation by 2π as the topological spin of the
composite object.

But shouldn’t a rotation by 2π act trivially on a physical system (isn’t
it the same as doing nothing)? No, we know better than that, from our
experience with spinors in three dimensions. For a system with fermion
number F , we have

e−2πiJ = (−1)F ; (9.3)

if the fermion number is odd, the eigenvalues of J are shifted by 1/2
from the integers. This shift is physically acceptable because there is a
(−1)F superselection rule: no observable local operator can change the
value of (−1)F (there is no physical process that can create or destroy
an isolated fermion). Acting on a coherent superposition of states with
different values of (−1)F , the effect of e−2πiJ is

e−i2πJ (a| even F 〉 + b| odd F 〉) = a| even F 〉 − b| odd F 〉 . (9.4)

The relative sign in the superposition flips, but this has no detectable
physical effects, since all observables are block diagonal in the (−1)F

basis.
Similarly, in two dimensions, the shift in the angular momentum spec-

trum e−2πiJ = eiθ has no unacceptable physical consequences if there is



9.3 Spin and statistics 9

a θ superselection rule, ensuring that the relative phase in a superposi-
tion of states with different values of θ is physically inaccessible (not just
in practice but even in principle). As for fermions, there is no allowed
physical process that can create of destroy an isolated anyon.

In three dimensions, only θ = 0, π are allowed, because (as you probably
know) of a topological property of the three-dimensional rotation group
SO(3): a closed path in SO(3) beginning at the identity and ending at a
rotation by 4π can be smoothly contracted to a trivial path. It follows
that a rotation by 4π really is represented by the identity, and therefore
that the eigenvalues of a rotation by 2π are +1 and −1. But the two-
dimensional rotation group SO(2) does not have this topological property,
so that any value of θ is possible in principle.

Note that the angular momentum J changes sign under time reversal
(T ) and also under parity (P ). Unless θ = 0 or π, the spectrum of J

is asymmetric about zero, and therefore a theory of anyons typically will
not be T or P invariant. In our flux-charge composite model the origin
of this symmetry breaking is not mysterious — it arises from the nonzero
magnetic field. But in a system with no intrinsic breaking of T and P , if
anyons occur then either these symmetries must be broken spontaneously,
or else the particle spectrum must be “doubled” so that for each anyon
with exchange phase eiθ there also exists an otherwise identical particle
with exchange phase e−iθ.

9.3 Spin and statistics

For identical particles in three dimensions, there is a well known connec-
tion between spin and statistics: indistinguishable particles with integer
spin are bosons, and those with half-odd-integer spin are fermions. In
two dimensions, the spin can be any real number. What does this new
possibility of “fractional spin” imply about statistics? The answer is that
statistics, too, can be “fractionalized”!

What happens if we perform an exchange of two of our flux-charge
composite objects, in a counterclockwise sense? Each charge q is adiabat-
ically transported half way around the flux Φ of the other object. We can
anticipate, then, that each charge will acquire an Aharonov-Bohm phase
that is half of the phase generated by a complete revolution of the charge
about the flux. Adding together the phases arising from the transport of
both charges, we find that the exchange of the two flux-charge composites
changes their wave function by the phase

exp

[

i

(

1

2
qΦ +

1

2
qΦ

)]

= eiqΦ = eiθ = e−2πiJ . (9.5)

The phase generated when the two objects are exchanged matches the
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phase generated when one of the two objects is rotated by 2π. Thus the
connection between spin and statistics continues to hold, in a form that
is a natural generalization of the connection that applies to bosons and
fermions.

The origin of this connection is fairly clear in our flux-charge composite
model, but in fact it holds much more generally. Why? Reading textbooks
on relativistic quantum field theory, one can easily get the impression that
the spin-statistics connection is founded on Lorentz invariance, and has
something to do with the properties of the complexified Lorentz group.
Actually, this impression is quite misleading. All that is essential for a
spin-statistics connection to hold is the existence of antiparticles. Special
relativity is not an essential ingredient.

Consider an anyon, characterized by the phase θ, and suppose that this
particle has a corresponding antiparticle. This means that the particle
and its antiparticle, when combined, have trivial quantum numbers (in
particular, zero angular momentum) and therefore that there are physical
processes in which particle-antiparticle pairs can be created and annihi-
lated. Draw a world line in spacetime that represents a process in which
two particle-antiparticle pairs are created (one pair on the left and the
other pair on the right), the particle from the pair on the right is ex-
changed in a counterclockwise sense with the particle from the pair on
the left, and then both pairs reannihilate. (The world line has an orien-
tation; if directed forward in time it represents a particle, and if directed
backward in time it represents an antiparticle.) Turning our diagram 90◦,
we obtain a depiction of a process in which a single particle-antiparticle
pair is created, the particle and antiparticle are exchanged in a clock-

wise sense, and then the pair reannihilates. Turning it 90◦ yet again, we
have a process in which two pairs are created and the antiparticle from
the pair on the right is exchanged, in a counterclockwise sense, with the
antiparticle from the pair on the left, before reannihilation.

aaR
1

aaR aaR

What do we conclude from these manipulations? Denote by Rab the
unitary operator that represents a counterclockwise exchange of particles
of types a and b (so that the inverse operator R−1

ab represents a clockwise
exchange), and denote by ā the antiparticle of a. We have found that

Raa = R−1
aā = Rāā . (9.6)
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If a is an anyon with exchange phase eiθ, then its antiparticle ā also has
the same exchange phase. Furthermore, when a and ā are exchanged
counterclockwise, the phase acquired is e−iθ.

These conclusions are unsurprising when we interpret them from the
perspective of our flux-charge composite model of anyons. The antipar-
ticle of the object with flux Φ and charge q has flux −Φ and charge −q.
Hence, when we exchange two antiparticles, the minus signs cancel and
the effect is the same as though the particles were exchanged. But if we
exchange a particle and an antiparticle, then the relative sign of charge
and flux results in the exchange phase e−iqΦ = e−iθ.

But what is the connection between these observations about statistics
and the spin? Continuing to contemplate the same spacetime diagram, let
us consider its implications regarding the orientation of the particles. For
keeping track of the orientation, it is convenient to envision the particle
world line not as a thread but as a ribbon in spacetime. I claim that our
process can be smoothly deformed to one in which a particle-antiparticle
pair is created, the particle is rotated counterclockwise by 2π, and then
the pair reannihilates. A convenient way to verify this assertion is to take
off your belt (or borrow a friend’s). The buckle at one end specifies an
orientation; point your thumb toward the buckle, and following the right-
hand rule, twist the belt by 2π before rebuckling it. You should be able
to check that you can lay out the belt to match the spacetime diagram for
any of the exchange processes described earlier, and also for the process
in which the particle rotates by 2π.

Thus, in a topological sense, rotating a particle counterclockwise by 2π
is really the same thing as exchanging two particles in a counterclockwise
sense (or exchanging particle and antiparticle in a clockwise sense), which
provides a satisfying explanation for a general spin-statistics connection.†

I emphasize again that this argument invokes processes in which particle-
antiparticle pairs are created and annihilated, and therefore the existence
of antiparticles is an essential prerequisite for it to apply.

9.4 Combining anyons

We know that a composite object composed of two fermions is a bo-
son. What happens when we build a composite object by combining two
anyons?

† Actually, this discussion has been oversimplified. Though it is adequate for abelian
anyons, we will see that it must be amended for nonabelian anyons, because Rab has
more than one eigenvalue in the nonabelian case. Similarly, the discussion in the next
section of “combining anyons” will need to be elaborated because, in the nonabelian
case, more than one kind of composite anyon can be obtained when two anyons are
fused together.
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Suppose that a is an anyon with exchange phase eiθ, and that we build
a “molecule” from n of these a anyons. What phase is acquired under a
counterclockwise exchange of the two molecules?

The answer is clear in our flux-charge composite model. Each of the n
charges in one molecule acquires a phase eiθ/2 when transported half way
around each of the n fluxes in the other molecule. Altogether then, 2n2

factors of the phase eiθ/2 are generated, resulting in the total phase

eiθn = ein
2θ . (9.7)

Said another way, the phase eiθ occurs altogether n2 times because in
effect n anyons in one molecule are being exchanged with n anyons in
the other molecule. Contrary to what we might have naively expected, if
we split a fermion (say) into two identical constituents, the constituents
have, not an exchange phase of

√
−1 = i, but rather (eiπ)1/4 = eiπ/4.

This behavior is compatible with the spin-statistics connection: the
angular momentum J of the n-anyon molecule satisfies

e−2πiJn = e−2πin2J = ein
2θ . (9.8)

For example, consider a molecule of two anyons, and imagine rotating
the molecule counterclockwise by 2π. Not only does each anyon in the
molecule rotate by 2π; in addition one of the anyons revolves around the
other. One revolution is equivalent to two successive exchanges, so that
the phase generated by the revolution is ei2θ. The total effect of the two
rotations and the revolution is the phase

exp [i (θ + θ + 2θ)] = ei4θ . (9.9)

Another way to understand why the angular momenta of the anyons in
the molecule do not combine additively is to note that the total angular
momentum of the molecule consists of two parts — the spin angular
momentum S of each of the two anyons (which is additive) and the orbital

angular momentum L of the anyon pair. Because the counterclockwise
transport of one anyon around the other generates the nontrivial phase
ei2θ, the dependence of the two-anyon wavefunction ψ on the relative
azimuthal angle ϕ is not single-valued; instead,

ψ(ϕ+ 2π) = e−i2θψ(ϕ) . (9.10)

This means that the spectrum of the orbital angular momentum L is
shifted away from integer values:

e−i2πL = e2iθ , (9.11)
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and this orbital angular momentum combines additively with the spin S
to produce the total angular momentum

−2πJ = −2πL−2πS = 2θ+2θ+ 2π(integer) = 4θ+ 2π(integer) . (9.12)

What if, on the other hand, we build a molecule āa from an anyon a
and its antiparticle ā? Then, as we’ve seen, the spin S has the same value
as for the aa molecule. But the exchange phase has the opposite value, so
that the noninteger part of the orbital angular momentum is −2πL = −2θ
instead of −2πL = 2θ, and the total angular momentum J = L + S is
an integer. This property is necessary, of course, if the āa pair is to be
able to annihilate without leaving behind an object that carries nontrivial
angular momentum.

9.5 Unitary representations of the braid group

We have already noted that the angular momentum spectrum has differ-
ent properties in two spatial dimensions than in three dimensions because
SO(2) has different topological properties than SO(3) (SO(3) has a com-
pact simply connected covering group SU(2), but SO(2) does not). This
observation provides one way to see why anyons are possible in two di-
mensions but not in three. It is also instructive to observe that particle
exchanges have different topological properties in two spatial dimensions
than in three dimensions.

As we have found in our discussion of the relation between the statistics
of particles and of antiparticles, it is useful to envision exchanges of parti-
cles as processes taking place in spacetime. In particular, it is convenient
to imagine that we are computing the quantum transition amplitude for
a time-dependent process involving n particles by evaluating a sum over
particle histories (though for our purposes it will not actually be necessary
to calculate any path integrals).

Consider a system of n indistinguishable pointlike particles confined to
a two-dimensional spatial surface (which for now we may assume is the
plane), and suppose that no two particles are permitted to occupy coinci-
dent positions. We may think of a configuration of the particles at a fixed
time as a plane with n “punctures” at specified locations — that is, we
associate with each particle a hole in the surface with infinitesimal radius.
The condition that the particles are forbidden to coincide is enforced by
demanding that there are exactly n punctures in the plane at any time.
Furthermore, just as the particles are indistinguishable, each puncture
is the same as any other. Thus if we were to perform a permutation of
the n punctures, this would have no physical effect; all the punctures are
the same anyway, so it makes no difference which one is which. All that
matters is the n distinct particle positions in the plane.
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To evaluate the quantum amplitude for a configuration of n particles
at specified initial positions at time t = 0 to evolve to a configuration
of n particles at specified final positions at time t = T , we are to sum
over all classical histories for the n particles that interpolate between the
fixed initial configuration and the fixed final configuration, weighted by
the phase eiS, where S is the classical action of the history. If we envision
each particle world line as a thread, each history for the n particles be-
comes a braid, where each particle on the initial (t = 0) time slice can be
connected by a thread to any one of the particles on the final (t = T ) time
slice. Furthermore, since the particle world lines are forbidden to cross,
the braids fall into distinct topological classes that cannot be smoothly
deformed one to another, and the path integral can be decomposed as
a sum of contributions, with each contribution arising from a different
topological class of histories.

Nontrivial exchange operations acting on the particles on the final time
slice change the topological class of the braid. Thus we see that the
elements of the symmetry group generated by exchanges are in one-to-one
correspondence with the topological classes. This (infinite) group is called
Bn, the braid group on n strands; the group composition law corresponds
to concatenation of braids (that is, following one braid with another). In
the quantum theory, the quantum state of the n indistinguishable particles
belongs to a Hilbert space that transforms as a unitary representation of
the braid group Bn.

The group can be presented as a set of generators that obey particular
defining relations. To understand the defining relations, we may imag-
ine that the n particles occupy n ordered positions (labeled 1, 2, 3, . . . , n)
arranged on a line. Let σ1 denote a counterclockwise exchange of the
particles that initially occupy positions 1 and 2, let σ2 denote a counter-
clockwise exchange of the particles that initially occupy positions 2 and
3, and so on. Any braid can be constructed as a succession of exchanges
of neighboring particles; hence σ1, σ2, . . . , σn−1 are the group generators.

The defining relations satisfied by these generators are of two types.
The first type is

σjσk = σkσj , |j − k| ≥ 2 , (9.13)

which just says that exchanges of disjoint pairs of particles commute. The
second, slightly more subtle, type of relation is

σjσj+1σj = σj+1σjσj+1 , j = 1, 2, . . . , n− 2 , (9.14)

which is sometimes called the Yang-Baxter relation. You can verify the
Yang-Baxter relation by drawing the two braids σ1σ2σ1 and σ2σ1σ2 on
a piece of paper, and observing that both describe a process in which
the particles initially in positions 1 and 3 are exchanged counterclockwise
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about the particle labeled 2, which stays fixed — i.e., these are topologi-
cally equivalent braids.

2

1

2

1

2

1

Since the braid group is infinite, it has an infinite number of unitary
irreducible representations, and in fact there are an infinite number of one-

dimensional representations. Indistinguishable particles that transform as
a one-dimensional representation of the braid group are said to be abelian

anyons. In the one-dimensional representations, each generator σj ofBn is
represented by a phase σj = eiθj . Furthermore, the Yang-Baxter relation
becomes eiθjeiθj+1eiθj = eiθj+1eiθjeiθj+1 , which implies eiθj = eiθj+1 ≡ eiθ

— all exchanges are represented by the same phase. Of course, that
makes sense; if the particles are really indistinguishable, the exchange
phase ought not to depend on which pair is exchanged. For θ = 0 we
obtain bosons, and for θ = π, fermions

The braid group also has many nonabelian representations that are
of dimension greater than one; indistinguishable particles that transform
as such representations are said to be nonabelian anyons (or, sometimes,
nonabelions). To understand the physical properties of nonabelian anyons
we will need to understand the mathematical structure of some of these
representations. In these lectures, I hope to convey some intuition about
nonabelian anyons by discussing some examples in detail.

For now, though, we can already anticipate the main goal we hope to
fulfill. For nonabelian anyons, the irreducible representation of Bn real-
ized by n anyons acts on a “topological vector space” Vn whose dimension
Dn increases exponentially with n. And for anyons with suitable prop-
erties, the image of the representation may be dense in SU(Dn). Then
braiding of anyons can simulate a quantum computation — any (special)
unitary transformation acting on the exponentially large vector space Vn

can be realized with arbitrarily good fidelity by executing a suitably cho-
sen braid.

Thus we are keenly interested in the nonabelian representations of the
braid group. But we should also emphasize (and will discuss at greater
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length later on) that there is more to a model of anyons than a mere rep-
resentation of the braid group. In our flux tube model of abelian anyons,
we were able to describe not only the effects of an exchange of anyons, but
also the types of particles that can be obtained when two or more anyons
are combined together. Likewise, in a general anyon model, the anyons
are of various types, and the model incorporates “fusion rules” that spec-
ify what types can be obtained when two anyons of particular types are
combined. Nontrivial consistency conditions arise because fusion is asso-
ciate (fusing a with b and then fusing the result with c is equivalent to
fusing b with c and then fusing the result with a), and because the fusion
rules must be consistent with the braiding rules. Though these consis-
tency conditions are highly restrictive, many solutions exist, and hence
many different models of nonabelian anyons are realizable in principle.

9.6 Topological degeneracy

But before moving on to nonabelian anyons, there is another important
idea concerning abelian anyons that we should discuss. In any model of
anyons (indeed, in any local quantum system with a mass gap), there is a
ground state or vacuum state, the state in which no particles are present.
On the plane the ground state is unique, but for a two-dimensional surface
with nontrivial topology, the ground state is degenerate, with the degree of
degeneracy depending on the topology. We have already encountered this
phenomenon of “topological degeneracy” in the model of abelian anyons
that arose in our study of a particular quantum error-correcting code,
Kitaev’s toric code. Now we will observe that topological degeneracy is a
general feature of any model of (abelian) anyons.

We can arrive at the concept of topological degeneracy by examining
the representations of a simple operator algebra. Consider the case of the
torus, represented as a square with opposite sides identified, and consider
the two fundamental 1-cycles of the torus: C1, which winds around the
square in the x1 direction, and C2 which winds around in the x2 direction.
A unitary operator T1 can be constructed that describes a process in
which an anyon-antianyon pair is created, the anyon propagates around
C1, and then the pair reannihilates. Similarly a unitary operator T2 can
be constructed that describes a process in which the pair is created, and
the anyon propagates around the cycle C2 before the pair reannihilates.
Each of the operators T1 and T2 preserves the ground state of the system
(the state with no particles); indeed, each commutes with the Hamiltonian
H of the system and so either can be simultaneously diagonalized with
H (T1 and T2 are both symmetries).

However, T1 and T2 do not commute with one another. If our torus
has infinite spatial volume, and there is a mass gap (so that the only



9.6 Topological degeneracy 17

interactions among distantly separated anyons are due to the Aharonov-
Bohm effect), then the commutator of T1 and T2 is

T−1
2 T−1

1 T2T1 = e−i2θI , (9.15)

where eiθ is the anyon’s exchange phase. The nontrivial commutator
arises because the process in which (1) an anyon winds around C1, (2)
an anyon winds around C2 (3) an anyon winds around C1 in the reverse
direction, and (4) an anyon winds around C2 in the reverse direction, is
topologically equivalent to a process in which one anyon winds clockwise
around another. To verify this claim, view the action of T−1

2 T−1
1 T2T1

as a process in spacetime. First note that the process described by the
operator T−1

1 T1, in which an anyon world line first sweeps though C1 and
then immediately traverses C1 in the reverse order, can be deformed to
a process in which the anyon world line traverses a topologically trivial
loop that can be smoothly shrunk to a point (in keeping with the prop-
erty that T−1

1 T1 is really the identity operator). In similar fashion, the
process described by the operator T−1

2 T−1
1 T2T1 can be deformed to one

where the anyon world lines traverse two closed loops, but such that the
world lines link once with one another; furthermore, one loop pierces the
surface bounded by the other loop in a direction opposite to the orien-
tation inherited by the surface via the right-hand rule from its bounding
loop. This process can be smoothly deformed to one in which two pairs
are created, one anyon winds clockwise around the other, and then both
pairs annihilate. The clockwise winding is equivalent to two successive
clockwise exchanges, represented in our one-dimensional representation
of the braid group by the phase e−i2θ. We conclude that T1 and T2 are
noncommuting, except in the cases θ = 0 (bosons) and θ = π (fermions).

2

1
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Since T1 and T2 both commute with the Hamiltonian H , both preserve
the eigenspaces of H , but since T1 and T2 do not commute with one
another, they cannot be simultaneously diagonalized. Since T1 is unitary,
its eigenvalues are phases; let us use the angular variable α ∈ [0, 2π) to
label an eigenstate of T1 with eigenvalue eiα:

T1|α〉 = eiα|α〉 . (9.16)

Then applying T2 to the T1 eigenstate advances the value of α by 2θ:

T1 (T2|α〉) = ei2θT2T1|α〉 = ei2θeiα (T2|α〉) . (9.17)

Suppose that θ is a rational multiple of 2π, which we may express as

θ = πp/q , (9.18)

where q and p (p < 2q) are positive integers with no common factor. Then
we conclude that T1 must have at least q distinct eigenvalues; T1 acting
on α generates an orbit with q distinct values:

α+

(

2πp

q

)

k (mod 2π) , k = 0, 1, 2, . . . , q − 1 . (9.19)

Since T1 commutes with H , on the torus the ground state of our anyonic
system (indeed, any energy eigenstate) must have a degeneracy that is an
integer multiple of q. Indeed, generically (barring further symmetries or
accidental degeneracies), the degeneracy is expected to be exactly q.

For a two-dimensional surface with genus g (a sphere with g “handles”),
the degree of this topological degeneracy becomes qg, because there are
operators analogous to T1 and T2 associated with each of the g handles,
and all of the T1-like operators can be simultaneously diagonalized. Fur-
thermore, we can apply a similar argument to a finite planar medium if
single anyons can be created and destroyed at the edges of the system. For
example, consider an annulus in which anyons can appear or disappear
at the inner and outer edges. Then we could define the unitary opera-
tor T1 as describing a process in which an anyon winds counterclockwise
around the annulus, and a unitary operator T2 as describing a process in
which an anyon appears at the outer edge, propagates to the inner edge,
and disappears. These operators T1 and T2 have the same commutator
as the corresponding operators defined on the torus, and so we conclude
as before that the ground state on the annulus is q-fold degenerate for
θ = πp/q. For a disc with h holes, there is an operator analogous to
T1 that winds an anyon counterclockwise around each of the holes, and
an operator analogous to T2 that propagates an anyon from the outer
boundary of the disk to the edge of the hole; thus the degeneracy is qh.
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What we have described here is a robust topological quantum memory.
The phase ei2θ = ei2πp/q ≡ ω acquired when one anyon winds counter-
clockwise around another is a primitive qth root of unity, and in the case
of a planar system with holes, the operator T1 can be regarded as the en-
coded Pauli operator Z̄ acting on a q-dimension system associated with
a particular hole. Physically, the eigenvalue ωs of Z̄ just counts the num-
ber s of anyons that are “stuck” inside the hole. The operator T2 can
be regarded as the complementary Pauli operator X̄ that increments the
value of s by carrying one anyon from the boundary of the system and
depositing it in the hole. Since the quantum information is encoded in a
nonlocal property of the system, it is well protected from environmental
decoherence. By the same token depositing a quantum state in the mem-
ory, and reading it out, might be challenging for this system, though in
principle Z̄ could be measured by, say, performing an interference experi-
ment in which an anyon projectile scatters off of a hole. We will see later
that by using nonabelian anyons we will be able to simplify the readout;
in addition, with nonabelian anyons we can use topological properties to
process quantum information as well as to store it.

Just how robust is this quantum memory? We need to worry about er-
rors due to thermal fluctuations and due to quantum fluctuations. Ther-
mal fluctuations might excite the creation of anyons, and thermal anyons
might diffuse around one of the holes in the sample, or from one bound-
ary to another, causing an encoded error. Thermal errors are heavily
suppressed by the Boltzman factor e−∆/T , if the temperature T is suffi-
ciently small compared to the energy gap ∆ (the minimal energy cost of
creating a single anyon at the edge of the sample, or a pair of anyons in
the bulk). The harmful quantum fluctuations are tunneling processes in
which a virtual anyon-antianyon pair appears and the anyon propagates
around a hole before reannihilating, or a virtual anyon appears at the
edge of a hole and propagates to another boundary before disappearing.
These errors due to quantum tunneling are heavily suppressed if the holes
are sufficiently large and sufficiently well separated from one another and
from the outer boundary.‡

Note that our conclusion that the topological degeneracy is finite hinged
on the assumption that the angle θ is a rational multiple of π. We may
say that a theory of anyons is rational if the topological degeneracy is
finite for any surface of finite genus (and, for nonabelian anyons, if the

‡ If you are familiar with Euclidean path integral methods, you’ll find it easy to verify
that in the leading semiclassical approximation the amplitude A for such a tunneling
process in which the anyon propagates a distance L has the form A = Ce

−L/L0 ,
where C is a constant and L0 = h̄ (2m

∗∆)−1/2; here h̄ is Planck’s constant and m
∗

is the effective mass of the anyon, defined so that the kinetic energy of an anyon
traveling at speed v is 1

2
m

∗
v
2.
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topological vector space Vn is finite-dimensional for any finite number of
anyons n). We may anticipate that the anyons that arise in any physically
reasonable system will be rational in this sense, and therefore should be
expected to have exchange phases that are roots of unity.

9.7 Toric code revisited

If these observations about topological degeneracy seem hauntingly famil-
iar, it may be because we used quite similar arguments in our discussion
of the toric code.

The toric code can be regarded as the (degenerate) ground state of a
system of qubits that occupy the links of a square lattice on the torus,
with Hamiltonian

H = −1

4
∆

(

∑

P

ZP +
∑

S

XS

)

, (9.20)

where the plaquette operator ZP = ⊗`∈PZ` is the tensor product of Z’s
acting on the four qubits associated with the links contained in plaquette
P , and the site operator XS ⊗`3S X` is the tensor product of X ’s acting
on the four qubits associated with the links that meet at the site S. These
plaquette and site operators are just the (commuting) stabilizer generators
for the toric code. The ground state is the simultaneous eigenstate with
eigenvalue 1 of all the stabilizer generators.

This model has two types of localized particle excitations — plaquette
excitations where ZP = −1, which we might think of as magnetic fluxons,
and site excitations where XS = −1, which we might think of as electric
charges. A Z error acting on a link creates a pair of charges on the two
site joined by the link, and an X error acting on a link creates a pair of
fluxons on the two plaquettes that share the link. The energy gap ∆ is
the cost of creating a pair of either type.

The charges are bosons relative to one another (they have a trivial
exchange phase eiθ = 1), and the fluxons are also bosons relative to one
another. Since the fluxons are distinguishable from the charges, it does
not make sense to exchange a charge with a flux. But what makes this
an anyon model is that a phase (−1) is acquired when a charge is carried
around a flux. The degeneracy of the ground state (the dimension of the
code space) can be understood as a consequence of this property of the
particles.

For this model on the torus, because there are two types of particles,
there are two types of T1 operators: T1,S, which propagates a charge (site
defect) around the 1-cycle C1, and T1,P , which propagates a fluxon (pla-
quette defect) around C1. Similarly there are two types of T2 operators,
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T2,S and T2,P . The nontrivial commutators are

T−1
2,PT

−1
1,ST2,PT1,S = −1 = T−1

2,ST
−1
1,PT2,ST1,P , (9.21)

both arising from processes in which world lines of charges and fluxon link
once with one another. Thus T1,S and T2,S can be diagonalized simulta-
neously, and can be regarded as the encoded Pauli operators Z̄1 and Z̄2

acting on two protected qubits. The operator T2,P , which commutes with
Z̄1 and anticommutes with Z̄2, can be regarded as the encoded X̄1, and
similarly T1,P is the encoded X̄2.

On the torus, the degeneracy of the four ground states is exact for
the ideal Hamiltonian we constructed (the particles have infinite effective
masses). Weak local perturbations will break the degeneracy, but only
by an amount that gets exponentially small as the linear size L of the
torus increases. To be concrete, suppose the perturbation is a uniform
“magnetic field” pointing in the ẑ direction, coupling to the magnetic
moments of the qubits:

H ′ = −h
∑

`

Z` . (9.22)

Because of the nonzero energy gap, for the purpose of computing in per-
turbation theory the leading contribution to the splitting of the degen-
eracy, it suffices to consider the effect of the perturbation in the four-
dimensional subspace spanned by the ground states of the unperturbed
system. In the toric code, the operators with nontrivial matrix elements
in this subspace are those such that Z`’s act on links that form a closed
loop that wraps around the torus (or X`’s act on links whose dual links
form a closed loop that wraps around the torus). For an L×L lattice on
the torus, the minimal length of such a closed loop is L; therefore nonva-
nishing matrix elements do not arise in perturbation theory until the Lth
order, and are suppressed by hL. Thus, for small h and large L, memory
errors due to quantum fluctuations occur only with exponentially small
amplitude.

9.8 The nonabelian Aharonov-Bohm effect

There is a beautiful abstract theory of nonabelian anyons, and in due
course we will delve into that theory a bit. But I would prefer to launch
our study of the subject by describing a more concrete model.

With that goal in mind, let us recall some properties of chromodynam-

ics, the theory of the quarks and gluons contained within atomic nuclei
and other strongly interacting particles. In the real world, quarks are per-
manently bound together and can never be isolated, but for our discussion
let us imagine a fictitious world in which the forces between quarks are
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weak, so that the characteristic distance scale of quark confinement is
very large.

Quarks carry a degree of freedom known metaphorically as color. That
is, there are three kinds of quarks, which in keeping with the metaphor
we call red (R), yellow (Y ), and blue (B). Quarks of all three colors are
physical identical, except that when we bring two quarks together, we can
tell whether their colors are the same (the Coulombic interaction between
like colors is repulsive), or different (distinct colors attract). There is
nothing to prevent me from establishing a quark bureau of standards in
my laboratory, where colored quarks are sorted into three bins; all the
quarks in the same bin have the same color, and quarks in different bins
have different colors. We may attach (arbitrary) labels to the three bins
— R, Y , and B.

If while taking a hike outside by lab, I discover a previously unseen
quark, I may at first be unsure of its color. But I can find out. I capture
the quark and carry it back to my lab, being very careful not to disturb
its color along the way (in chromodynamics, there is a notion of parallel

transport of color). Once back at the quark bureau of standards, I can
compare this new quark to the previously calibrated quarks in the bins,
and so determine whether the new quark should be labeled R, Y , or B.

It sounds simple but there is a catch: in chromodynamics, the paral-
lel transport of color is path dependent due to an Aharonov-Bohm phe-
nomenon that affects color. Suppose that at the quark bureau of stan-
dards a quark is prepared whose color is described by the quantum state

|ψq〉 = qR|R〉+ qY |Y 〉+ qB |B〉 ; (9.23)

it is a coherent superposition with amplitudes qR, qY , qB for the red, yel-
low, and blue states. The quark is carried along a path that winds around
a color magnetic flux tube and is returned to the quark bureau of stan-
dards where its color can be recalibrated. Upon its return the color state
has been rotated:





q′R
q′Y
q′B



 = U





qR
qY
qB



 , (9.24)

where U is a (special) unitary 3 × 3 matrix. Similarly, when a newly
discovered quark is carried back to the bureau of standards, the outcome
of a measurement of its color will depend on whether it passed to the left
or the right of the flux tube during its voyage.

This path dependence of the parallel transport of color is closely analo-
gous to the path dependence of the parallel transport of a tangent vector
on a curved Riemannian manifold. In chromodynamics, a magnetic field
is the “curvature” whose strength determines the amount of path depen-
dence.
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In general, the SU(3) matrix U that describes the effect of parallel
transport of color about a closed path depends on the basepoint x0 where
the path begins and ends, as well as on the closed loop C traversed by the
path — when it is important to specify the loop and basepoint we will use
the notation U(C, x0). The eigenvalues of the matrix U have an invariant
“geometrical” meaning characterizing the parallel transport, but U itself
depends on the conventions we have established at the basepoint. You
might prefer to choose a different orthonormal basis for the color space
at the basepoint x0 than the basis I chose, so that your standard colors
R, Y , and B differ from mine by the action of an SU(3) matrix V (x0).
Then, while I characterize the effect or parallel transport around the loop
C with the matrix U , you characterize it with another matrix

V (x0)U(C, x0)V (x0)
−1 , (9.25)

that differs from mine by conjugation by V (x0). Physicists sometimes
speak of this freedom to redefine conventions as a choice of gauge, and say
that U itself is gauge dependent while its eigenvalues are gauge invariant.

Chromodynamics, on the distance scales we consider here (much smaller
than the characteristic distance scale of quark confinement), is a the-
ory like electrodynamics with long-range Coulombic interactions among
quarks, mediated by “gluon” fields. We will prefer to consider a theory
that retains some of the features of chromodynamics (in particular the
path dependence of color transport), but without the easily excited light
gluons. In the case of electrodynamics, we eliminated the light photon
by considering a “superconductor” in which charged particles form a con-
densate, magnetic fields are expelled, and the magnetic flux of an isolated
object is quantized. Let us appeal to the same idea here. We consider a
nonabelian superconductor in two spatial dimensions. This world contains
particles that carry “magnetic flux” (similar to the color magnetic flux in
chromodynamics) and particles that carry charge (similar to the colored
quarks of chromodynamics). The flux takes values in a nonabelian finite

group G, and the charges are unitary irreducible representations of the
group G. In this setting, we can formulate some interesting models of
nonabelian anyons.

Let R denote a particular irreducible representation of G, whose di-
mension is denoted |R|. We may establish a “charge bureau of stan-
dards,” and define there an arbitrarily chosen orthonormal basis for the
|R|-dimensional vector space acted upon by R:

|R, i〉 , i = 1, 2, . . . |R| . (9.26)

When a charge R is transported around a closed path that encloses a flux
a ∈ G, there is a nontrivial Aharonov-Bohm effect — the basis for R is
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rotated by a unitary matrix DR(a) that represents a:

|R, j〉 7→
|R|
∑

i=1

|R, i〉DR
ij(a) . (9.27)

The matrix elements DR
ij(a) are measurable in principle, for example by

conducting interference experiments in which a beam of calibrated charges
can pass on either side of the flux. (The phase of the complex number
DR

ij(a) determines the magnitude of the shift of the interference fringes,

and the modulus of DR
ij(a) determines the visibility of the fringes.) Thus

once we have chosen a standard basis for the charges, we can use the
charges to attach labels (elements of G) to all fluxes. The flux labels
are unambiguous as long as the representation R is faithful, and barring
any group automorphisms (which create ambiguities that we are free to
resolve however we please).

However, the group elements that we attach to the fluxes depend on our
conventions. Suppose I am presented with k fluxons (particles that carry
flux), and that I use my standard charges to measure the flux of each
particle. I assign group elements a1, a2, . . . , ak ∈ G to the k fluxons. You
are then asked to measure the flux, to verify my assignments. But your
standard charges differ from mine, because they have been surreptitiously
transported around another flux (one that I would label with g ∈ G).
Therefore you will assign the group elements ga1g

−1, ga2g
−1, . . . , gakg

−1

to the k fluxons; our assignments differ by an overall conjugation by g.
The moral of this story is that the assignment of group elements to

fluxons is inherently ambiguous and has no invariant meaning. But be-
cause the valid assignments of group elements to fluxons differ only by
conjugation by some element g ∈ G, the conjugacy class of the flux in
G does have an invariant meaning on which all observers will agree. In-
deed, even if we fix our conventions at the charge bureau of standards, the
group element that we assign to a particular fluxon may change if that
fluxon takes part in a physical process in which it braids with other flux-
ons. For that reason, the fluxons belonging to the same conjugacy class
should all be regarded as indistinguishable particles, even though they
come in many varieties (one for each representative of the class) that can
be distinguished when we make measurements at a particular time and
place: The fluxons are nonabelian anyons.

9.9 Braiding of nonabelian fluxons

We will see that, for a nonabelian superconductor with suitable properties,
it is possible to operate a fault-tolerant universal quantum computer by
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manipulating the fluxons. The key thing to understand is what happens
when two fluxons are exchanged with one another.

For this purpose, imagine that we carefully calibrate two fluxons, and
label them with elements of the group G. The labels are assigned by
establishing a standard basis for the charged particles at a basepoint x0.
Then a standard path, designated α, is chosen that begins at x0, winds
counterclockwise around the fluxon on the left, and returns to x0. Finally,
charged particles are carried around the closed path α, and it is observed
that under this parallel transport, the particles are acted upon by D(a),
where D is the representation of G according to which the charged parti-
cles transform, and a ∈ G is the particular group element that we assign
to the fluxon. Similarly, another standard path, designated β, is chosen
that begins at x0, winds counterclockwise around the fluxon on the right,
and returns to x0; the effect of parallel transport around β is found to be
D(b), and so the fluxon on the right is labeled with b ∈ G.

Now imagine that a counterclockwise exchange of the two fluxons is
performed, after which the calibration procedure is repeated. How will
the fluxons be labeled now?

To find the answer, consider the path αβα−1; here we use α−1 to denote
the path α traversed in reverse order, and we have adopted the convention
that αβα−1 denotes the path in which α−1 is traversed first, followed by
β and then α. Now observe that if, as the two fluxons are exchanged
counterclockwise, we deform the paths so that they are never crossed by
the fluxons, then the path αβα−1 is deformed to the path α, while the
path α is deformed to β:

αβα−1 7→ α , α 7→ β . (9.28)

0
x

0
x

1

It follows that the effect of transporting a charge around the path α, after
the exchange, is equivalent to the effect of transport around the path
αβα−1, before the exchange; similarly, the effect of transport around β,
after the exchange, is the same as the effect of transport around α before.
We conclude that the braid operator R representing a counterclockwise
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exchange acts on the fluxes according to

R : |a, b〉 → |aba−1, a〉 . (9.29)

Of course, if the fluxes a and b are commuting elements of G, all the
braiding does is swap the positions of the two labels. But if a and b do not
commute, the effect of the exchange is more subtle and interesting. The
asymmetric form of the action of R is a consequence of our conventions
and of the (counterclockwise) sense of the exchange; the inverse operator
R−1 representing a clockwise exchange acts as

R−1 : |a, b〉 → |b, b−1ab〉 . (9.30)

Note that the total flux of the pair of fluxons can be detected by a charged
particle that traverses the path αβ that encloses both members of the
pair. Since in principle the charge detecting this total flux could be far,
far away, the exchange ought not to alter the total flux; indeed, we find
that the product flux ab is preserved by R and by R−1.

The effect of two successive counterclockwise exchanges is the “mon-
odromy” operator R2, representing the counterclockwise winding of one
fluxon about the other, whose action is

R2 : |a, b〉 7→ |(ab)a(ab)−1, (ab)b(ab)−1〉 ; (9.31)

both fluxes are conjugated by the total flux ab. That is, winding a coun-
terclockwise about b conjugates b by a (and similarly, winding b clockwise
about a conjugates a by b−1). The nontrivial monodromy means that if
many fluxons are distributed in the plane, and one of these fluxons is to
be brought to my laboratory for analysis, the group element I assign to
the fluxon may depend on the path the flux follows as it travels to my lab.
If for one choice of path the flux is labeled by a ∈ G, then for other paths
any other element bab−1 might in principle be assigned. Thus, the conju-
gacy class in G represented by the fluxon is invariant, but the particular
representative of that class is ambiguous.

For example, suppose the group is G = S3, the permutation group
on three objects. One of the conjugacy classes contains all of the two-
cycle permutations (transpositions of two objects), the three elements
{(12), (23), (31)}. When two such two-cycles fluxes are combined, there
are three possibilities for the total flux — the trivial flux e, or one of the
three-cycle fluxes (123) or (132). If the total flux is trivial, the braiding
of the two fluxes is also trivial (a and b = a−1 commute). But if the total
flux is nontrivial, then the braid operator R has orbits of length three:

R : |(12), (23)〉 7→ |(31), (12)〉 7→ |(23), (31)〉 7→ |(12), (23)〉 ,
R : |(23), (12)〉 7→ |(31), (23)〉 7→ |(12), (31)〉 7→ |(23), (12)〉 ,

(9.32)
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Thus, if the two fluxons are exchanged three times, they swap positions
(the number of exchanges is odd), yet the labeling of the state is unmod-
ified. This observation means that there can be quantum interference
between the “direct” and “exchange” scattering of two fluxons that carry
distinct labels in the same conjugacy class, reinforcing the notion that
fluxes carrying conjugate labels ought to be regarded as indistinguishable
particles.

Since the braid operator acting on pairs of two-cycle fluxes satisfies
R3 = I , its eigenvalues are third roots of unity. For example, by taking
linear combinations of the three states with total flux (123), we obtain
the R eigenstates

R = 1 : |(12), (23)〉 + |(31), (12)〉 + |(23), (31)〉 ,
R = ω : |(12), (23)〉+ ω̄|(31), (12)〉+ ω|(23), (31)〉 ,
R = ω̄ : |(12), (23)〉+ ω|(31), (12)〉+ ω̄|(23), (31)〉 , (9.33)

where ω = e2πi/3.
Although a pair of fluxes |a, a−1〉 with trivial total flux has trivial braid-

ing properties, it is interesting for another reason — it carries charge. The
way to detect the charge of an object is to carry a flux b around the ob-
ject (counterclockwise); this modifies the object by the action ofDR(b) for
some representation R of G. If the charge is zero then the representation
is trivial — D(b) = I for all b ∈ G. But if we carry flux b counterclockwise
around the state |a, a−1〉, the state transforms as

|a, a−1〉 7→ |bab−1, ba−1b−1〉 , (9.34)

a nontrivial action (for at least some b) if a belongs to a conjugacy class
with more than one element. In fact, for each conjugacy class α, there is
a unique state |0;α〉 with zero charge, the uniform superposition of the
class representatives:

|0;α〉 =
1

√

|α|
∑

a∈α

|a, a−1〉 , (9.35)

where |α| denotes the order of α. A pair of fluxons in the class α that can
be created in a local process must not carry any conserved charges and
therefore must be in the state |0;α〉. Other linear combinations orthogonal
to |0;α〉 carry nonzero charge. This charge carried by a pair of fluxons can
be detected by other fluxons, yet oddly the charge cannot be localized on
the core of either particle in the pair. Rather it is a collective property of
the pair. If two fluxons with a nonzero total charge are brought together,
complete annihilation of the pair will be forbidden by charge conservation,
even though the total flux is zero.
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In the case of a pair of fluxons from the two-cycle class of G = S3, for
example, there is a two-dimensional subspace with trivial total flux and
nontrivial charge, for which we may choose the basis

|0〉 = |(12), (12)〉+ ω̄|(23), (23)〉+ ω|(31), (31)〉 ,
|1〉 = |(12), (12)〉+ ω|(23), (23)〉+ ω̄|(31), (31)〉 . (9.36)

If a flux b is carried around the pair, both fluxes are conjugated by b;
therefore the action (by conjugation) of S3 on these states is

D(12) =

(

0 1
1 0

)

, D(23) =

(

0 ω̄
ω 0

)

, D(31) =

(

0 ω
ω̄ 0

)

,

D(123) =

(

ω 0
0 ω̄

)

, D(132) =

(

ω̄ 0
0 ω

)

. (9.37)

This action is just the two-dimensional irreducible representation R = [2]
of S3, and so we conclude that the charge of the pair of fluxons is [2].

Furthermore, under braiding this charge carried by a pair of fluxons can
be transferred to other particles. For example, consider a pair of particles,
each of which carries charge but no flux (I will refer to such particles as
chargeons), such that the total charge of the pair is trivial. If one of
the chargeons transforms as the unitary irreducible representation R of
G, there is a unique conjugate representation R̄ that can be combined
with R to give the trivial representation; if {|R, i〉} is a basis for R, then
a basis {|R̄, i〉} can be chosen for R̄, such that the chargeon pair with
trivial charge can be expressed as

|0;R〉 =
1

√

|R|
∑

i

|R, i〉 ⊗ |R̄, i〉 . (9.38)

Imagine that we create a pair of fluxons in the state |0;α〉 and also
create a pair of chargeons in the state |0;R〉. Then we wind the chargeon
with charge R counterclockwise around the fluxon with flux in class α,
and bring the two chargeons together again to see if they will annihilate.
What happens?

For a fixed value a ∈ α of the flux, the effect of the winding on the
state of the two chargeons is

|0;R〉 7→ 1
√

|R|
∑

i,j

|R, j〉 ⊗ |R̄, i〉DR
ji(a) ; (9.39)

if the charge of the pair were now measured, the probability that zero
total charge would be found is the square of the overlap of this state with
|0;R〉, which is

Prob(0) =

∣

∣

∣

∣

χR(a)

|R|

∣

∣

∣

∣

2

, (9.40)
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where
χR(a) =

∑

i

DR
ii (a) = tr DR(a) (9.41)

is the character of the representation R, evaluated at a. In fact, the
character (a trace) is unchanged by conjugation — it takes the same value
for all a ∈ α. Therefore, eq. (9.40) is also the probability that the pair of
chargeons has zero total charge when one chargeon (initially a member
of a pair in the state |0;R〉) winds around one fluxon (initially a member
of a pair in the state |0;α〉). Of course, since the total charge of all four
particles is zero and charge is conserved, after the winding the two pairs
have opposite charges — if the pair of chargeons has total charge R′, then
the pair of fluxons must have total charge R̄′, combined with R′ to give
trivial total charge. A pair of particles with zero total charge and flux can
annihilate, leaving no stable particle behind, while a pair with nonzero
charge will be unable to annihilate completely. We conclude, then, that
if the world lines of a fluxon pair and a chargeon pair link once, the
probability that both pairs will be able to annihilate is given by eq. (9.40).
This probability is less than one, provided that the representation of R
is not one dimensional and the class α is not represented trivially. Thus
the linking of the world lines induces an exchange of charge between the
two pairs.

For example, in the case where α is the two-cycle class of G = S3 and
R = [2] (the two-dimensional irreducible representation of S3), we see
from eq. (9.37) that χ[2](α) = 0. Therefore, charge is transfered with
certainty; after the winding, both the fluxon pair and the chargeon pair
transform as R′ = [2].

9.10 Superselection sectors of a nonabelian superconductor

In our discussion so far of the nonabelian superconductor, we have been
considering two kinds of particles: fluxons, which carry flux but no charge,
and chargeons, which carry charge but no flux. These are not the most
general possible particles. It will be instructive to consider what happens
when we build a composite particle by combining a fluxon with a chargeon.
In particular, what is the charge of the composite? This question is
surprisingly subtle; to answer cogently, we should think carefully about
how the charge can be measured.

In principle, charge can be measured in an Aharonov-Bohm interference
experiment. We could hide the object whose charge is to be found behind
a screen in between two slits, shoot a beam of carefully calibrated fluxons
at the screen, and detect the fluxons on the other side. From the shift and
visibility of the interference pattern revealed by the detected positions of
the fluxons, we can determine DR(b) for each b ∈ G, and so deduce R.
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However, there is a catch if the object being analyzed carries a nontrivial
flux a ∈ G as well as charge. Since carrying a flux b around the flux a
changes a to bab−1, the two possible paths followed by the b flux do not

interfere, if a and b do not commute. After the b flux is detected, we could
check whether the a flux has been modified, and determine whether the b
flux passed through the slit on the left or the slit on the right. Since the
flux (a or bab−1) is correlated with the “which way” information (left or
right slit), the interference is destroyed.

Therefore, the experiment reveals information about the charge only if
a and b commute. Hence the charge attached to a flux a is not described
as an irreducible representation of G; instead it is an irreducible repre-
sentation of a subgroup of G, the normalizer N (a) of a in G, which is
defined as

N (a) = {b ∈ G|ab = ba} . (9.42)

The normalizers N (a) and N (bab−1) are isomorphic, so we may associate
the normalizer with a conjugacy class α of G rather than with a par-
ticular element, and denote it as N (α). Therefore, each type of particle
that can occur in our nonabelian superconductor really has two labels:
a conjugacy class α describing the flux, and an irreducible representa-
tion R(α) of N (α) describing the charge. We say that α and R(α) label
the superselection sectors of the theory, as these are the properties of a
localized object that must be conserved in all local physical processes.
For particles that carry the labels (α, R(α)), it is possible to establish a
“bureau of standards” where altogether |α| · |R(α)| ≡ d(α,R(α)) different
particle species can be distinguished at a particular time and place —
this number is called the dimension of the sector. But if these particles
are braided with other particles the species may change, while the labels
(α, R(α)) remain invariant.

In any theory of anyons, a dimension can be assigned to each particle
type, although as we will see, in general the dimension need not be an
integer, and may have no direct interpretation in terms the counting of
distinct species of the same type. The total dimension D can be defined
by summing over all types; in the case of a nonabelian superconductor we
have

D2 =
∑

α

∑

R(α)

d2
(α,R(α))

=
∑

α

|α|2
∑

R(α)

|R(α)|2 . (9.43)

Since the sum over the dimension squared for all irreducible representa-
tions of a finite group is the order of the group, and the order of the
normalizer N (α) is |G|/|α|, we obtain

D2 =
∑

α

|α| · |G| = |G|2 ; (9.44)
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the total dimension is D = |G|.
For the case G = S3 there are 8 particle types, listed here:

Type Flux Charge Dim
A e [+] 1
B e [-] 1
C e [2] 2
D (12) [+] 3
E (12) [-] 3
F (123) [1] 2
G (123) [ω] 2
H (123) [ω̄] 2

If the flux is trivial (e), then the charge can be any one of the three
irreducible representations of S3 — the trivial one-dimensional represen-
tation [+], the nontrivial one-dimensional representation [-], or the two-
dimensional representation [2]. If the flux is a two-cycle, then the normal-
izer group is Z2, and the charge can be either the trivial representation
[+] or the nontrivial representation [-]. And if the flux is a three-cycle,
then the normalizer group is Z3, and the charge can be either the trivial
representation [1], the nontrivial representation [ω], or its conjugate rep-
resentation [ω̄]. You can verify that the total dimension is D = |S3| = 6,
as expected.

Note that since a commutes with all elements of N (a) by definition, the

matrix DR(a)
(a) that represents a in the irreducible representation R(a)

commutes with all matrices in the representation; therefore by Schur’s
lemma it is a multiple of the identity:

DR(a)
(a) = exp (iθR(a)) I . (9.45)

To appreciate the significance of the phase exp (iθR(a)), consider a flux-

charge composite in which a chargeon in representation R(a) is bound to
the flux a, and imagine rotating the composite object counterclockwise
by 2π. This rotation carries the charge around the flux, generating the
phase

e−2πiJ = eiθR(a) ; (9.46)

therefore each superselection sector has a definite value of the topological

spin, determined by θR(a) .
When two different particle types are fused together, the composite

object can be of various types, and the fusion rules of the theory specify
which types are possible. The flux of the composite can belong to any of
the conjugacy classes that can be obtained as a product of representatives
of the classes that label the two constituents. Finding the charge of the
composite is especially tricky, as we must decompose a tensor product of
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representations of two different normalizer groups as a sum of representa-
tions of the normalizer of the product flux. In the case G = S3, the rule
governing the fusion of two particles of type D, for example, is

D ×D = A+ C + F +G+H (9.47)

We have already noted that the fusion of two two-cycle fluxes can yield
either a trivial total flux or a three-cycle flux, and that the charge of the
composite with trivial total flux can be either [+] or [2]. If the total flux
is a three-cycle, then the charge eigenstates are just the braid operator
eigenstates that we constructed in eq. (9.33).

For a system of two anyons, why should the eigenstates of the total
charge also be eigenstates of the braid operator? We can understand this
connection more generally by thinking about the angular momentum of
the two-anyon composite object. The monodromy operator R2 captures
the effect of winding one particle counterclockwise around another. This
winding is almost the same thing as rotating the composite system coun-
terclockwise by 2π, except that the rotation of the composite system also
rotates both of the constituents. We can compensate for the rotation of
the constituents by following the counterclockwise rotation of the compos-
ite by a clockwise rotation of the constituents. Therefore, the monodromy
operator can be expressed as

(Rc
ab)

2 = e−2πiJce2πiJae2πiJb = ei(θc−θa−θb) . (9.48)

Here Rc
ab denotes the braid operator for a counterclockwise exchange of

particles of types a and b that are combined together into a composite
of type c, and we are using a more succinct notation than before, in
which a, b, c are complete labels for the superselection sectors (specifying,
in the nonabelian superconductor model, both the flux and the charge).
Since each superselection sector has a definite topological spin, and the
monodromy operator is diagonal in the topological spin basis, we see that
eigenstates of the braid operator coincide with charge eigenstates. Note
that eq. (9.48) generalizes our earlier observations about abelian anyons
— that a composite of two identical anyons has topological spin ei4θ, and
that the exchange phase of an anyon-antianyon pair (with trivial total
spin) is e−iθ.

9.11 Quantum computing with nonabelian fluxons

A model of anyons is characterized by the answers to two basic questions:
(1) What happens when two anyons are combined together (what are
the fusion rules)? (2) What happens when two anyons are exchanged
(what are the braiding rules)? We have discussed how these questions
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are answered in the special case of a nonabelian superconductor model
associated with a nonabelian finite group G, and now we wish to see
how these fusion and braiding rules can be invoked in a simulation of a
quantum circuit.

In formulating the simulation, we will assume these physical capabili-
ties:

Pair creation and identification. We can create pairs of particles, and
for each pair we can identify the particle type (the conjugacy class
α of the flux of each particle in the pair, and the particles’s charge
— an irreducible representation R(α) of the flux’s normalizer group
N (α)). This assumption is reasonable because there is no symmetry
relating particles of different types; they have distinguishable phys-
ical properties — for example, different energy gaps and effective
masses. In practice, the only particle types that will be needed are
fluxons that carry no charge and chargeons that carry no flux.

Pair annihilation. We can bring two particles together, and observe
whether the pair annihilates completely. Thus we obtain the answer
to the question: Does this pair of particles have trivial flux and
charge, or not? This assumption is reasonable, because if the pair
carries a nontrivial value of some conserved quantity, a localized
excitation must be left behind when the pair fuses, and this leftover
particle is detectable in principle.

Braiding. We can guide the particles along specified trajectories, and so
perform exchanges of the particles. Quantum gates will be simulated
by choosing particles world lines that realize particular braids.

These primitive capabilities allow us to realize some further derived
capabilities that will be used repeatedly. First, we can use the chargeons
to calibrate the fluxons and assemble a flux bureau of standards. Suppose
that we are presented with two pairs of fluxons in the states |a, a−1〉 and
|b, b−1〉, and we wish to determine whether the fluxes a and b match or
not. We create a chargeon-antichargeon pair, where the charge of the
chargeon is the irreducible representation R of G. Then we carry the
chargeon around a closed path that encloses the first member of the first
fluxon pair and the second member of the second fluxon pair, we reunite
the chargeon and antichargeon, and observed whether the chargeon pair
annihilates or not. Since the total flux enclosed by the chargeon’s path is
ab−1, the chargeon pair annihilates with probability

Prob(0) =

∣

∣

∣

∣

χR(ab−1)

|R|

∣

∣

∣

∣

2

, (9.49)
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which is less than one if the flux ab−1 is not the identity (assuming that the
representation R is not one-dimensional and represents ab−1 nontrivially).
Thus, if annihilation of the chargeon pair does not occur, we know for sure
that a and b are distinct fluxes, and each time annihilation does occur,
it becomes increasingly likely that a and b are equal. By repeating this
procedure a modest number of times, we can draw a conclusion about
whether a and b are the same, with high statistical confidence.

This procedure allows us to sort the fluxon pairs into bins, where each
pair in a bin has the same flux. If a bin contains n pairs, its state is, in
general, a mixture of states of the form

∑

a∈G

ψa|a, a−1〉⊗n . (9.50)

By discarding just one pair in the bin, each such state becomes a mixture

∑

a∈G

ρa

(

|a, a−1〉〈a, a−1|
)⊗(n−1)

; (9.51)

we may regard each bin as containing (n − 1) pairs, all with the same
definite flux, but where that flux is as yet unknown.

Which bin is which? We want to label the bins with elements of G. To
arrive at a consistent labeling, we withdraw fluxon pairs from three dif-
ferent bins. Suppose the three pairs are |a, a−1〉, |b, b−1〉, and |c, c−1〉, and
that we want to check whether c = ab. We create a chargeon-antichargeon
pair, carry the chargeon around a closed path that encloses the first mem-
ber of the first fluxon pair, the first member of the second fluxon pair,
and second member of the third fluxon pair, and observe whether the
reunited chargeon pair annihilates or not. Since the total flux enclosed
by the chargeon’s path is abc−1, by repeating this procedure we can de-
termine with high statistical confidence whether ab and c are the same.
Such observations allow us to label the bins in some manner that is consis-
tent with the group composition rule. This labeling is unique apart from
group automorphisms (and ambiguities arising from any automorphisms
may be resolved arbitrarily).

Once the flux bureau of standards is established, we can use it to mea-
sure the unknown flux of an unlabeled pair. If the state of the pair to
be measured is |d, d−1〉, we can withdraw the labeled pair |a, a−1〉 from
a bin, and use chargeon pairs to measure the flux ad−1. By repeating
this procedure with other labeled fluxes, we can eventually determine the
value of the flux d, realizing a projective measurement of the flux.

For a simulation of a quantum circuit using fluxons, we will need to
perform logic gates that act upon the value of the flux. The basic gate we
will use is realized by winding counterclockwise a fluxon pair with state
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|a, a−1〉 around the first member of another fluxon pair with state |b, b−1〉.
Since the |a, a−1〉 pair has trivial total flux, the |b, b−1〉 pair is unaffected
by this procedure. But since in effect the flux b travels counterclockwise
about both members of the pair whose initial state was |a, a−1〉, this pair
is transformed as

|a, a−1〉 7→ |bab−1, ba−1b−1〉 . (9.52)

We will refer to this operation as the conjugation gate acting on the fluxon
pair.

To summarize what has been said so far, our primitive and derived
capabilities allow us to: (1) Perform a projective flux measurement, (2)
perform a destructive measurement that determines whether or not the
flux and charge of a pair is trivial, and (3) execute a conjugation gate.
Now we must discuss how to simulate a quantum circuit using these ca-
pabilities.

The next step is to decide how to encode qubits using fluxons. Ap-
propriate encodings can be chosen in many ways; we will stick to one
particular choice that illustrates the key ideas — namely we will encode a
qubit by using a pair of fluxons, where the total flux of the pair is trivial.
We select two noncommuting elements a, b ∈ G, where b2 = e, and choose
a computational basis for the qubit

|0̄〉 = |a, a−1〉 , |1̄〉 = |bab−1, ba−1b−1〉 . (9.53)

The crucial point is that a single isolated fluxon with flux a looks iden-
tical to a fluxon with the conjugate flux bab−1. Therefore, if the two
fluxons in a pair are kept far apart from one another, local interactions
with the environment will not cause a superposition of the states |0̄〉 and
|1̄〉 to decohere. The quantum information is protected from damage be-
cause it is stored nonlocally, by exploiting a topological degeneracy of the
states where the fluxon and antifluxon are pinned to fixed and distantly
separated positions.

However, in contrast with the topological degeneracy that arises in
systems with abelian anyons, this protected qubit can be measured rela-
tively easily, without resorting to delicate interferometric procedures that
extract Aharonov-Bohm phases. We have already described how to mea-
sure flux using previously calibrated fluxons; therefore we can perform
a projective measurement of the encoded Pauli operator Z̄ (a projection
onto the basis {|0̄〉, |1̄〉}). We can also measure the complementary Pauli
operator X̄ , albeit destructively and imperfectly. The X̄ eigenstates are

|±〉 =
1√
2

(|0̄〉 ± |1̄〉) ≡ 1√
2

(

|a, a−1〉 ± |bab−1, ba−1b−1〉
)

; (9.54)
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therefore the state |−〉 is orthogonal to the zero-charge state

|0;α〉 =
1

√

|α|

(

∑

c∈α

|c, c−1〉
)

, (9.55)

where α is the conjugacy class that contains a. On the other hand, the
state |+〉 has a nonzero overlap with |0;α〉

〈+|0;α〉 =
√

2/|α| ; (9.56)

Therefore, if the two members of the fluxon pair are brought together,
complete annihilation is impossible if the state of the pair is |−〉, and
occurs with probability Prob(0) = 2/|α| if the state is |+〉.

Note that it is also possible to prepare a fluxon pair in the state |+〉.
One way to do that is to create a pair in the state |0;α〉. If α contains
only the two elements a and bab−1 we are done. Otherwise, we compare
the newly created pair with calibrated pairs in each of the states |c, c−1〉,
where c ∈ α and c is distinct from both a and bab−1. If the pair fails to
match any of these |c, c−1〉 pairs, its state must be |+〉.

To go further, we need to characterize the computational power of the
conjugation gate. Let us use a more compact notation, in which the
state |x, x−1〉 of a fluxon pair is simply denoted |x〉, and consider the
transformations of the state |x, y, z〉 that can be built from conjugation
gates. By winding the third pair through the first, either counterclockwise
or clockwise, we can execute the gates

|x, y, z〉 7→ |x, y, xzx−1〉 , |x, y, z〉 7→ |x, y, x−1zx〉 , (9.57)

and by winding the third pair through the second, either counterclockwise
or clockwise, we can execute

|x, y, z〉 7→ |x, y, yzy−1〉 , |x, y, z〉 7→ |x, y, y−1zy〉 ; (9.58)

furthermore, by borrowing a pair with flux |c〉 from the bureau of stan-
dards, we can execute

|x, y, z〉 7→ |x, y, czc−1〉 (9.59)

for any constant c ∈ G. Composing these elementary operations, we can
execute any gate of the form

|x, y, z〉 7→ |x, y, fzf−1〉 , (9.60)

where the function f(x, y) can be expressed in product form — that is,
as a finite product of group elements, where the elements appearing in
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the product may be the inputs x and y, their inverses x−1 and y−1, or
constant elements of G, each of which may appear in the product any
number of times.

What are the functions f(x, y) that can be expressed in this form?
The answer depends on the structure of the group G, but the following
characterization will suffice for our purposes. Recall that a subgroup H
of a finite group G is normal if for any h ∈ H and any g ∈ G, ghg−1 ∈ H ,
and recall that a finite group G is said to be simple if G has no normal
subgroups other than G itself and the trivial group {e}. It turns out that
if G is a simple nonabelian finite group, then any function f(x, y) can be
expressed in product form. In the computer science literature, a closely
related result is often called Barrington’s theorem.

In particular, then, if the group G is a nonabelian simple group, there
is a function f realizable in product form such that

f(a, a) = f(a, bab−1) = f(bab−1, a) = e , f(bab−1, bab−1) = b . (9.61)

Thus for x, y, z ∈ {a, bab−1}, the action eq. (9.60) causes the flux of the
third pair to “flip” if and only if x = y = bab−1; we have constructed
from our elementary operations a Toffoli gate in the computational ba-
sis. Therefore, conjugation gates suffice for universal reversible classical

computation acting on the standard basis states.
The nonabelian simple group of minimal order is A5, the group of even

permutations of five objects, with |A5| = 60. Therefore, one concrete
realization of universal classical computation using conjugation gates is
obtained by choosing a to be the three-cycle element a = (345) ∈ A5, and
b to be the product of two-cycles b = (12)(34) ∈ A5, so that bab−1 = (435).

With this judicious choice of the groupG, we achieve a topological real-
ization of universal classical computation, but how can be go still further,
to realize universal quantum computation? We have the ability to prepare
computational basis states, to measure in the computational basis, and
to execute Toffoli gates, but these tools are entirely classical. The only
nonclassical tricks at our disposal are the ability to prepare X̄ = 1 eigen-
states, and the ability to perform an imperfect destructive measurement
of X̄. Fortunately, these additional capabilities are sufficient.

In our previous discussions of quantum fault tolerance, we have noted
that if we can do the classical gates Toffoli and CNOT, it suffices for
universal quantum computation to be able to apply each of the Pauli op-
erators X , Y , and Z, and to be able to perform projective measurements
of each of X , Y , and Z. We already know how to apply the classical
gate X and to measure Z (that is, project onto the computational basis).
Projective measurement of X and Y , and execution of Z, are still missing
from our repertoire. (Of course, if we can apply X and Z, we can also
apply their product ZX = iY .)
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Next, let’s see how to elevate our imperfect destructive measurement
of X to a reliable projective measurement of X . Recall the action by
conjugation of a CNOT on Pauli operators:

CNOT : XI 7→ XX , (9.62)

where the first qubit is the control and the second qubit is the target of
the CNOT. Therefore, CNOT gates, together with the ability to prepare
X = 1 eigenstates and to perform destructive measurements of X , suffice
to realize projective measurements of X . We can prepare an ancilla qubit
in the X = 1 eigenstate, perform a CNOT with the ancilla as control
and the data to be measured as target, and then measure the ancilla
destructively. The measurement prepares the data in an eigenstate of X ,
whose eigenvalue matches the outcome of the measurement of the ancilla.
In our case, the destructive measurement is not fully reliable, but we
can repeat the measurement multiple times. Each time we prepare and
measure a fresh ancilla, and after a few repetitions, we have acceptable
statistical confidence in the inferred outcome of the measurement.

Now that we can measure X projectively, we can prepare X = −1
eigenstates as well as X = 1 eigenstates (for example, we follow a Z mea-
surement with an X measurement until we eventually obtain the outcome
X = −1). Then, by performing a CNOT gate whose target is an X = −1
eigenstate, we can realize the Pauli operator Z acting on the control qubit.
It only remains to show that a measurement of Y can be realized.

Measurement of Y seems problematic at first, since our physical capa-
bilities have not provided any means to distinguish between Y = 1 and
Y = −1 eigenstates (that is, between a state ψ and its complex conjugate
ψ∗). However, this ambiguity actually poses no serious difficulty, because
it makes no difference how the ambiguity is resolved. Were we to replace
measurement of Y by measurement of −Y in our simulation of a unitary
transformation U , the effect would be that U∗ is simulated instead; this
replacement would not alter the probability distributions of outcomes for
measurements in the standard computational basis.

To be explicit, we can formulate a protocol for measuring Y by noting
first that applying a Toffoli gate whose target qubit is an X = −1 eigen-
state realizes the controlled-phase gate Λ(Z) acting on the two control
qubits. By composing this gate with the CNOT gate Λ(X), we obtain
the gate Λ(iY ) acting as

Λ(iY ) : |X = +1〉 ⊗ |Y = +1〉 7→ |Y = +1〉 ⊗ |Y = +1〉 ,
|X = +1〉 ⊗ |Y = −1〉 7→ |Y = −1〉 ⊗ |Y = −1〉 ,
|X = −1〉 ⊗ |Y = +1〉 7→ |Y = −1〉 ⊗ |Y = +1〉 ,
|X = −1〉 ⊗ |Y = −1〉 7→ |Y = +1〉 ⊗ |Y = −1〉 , (9.63)
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where the first qubit is the control and the second is the target. Now
suppose that my trusted friend gives me just one qubit that he assures
me has been prepared in the state |Y = 1〉. I know how to prepare
|X = 1〉 states myself and I can execute Λ(iY ) gates; therefore since a
Λ(iY ) gate with |Y = 1〉 as its target transforms |X = 1〉 to |Y = 1〉, I
can make many copies of the |Y = 1〉 state I obtained from my friend.
When I wish to measure Y , I apply the inverse of Λ(iY ), whose target is
the qubit to be measured, and whose control is one of my Y = 1 states;
then I perform an X measurement of the ancilla to read out the result of
the Y measurement of the other qubit.

What if my friend lies to me, and gives me a copy of the state |Y = −1〉
instead? Then I’ll make many copies of the |Y = −1〉 state, and I will
be measuring −Y when I think I am measuring Y . My simulation will
work just the same as before; I’ll actually be simulating the complex
conjugate of the ideal circuit, but that won’t change the final outcome of
the quantum computation. If my friend flipped a coin to decide whether
to give me the |Y = 1〉 state or the |Y = −1〉, this too would have no
effect on the fidelity of my simulation. Therefore, it turns out I don’t
need by friend’s help at all — instead of using the |Y = 1〉 state I would
have received from him, I may use the random state ρ = I/2 (an equally
weighted mixture of |Y = 1〉 and |Y = −1〉, which I know how to prepare
myself).

This completes the demonstration that we can simulate a quantum cir-
cuit efficiently and fault tolerantly using the fluxons and chargeons of
a nonabelian superconductor, at least in the case where G is a simple
nonabelian finite group.§ Viewed as a whole, including all state prepara-
tion and calibration of fluxes, the simulation can be described this way:
Many pairs of anyons (fluxons and chargeons) are prepared, the anyon
world lines follow a particular braid, and pairs of anyons are fused to see
whether they will annihilate. The simulation is nondeterministic in the
sense that the actual braid executed by the anyons depends on the out-
comes of measurements performed (via fusion) during the course of the
simulation. It is robust if the temperature is low compared to the energy
gap, and if particles are kept sufficiently far apart from one another (ex-
cept when pairs are being created and fused), to suppress the exchange
of virtual anyons. Small deformations in the world lines of the particles
have no effect on the outcome of the computation, as long as the braiding
of the particles is in the correct topological class.

§ Mochon has shown that universal quantum computation is possible for a larger class
of groups.
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9.12 Anyon models generalized

Our discussion of the nonabelian superconductor model provides an exis-
tence proof for fault-tolerant quantum computation using anyons. But the
model certainly has drawbacks. The scheme we described lacks beauty,
elegance, or simplicity.

I have discussed this model in such detail because it is rather concrete
and so helps us to build intuition about the properties of nonabelian
anyons. But now that we understand better the key concepts of braiding
and fusing in anyon models, we are ready to start thinking about anyons
in a more general and abstract way. Our new perspective will lead us
to new models, including some that are far simpler than those we have
considered so far. We will be able to jettison much of the excess baggage
that burdened the nonabelian superconductor model, such as the distinc-
tion between fluxons and chargeons, the calibration of fluxes, and the
measurements required to simulate nonclassical gates. The simpler mod-
els we will now encounter are more naturally conducive to fault-tolerant
computing, and more plausibly realizable in reasonable physical systems.

A model of anyons is a theory of particles on a two-dimensional surface
(which we will assume to be the plane), where the particles carry locally
conserved charges. We also assume that the theory has a mass gap, so
that there are no long-range interactions between particles mediated by
massless particles. The model has three defining properties:

1. A list of particle types. The types are labels that specify the possible
values of the conserved charge that a particle can carry.

2. Rules for fusing and splitting, which specify the possible values of the
charge that can be obtained when two particles of known charge
are combined together, and the possible ways in which the charge
carried by a single particle can be split into two parts.

3. Rules for braiding, which specify what happens when two particles are
exchanged (or when one particle is rotated by 2π).

Let’s now discuss each of these properties in more detail.

9.12.1 Labels

I will use Latin letters {a, b, c, . . .} for the labels that distinguish different
types of particles. (For the case of the nonabelian superconductor, the
label was (α, R(α)), specifying a conjugacy class and an irreducible rep-
resentation of the normalizer of the class, but now our notation will be
more compact). We will assume that the set of possible labels is finite.
The symbol a represents the value of the conserved charge carried by the
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particle. Sometimes we say that this label specifies a superselection sector

of the theory. This term just means that the label a is a property of a
localized object that cannot be changed by any local physical process.
That is, if one particle is at all times well isolated from other particles,
its label will never change. In particular, local interactions between the
particle and its environment may jostle the particle, but will not alter the
label. This local conservation of charge is the essential reason that anyons
are amenable to fault-tolerant quantum information processing.

There is one special label — the identity label 1. A particle with the
label 1 is really the same thing as no particle at all. Furthermore, for
each particle label a there is a conjugate label ā, and there is a charge

conjugation operation C (where C2 = I) acting on the labels that maps
a label to its conjugate:

C : a 7→ ā 7→ a . (9.64)

It is possible for a label to be self-conjugate, so that ā = a. For example,
1̄ = 1.

We will want to consider states of n particles, where the particles have
a specified order. Therefore, it is convenient to imagine that the particles
are arranged on a particular line (such as the real axis) from left to right
in consecutive order. The n particles are labeled (a1, a2, a3 . . . , an), where
a1 is attached to the particle furthest to the left, an to the particle furthest
to the right.

9.12.2 Fusion spaces

When two particles are combined together, the composite object also has
a charge. The fusion rules of the model specify the possible values of the
total charge c when the constituents have charges a and b. These can be
written

a × b =
∑

c

N c
ab c , (9.65)

where each N c
ab is a nonnegative integer and the sum is over the complete

set of labels. Note that a, b and c are labels, not vector spaces; the
product on the left-hand side is not a tensor product and the sum on
the right-hand side is not a direct sum. Rather, the fusion rules can be
regarded as an abstract relation on the label set that maps the ordered
triple (a, b; c) to N c

ab. This relation is symmetric in a and b (a×b = b×a)
— the possible charges of the composite do not depend on whether a is on
the left or the right. Read backwards, the fusion rules specify the possible
ways for the charge c to split into two parts with charges a and b.

If N c
ab = 0, then charge c cannot be obtained when we combine a and

b. If N c
ab = 1, then c can be obtained — in a unique way. If N c

ab > 1,
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then c can be obtained in N c
ab distinguishable ways. The notion that

fusing two charges can yield a third charge in more than one possible way
should be familiar from group representation theory. For example, the
rule governing the fusion of two octet representations of SU(3) is

8× 8 = 1 + 8 + 8 + 10 + 10 + 27 , (9.66)

so that N 8
88 = 2. We emphasize again, however, that while the fusion

rules for group representations can be interpreted as a decomposition of a
tensor product of vector spaces as a direct sum of vector spaces, in general
the fusion rules in an anyon model have no such interpretation.

The N c
ab distinguishable ways that c can arise by fusing a and b can

be regarded as the orthonormal basis states of a Hilbert space V c
ab. We

call V c
ab a fusion space and the states it contains fusion states. The basis

elements for V c
ab may be denoted

{|ab; c, µ〉 , µ = 1, 2, . . . , N c
ab} . (9.67)

It is quite convenient to introduce a graphical notation for the fusion basis
states:

a

c

b

| ; ,ab c

a

c

b

; , |ab c

The state |ab; c, µ〉 is represented as a circle containing the symbol µ;
connected to the circle are lines labeled a and b with incoming arrows,
representing the charges being fused, and a line labeled c with an outgoing
arrow, representing the result of the fusion. There is a dual vector space
V ab

c describing the states that arise when charge c splits into charges a
and b, and a dual basis with the sense of the arrow reversed (c coming in,
a and b going out). The spaces V c

ab with different values of c are mutually
orthogonal, so that the fusion basis elements satisfy

〈ab; c′µ′|ab; c, µ〉 = δc′

c δ
µ′

µ , (9.68)

and the completeness of the fusion basis can be expressed as
∑

c,µ

|ab; c, µ〉〈ab; c, µ| = Iab , (9.69)

where Iab denotes the projector onto the space ⊕cV
c
ab, the full Hilbert

space for the anyon pair ab.
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c

a

c´

´

b
c

c

a

c

b

a b

a b

,c

There are some natural isomorphisms among fusion spaces. First of all,
V c

ab
∼= V c

ba; these vector spaces are associated with different labelings of
the two particles (if a 6= b) and so should be regarded as distinct, but they
are isomorphic spaces because fusion is symmetric. We may also “raise
and lower indices” of a fusion space by replacing a label by its conjugate,
e.g.,

V c
ab

∼= V b̄
ac̄

∼= V 1
abc̄

∼= V b̄c
a ,∼= V āb̄

c̄
∼= · · · ; (9.70)

in the diagrammatic notation, we have the freedom to reverse the sense
of a line while conjugating the line’s label. The space V 1

abc̄, represented
as a diagram with three incoming lines, is the space spanned by the dis-
tinguishable ways to obtain the trivial total charge 1 when fusing three
particles with labels a, b, c̄.

The charge 1 deserves its name because it fuses trivially with other
particles:

a× 1 = a . (9.71)

Because of the isomorphism V a
a1

∼= V 1
aā, we conclude that ā is the unique

label that can fuse with a to yield 1, and that this fusion can occur in
only one way. Similarly, V a

a1
∼= V aā

1 means that pairs of particles created
out of the vacuum have conjugate charges.

An anyon model is nonabelian if

dim

(

⊕

c

V c
ab

)

=
∑

c

N c
ab ≥ 2 (9.72)

for at least some pair of labels ab; otherwise the model is abelian. In an
abelian model, any two particles fuse in a unique way, but in a nonabelian
model, there are some pairs of particles that can fuse in more than one
way, and there is a Hilbert space of two or more dimensions spanned by
these distinguishable states. We will refer to this space as the “topological
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Hilbert space” of the pair of anyons, to emphasize that this quantum
information is encoded nonlocally — it is a collective property of the
pair, not localized on either particle. Indeed, when the two particles with
labels a and b are far apart, different states in the topological Hilbert
space look identical locally. Therefore, this quantum information is well
hidden, and invulnerable to decoherence due to local interactions with
the environment.

It is for this reason that we propose to use nonabelian anyons in the
operation of a quantum computer. Of course, nonlocally encoded infor-
mation is not only hidden from the environment; we are unable to read
it ourselves as well. However, with nonabelian anyons, we can have our
cake and eat it too! At the conclusion of a quantum computation, when
we are ready to perform the readout, we can bring the anyons together
in pairs and observe the result of this fusion. In fact, it will suffice to
distinguish the case where the charge of the composite is c = 1 from the
case c 6= 1 — that is, to distinguish a residual particle (unable to decay
because of its nontrivial conserved charge) from no particle at all.

Note that for each pair of anyons this topological Hilbert space is finite-
dimensional. An anyon model with this property is said to be rational.
As in our discussion of the topologically degenerate ground state for an
abelian model, anyons in rational nonabelian models always have topo-
logical spins that are roots of unity.

9.12.3 Braiding: the R-matrix

When two particles with labels a and b undergo a counterclockwise ex-
change, their total charge c is unchanged. Therefore, since the two parti-
cles swap positions on the line, the swap induces a natural isomorphism
mapping the Hilbert space V c

ba to V c
ab; this map is the braid operator

R : V c
ba → V c

ab . (9.73)

If we choose canonical bases {|ba; c, µ〉} and {|ab; c, µ′〉} for these two
spaces, R can be expressed as the unitary matrix

R : |ba; c, µ〉 7→
∑

µ′

|ab; c, µ′〉 (Rc
ab)

µ′

µ ; (9.74)

note that R may have a nontrivial action on the fusion states. When
we represent the action of R diagrammatically, it is convenient to fix the
positions of the labels a and b on the incoming lines, and twist the lines
counterclockwise as they move toward the fusion vertex (µ)— the graph
with twisted lines represents the state in V c

ab obtained by applying R to
|ba; c, µ〉, which can be expanded in terms of the canonical basis for V c

ab:
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a b

c

a b

c

c

baR

The monodromy operator

R2 : V c
ab → V c

ab (9.75)

is an isomorphism from V c
ab to itself, representing the effect of winding a

counterclockwise around b. As we already remarked in our discussion of
the nonabelian superconductor, the monodromy operator is equivalent to
rotating c by 2π while rotating a and b by −2π; therefore, the eigenvalues
of the monodromy operator are determined by the topological spins of the
particles:

(Rc
ab)

2 = e−2πiJce2πiJae2πiJb ≡ ei(θc−θa−θb) . (9.76)

Furthermore, as we argued for the case of abelian anyons, the topological
spin is determined by the braid operator acting on a particle-antiparticle
pair with trivial total charge:

e−iθa = R1
aā (9.77)

(because creating a pair, exchanging, and annihilating is equivalent to
rotating the particle by −2π).

9.12.4 Associativity of fusion: the F -matrix

Fusion is associative:

(a× b)× c = a× (b× c) . (9.78)

Mathematically, this is an axiom satisfied by the fusion rules of an anyon
model. Physically, it is imposed because the total charge of a system of
three particles is an intrinsic property of the three particles, and ought
not to depend on whether we first fuse a and b and then fuse the result
with c, or first fuse b and c and then fuse the result with a.

Therefore, when three particles with charges a, b, c are fused to yield a
total charge of d, there are two natural ways to decompose the topological
Hilbert space in terms of the fusion spaces of pairs of particles:

V d
abc

∼=
⊕

e

V e
ab ⊗ V d

eb
∼=
⊕

e′

V d
ae′ ⊗ V e′

bc . (9.79)
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Correspondingly, there are two natural orthonormal bases for V d
abc, which

we may denote

|(ab)c→ d; eµν〉 ≡ |ab; e, µ〉 ⊗ |ec; d, ν〉 ,
|a(bc) → d; e′µ′ν′〉 ≡ |ae′; d, ν′〉 ⊗ |bc; e′, µ′〉 , (9.80)

and which are related by a unitary transformation F :

|(ab)c→ d; eµν〉 =
∑

e′µ′ν′

|a(bc) → d; e′µ′ν′〉
(

F d
abc

)e′µ′ν′

eµν
. (9.81)

a b c

d

a b c

e
d

abc
e

e

F
e e´

d

The unitary matrices F d
abc are sometimes called fusion matrices; how-

ever, rather than risk causing confusion between F and the fusion rules

N c
ab, I will just call it the F -matrix.

9.12.5 Many anyons: the standard basis

In an anyonic quantum computer, we process the topological quantum
state of n anyons by braiding the anyons. For describing this computation,
it is convenient to adopt a standard basis for such a Hilbert space.

Suppose that n anyons with total charge c, arranged sequentially along
a line, carry labels a1, a2, a3, . . . , an. Imagine fusing anyons 1 and 2, then
fusing the result with anyon 3, then fusing the result with anyon 4, and
so on. Associated with fusion in this order is a decomposition of the
topological Hilbert space of the n anyons

V c
a1a2a3···an

∼=
⊕

b1,b2,...,bn−2

V b1
a1a2

⊗ V b2
b1a3

⊗ V b3
b2a4

⊗ · · · ⊗ V c
bn−2an

. (9.82)

Note that this space does not have a natural decomposition as a tensor
product of subsystems associated with the localized particles; rather, we
have expressed it as a direct sum of many tensor products. For nonabelian
anyons, its dimension

dim
(

V c
a1a2a3···an

)

≡ N c
a1a2a3···an

=
∑

b1,b2,b3,...bn−2

N b1
a1a2

N b2
b1a3

N b3
b2a4

. . .N c
bn−2an

(9.83)
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is exponential in n; thus the topological Hilbert space is a suitable arena
for powerful quantum information processing.

This decomposition of V c
a1a2a3···an

suggests a standard basis whose ele-
ments are labeled by the intermediate charges b1, b2, . . . bn−2 and by the

basis elements {|µj〉} for the fusion spaces V
bj

bj−1,aj+1
:

{|a1a2; b1, µ1〉|b1a3; b2, µ2〉 · · · |bn−3an−1; bn−2, µn−2〉|bn−2an; c, µn−1〉} ,
(9.84)

or in diagrammatic notation:

1na
1

a
2

b
1

a
3

b
2

a
4

b
n-2

a
n-1

c

a
n

1 2 2n3

b
3

b
n-3

Of course, this basis is chosen arbitrarily. If we preferred, we could imag-
ine fusing the particles in a different order, and would obtain a different
basis that can be expressed in terms of our standard one with help from
the F -matrix.

9.12.6 Braiding in the standard basis: the B-matrix

We would like to consider what happens to states of the topological vector
space V c

a1a2a3···an
of n anyons when the particles are exchanged with one

another. Actually, since exchanges can swap the positions of particles with
distinct labels, they may map one topological vector space to another by
permuting the labels. Nevertheless, we can consider the direct sums of the
vector spaces associated with all the possible permutations of the labels,
which will provide a representation of the braid group Bn.

We would like to describe how this representation acts on the standard
bases for these spaces. It suffices to say how exchanges of neighboring
particles are represented; that is, to specify the action of the generators
of the braid group. However, so far, we have discussed only the action of
the braid group on a pair of particles with definite total charge (the R-
matrix), which is not in itself enough to tell us its action on the standard
bases.

The way out of this quandary is to observe that, by applying the F -
matrix, we can move from the standard basis to the basis in which the
R-matrix is block diagonal, apply R, and then apply F−1 to return to the
standard basis:



48 9 Topological quantum computation

F R 1F

The composition of these three operations, which expresses the effect of
braiding in the standard basis, is denoted B and sometimes called the
“braid matrix;” but to avoid confusion between B and R, I will just call
it the B-matrix.

Consider exchanging the anyons in positions j and j+1 along the line.
In our decomposition of V c

a1a2a3···an
, this exchange acts on the space

V
bj

bj−2,aj ,aj+1
=
⊕

bj−1

V
bj−1

bj−2,aj
⊗ V

bj

bj−1,aj+1
. (9.85)

To reduce the number of subscripts, we will call this space V d
acb, which is

transformed by the exchange as

B : V d
acb → V d

abc . (9.86)

Let us express the action of B in terms of the standard bases for the two
spaces V d

acb and V d
abc.

b c

a d
e

a d

b c

e´

e
d

abc
e

e

B

To avoid cluttering the equations, I suppress the labels for the fusion
space basis elements (it is obvious where they should go). Hence we write

B|(ac)b→ d; e〉 =
∑

f

B|a(cb) → d; f〉
(

F d
acb

)f

e

=
∑

f

|a(bc) → d; f〉Rf
bc

(

F d
acb

)f

e

=
∑

f,g

|(ab)c→ d; g〉
[

(

F−1
)d

abc

]g

f
Rf

bc

(

F d
acb

)f

e
,

(9.87)
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or

B : |(ac)b→ d; e〉 7→
∑

g

|(ab)c→ d; g〉
(

Bd
abc

)g

e
, (9.88)

where

(

Bd
abc

)g

e
=
∑

f

[

(

F−1
)d

abc

]g

f
Rf

bc

(

F d
acb

)f

e
. (9.89)

We have expressed the action of the B-matrix in the standard basis in
terms of the F -matrix and R-matrix, as desired.

Thus, the representation of the braid group realized by n anyons is com-
pletely characterized by the F -matrix and the R-matrix. Furthermore, we
have seen that the R matrix also determines the topological spins of the
anyons, so that we have actually constructed a representation of a larger
group whose generators include both the exchanges of neighboring parti-
cles and 2π rotations of the particles. A good name for this group would
be the ribbon group, as its elements are in one-to-one correspondence with
the topological classes of braided ribbons (which can be twisted) rather
than braided strings; however, mathematicians have already named it
“the mapping class group for the sphere with n punctures.”

And with that observation we have completed our description of an
anyon model in this general setting. The model is specified by: (1) a
label set, (2) the fusion rules, (3) the R-matrix, and (4) the F matrix.

The mathematical object we have constructed is called a unitary topo-

logical modular functor, and it is closely related to two other objects that
have been much studied: topological quantum field theories in 2+1 space-
time dimensions, and conformal field theories in 1+1 spacetime dimen-
sions. However, we will just call it an anyon model.

9.13 Simulating anyons with a quantum circuit

A topological quantum computation is executed in three steps:

1. Initialization: Particle-antiparticle pairs c1c̄1, c2c̄2, c3c̄3, . . . , cmc̄m are
created. Each pair is of a specified type and has trivial total charge.

2. Processing. The n = 2m particles are guided along trajectories, their
world lines following a specified braid.

3. Readout. Pairs of neighboring particles are fused together, and it is
recorded whether each pair annihilates fully or not. This record is
the output of the computation.
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(In the case of the nonabelian superconductor model of computation, we
allowed the braiding to be conditioned on the outcome of fusing carried
out during the processing stage. But now we are considering a model in
which all measurements are delayed until the final readout.)

How powerful is this model of computation? I claim that this topologi-
cal quantum computer can be simulated efficiently by a quantum circuit.
Since the topological Hilbert space of n anyons does not have a simple
and natural decomposition as a tensor product of small subsystems, this
claim may not be immediately obvious. To show it we must explain:

1. How to encode the topological Hilbert space using ordinary qubits.

2. How to represent braiding efficiently using quantum gates.

3. How to simulate the fusion of an anyon pair.

Encoding. Since each pair produced during initialization has trivial
total charge, the initial state of the n anyons also has trivial total charge.
Therefore, the topological Hilbert space is

V 1
a1a2a3···an

∼=
⊕

b1,b2,...,bn−3

V b1
a1a2

⊗ V b2
b1a3

⊗ · · · ⊗ V ān
bn−3an−1

, (9.90)

for some choice of the labels a1, a2, a3, . . .an; there are n−3 intermediate
charges and n− 2 fusion spaces appearing in each summand. Exchanges
of the particles swap the labels, but after each exchange the vector space
still has the form eq. (9.90) with labels given by some permutation of the
original labels.

Although each n-anyon topological Hilbert spaces is not itself a tensor
products of subsystems, all of these spaces are contained in

(Hd)
⊗(n−2) , (9.91)

where
Hd =

⊕

a,b,c

V 1
abc . (9.92)

Here, a, b, c are summed over the complete label set of the model (which
we have assumed is finite), so that Hd contains all the possible fusion
states of three particles, and the dimension d of Hd is

d =
∑

a,b,c

N 1
abc . (9.93)

Thus the state of n anyons can be encoded in the Hilbert space of n− 2
qudits for some constant d (which depends on the anyon model but is
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independent of n). The basis states of this qudit can be chosen to be
{|a, b, c;µ〉}, where µ labels an element of the basis for the fusion space
V 1

abc.
Braiding. In the topological quantum computer, a braid is executed by

performing a sequence of exchanges, each acting on a pair of neighboring
particles. The effect of each exchange in the standard basis is described by
the B-matrix. How is B represented acting on our encoding of the topo-
logical vector space (using qudits)? Suppressing fusion states, our basis
for two-qudit states can be denoted |a, b, c〉|d, e, f̄〉. But in the topolog-
ical quantum computer, the labels d and c̄ always match, and therefore
to perform our simulation of braiding we need only consider two-qudit
states whose labels match in this sense:

g
f

aeb d
g

B
a fdd

be

a fgg

be

Then the action of the B-matrix on these basis states is

B : |a, b, d̄〉|d, e, f̄〉 7→
∑

g

|a, e, ḡ〉|g, b, f̄〉
(

Bf
aeb

)g

d
. (9.94)

As desired, we have represented the B as a d2 × d2 matrix acting on a
pair of neighboring qudits.

Fusion. Fusion of a pair of anyons can be simulated by a two-qudit
measurement, which can be reduced to a single-qudit measurement with
a little help from the F -matrix:

g
f

abe d
g

F
a fdd

eb

a

e

g

f

b

g

Consider a basis state |a, b, d̄〉|d, e, f̄〉 for a pair of neighboring qudits;
what is the amplitude for the anyon pair (be) to have trivial total charge?
Using an F -move, the state can be expanded as

F : |a, b, d̄〉|d, e, f̄〉 7→
∑

g

|a, g, f̄〉|b, ḡ, e〉
(

F f
abe

)g

d

= |a, 1, f̄〉|b, 1, e〉
(

F f
abe

)1

d
+
∑

g 6=1

|a, g, f̄〉|b, ḡ, e〉
(

F f
abe

)g

d
;(9.95)
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we have separated the sum over g into the component for which (be) fuses
to 1, plus the remainder. After the F -move which (is just a particular
two-qudit unitary gate), we can sample the probability that (be) fuses to
1 by performing a projective measurement of the second qudit in the basis
{|b, ḡ, e〉}, and recording whether g = 1.

This completes our demonstration that a quantum circuit can simulate
efficiently a topological quantum computer.

9.14 Fibonacci anyons

Now we have established that topological quantum computation is no
more powerful than the quantum circuit model — any problem that can
be solved efficiently by braiding nonabelian anyons can also be solved
efficiently with a quantum circuit. But is it as powerful? Can we simulate
a universal quantum computer by braiding anyons? The answer depends
on the specific properties of the anyons: some nonabelian anyon models
are universal, others are not. To find the answer for a particular anyon
model, we need to understand the properties of the representations of the
braid group that are determined by the F -matrix and R-matrix.

Rather than give a general discussion, we will study one especially
simple nonabelian anyon model, and demonstrate its computational uni-
versality. This model is the very simplest nonabelian model — conformal
field theorists call it the “Yang-Lee model,” but I will call it the “Fibonacci
model” for reasons that will soon be clear.

In the Fibonacci model there are only two labels — the trivial label,
which I will now denote 0, and a single nontrivial label that I will call 1,
where 1̄ = 1. And there is only one nontrivial fusion rule:

1 × 1 = 0 + 1 ; (9.96)

when two anyons are brought together they either annihilate, or fuse to
become a single anyon. The model is nonabelian because two anyons can
fuse in two distinguishable ways.

Consider the standard basis for the Hilbert space V b
1n of n anyons, where

each basis element describes a distinguishable way in which the n anyons
could fuse to give total charge b ∈ {0, 1}. If the two anyons furthest to
the left were fused first, the resulting charge could be 0 or 1; this charge
could then fuse with the third anyon, yielding a total charge of 0 or 1,
and so on. Finally, the last anyon fuses with the total charge of the first
n − 1 anyons to give the total charge b. Altogether n − 2 intermediate
charges b1, b2, b3, . . . bn−2 appear in this description of the fusion process;
thus the corresponding basis element can be designated with a binary
string of length n − 2. If the total charge is 0, the result of fusing the
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first n− 1 anyons has to be 1, so the basis states are labeled by strings of
length n− 3.

However, not all binary strings are allowed — a 0 must always be
followed by a 1. There cannot be two zeros in a row because when the
charge 0 fuses with 1, a total charge of 1 is the only possible outcome.
Otherwise, there is no restriction on the sequence. Therefore, the basis
states are in one-to-one with the binary strings that do not contain two
successive 0’s.

Thus the dimensions N 0
n ≡ N 0

1n of the topological Hilbert spaces V 0
1n

obey a simple recursion relation. If the fusion of the first two particles
yields trivial total charge, then the remaining n − 2 particles can fuse
in N 0

n−2 distinguishable ways, and if the fusion of the first two particles
yields an anyon with nontrivial charge, then that anyon can fuse with the
other n− 2 anyons in N 0

n−1 ways; therefore,

N 0
n = N 0

n−1 +N 0
n−2 . (9.97)

Since N 0
1 = 0 and N 0

2 = 1, the solution to this recursion relation is

n = 1 2 3 4 5 6 7 8 9 . . .
N 0

n = 0 1 1 2 3 5 8 13 21 . . .
(9.98)

— the dimensions are Fibonacci numbers (which is why I am calling this
model the “Fibonacci model”).

The Fibonacci numbers grow with n at a rate N 0
n ≈ Cφn, where φ is

the golden mean φ = 1
2

(

1 +
√

5
)

≈ 1.618. Because φ governs the rate at
which the Hilbert space enlarges as anyons are added, we say that d = φ
is the quantum dimension of the Fibonacci anyon. That this “dimension”
is an irrational number illustrates vividly that the topological Hilbert
space has no natural decomposition as a tensor product of subsystems
— instead, the topologically encoded quantum information is a collective
property of the n anyons.

9.15 Quantum dimension

We will return shortly to the properties of the Fibonacci model, but first
let’s explore more deeply the concept of quantum dimension. For a general
anyon model, how should the dimension da of label a be defined? For this
purpose, it is convenient to imagine a physical process in which two aā
pairs are created (each with trivial total charge); then the particle a from
the pair on the right fuses with the antiparticle ā from the pair on the
left. Do these particles annihilate?

With suitable phase conventions, the amplitude for the annihilation
to occur is a real number in the unit interval [0,1]. Let us define this
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number to be 1/da, where da is the quantum dimension of a (and 1/d2
a

is the probability that annihilation occurs). Note that it is clear from
this definition that da = dā. For the case in which the a is the label
of an irreducible representation Ra of a group G, the dimension is just
da = |Ra|, the dimension of the representation. This is easily understood
pictorially:

aa

a a

a a a a
1

a
d

1

If two pairs are created and then each pair annihilates immediately, the
world lines of the pairs form two closed loops, and |R| counts the number
of distinct “colors” that propagate around each loop. But if the particle
from each pair annihilates the antiparticle from the other pair, there is
only one closed loop and therefore one sum over colors; if we normalize
the process on the left to unity, the amplitude for the process on the right
is suppressed by a factor of 1/|R|. To say the same thing in an equation,
the normalized state of an RR̄ pair is

|RR̄〉 =
1

√

|R|
∑

i

|i〉|̄i〉 , (9.99)

where {|i〉} denotes an orthonormal basis for R and {|̄i〉} is a basis for R̄.
Suppose that two pairs |RR̄〉and |R′R̄′〉 are created; if the pairs are fused
after swapping partners, the amplitude for annihilation is

〈RR̄, R′R̄′|RR̄′, R′R̄〉 =
1

|R|2
∑

i,i′,j,j′

〈jj̄, j ′j̄ ′|īi′, i′̄i〉

=
1

|R|2
∑

i,i′,j,j′

δjiδji′δj′i′δj′i =
1

|R|2
∑

i

δii =
1

|R| . (9.100)

In general, though, the quantum dimension has no direct interpretation
in terms of counting “colors,” and there is no reason why it has to be an
integer.

How are such quantum dimensions related to the dimensions of topo-
logical Hilbert spaces? To see the connection, if is very useful to alter
our normalization conventions. Notice we can introduce many “zigzags”
in the world line of a particle of type a by creating many aā pairs, and
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fusing the particle from each pair with the antiparticle from the neighbor-
ing pair. However, each zigzag reduces the amplitude by another factor
of 1/da. We can compensate for these factors of 1/da if we weight each
pair creation or annihilation event by a factor of

√
da. With this new

convention, we can bend the world line of a particle forward or backward
in time without paying any penalty:

a

a

a
d

a
d

a
d

a
d

a
d

a
d

a

a

Now the weight assigned to a world line is a topological invariant (it is
unchanged when we distort the line), and a world line of type a forming
a closed loop is weighted by da.

With our new conventions, we can justify this sequence of manipula-
tions:

a
b

a b

ab

c c

a
b

c

,c

,c

c

ab

c

N
c

ab c

c

N d

a b
d d

Each diagram represents an inner product of two (unconventionally nor-
malized) states. We have inserted a complete sum over the labels (c) and
the corresponding fusion states (µ) that can arise when a and b fuse. Ex-
ploiting the topological invariance of the diagram, we have then turned it
“inside out,” then contracted the fusion states (acquiring the factor N c

ab
which counts the possible values of µ).

The equation that we have derived,

dadb =
∑

c

N c
abdc ≡

∑

c

(Na)
c
b dc , (9.101)
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says that the vector ~d, whose components are the quantum dimensions,
is an eigenvector with eigenvalue da of the matrix Na that describes how
the label a fuses with other labels:

Na
~d = da

~d . (9.102)

Furthermore, sinceNa has nonnegative entries and all components of ~d are
positive, da is the largest eigenvalue of Na and is nondegenerate. (This
simple observation is sometimes called the Perron-Frobenius theorem.)
For n anyons, each with label a, the topological Hilbert space V b

aaa···a for
the sector with total charge b has dimension

N b
aaa···a =

∑

{bi}

N b1
aaN

b2
ab1
N b3

ab2
. . .N b

abn−2
= 〈b| (Na)

n−1 |a〉 . (9.103)

The matrix Na can be diagonalized, and expressed as

Na = |v〉da〈v|+ · · · , (9.104)

where

|v〉 =
~d

D , D =

√

∑

c

dc
2 , (9.105)

and subleading eigenvalues have been omitted; therefore

N b
aaa···a = dn

adb/D2 + · · · , (9.106)

where the ellipsis represents terms that are exponentially suppressed for
large n. We see that the quantum dimension da controls the rate of growth
of the n-particle Hilbert space for anyons of type a.

Because the label 0 with trivial charge fuses trivially, we have d0 = 1. In
the case of the Fibonacci model, it follows from the fusion rule 1×1 = 0+1
that d2

1 = 1 + d1, which is solved by d1 = φ as we found earlier; therefore
D2 = d2

0 + d2
1 = 1 + φ2 = 2 + φ. Our formula becomes

N 0
111···1 =

(

1

2 + φ

)

φn , (9.107)

which is an excellent approximation to the Fibonacci numbers even for
modest values of n.

Suppose that an aā pair and a bb̄ pair are both created. If the a and b
particles are fused, with what probability p(ab→ c) will their total charge
be c? This question can be answered using the same kind of graphical
manipulations:
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a

c

c

c

abN
c

ab cN d

a
b

c( )a bd d p ab c b

Dividing by dadb to restore the proper renormalization of the inner prod-
uct, we conclude that

p(ab→ c) =
N c

abdc

dadb
, (9.108)

which generalizes the formula p(aā → 1) = 1/d2
a that we used to define

the quantum dimension, and satisfies the normalization condition
∑

c

p(ab→ c) = 1. (9.109)

To arrive at another interpretation of the quantum dimension, imagine
that a dense gas of anyons is created, which is then permitted to anneal
for awhile — anyons collide and fuse, gradually reducing the population of
particles. Eventually, but long before the thermal equilibrium is attained,
the collision rate becomes so slow that the fusion process effectively turns
off. By this stage, whatever the initial distribution of particles types, a
steady state distribution is attained that is preserved by collisions. If in
the steady state particles of type a appear with probability pa, then

∑

ab

papb p(ab→ c) = pc . (9.110)

Using
∑

a

N c
ab da =

∑

a

Na
bc̄ dā = dbdc̄ = dbdc , (9.111)

we can easily verify that this condition is satisfied by

pa =
d2

a

D2
. (9.112)

We conclude that if anyons are created in a random process, those carrying
labels with larger quantum dimension are more likely to be produced, in
keeping with the property that anyons with larger dimension have more
quantum states.
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9.16 Pentagon and hexagon equations

To assess the computational power of an anyon model like the Fibonacci
model, we need to know the braiding properties of the anyons, which are
determined by the R and F matrices. We will see that the braiding rules
are highly constrained by algebraic consistency conditions. For the Fi-
bonacci model, these consistency conditions suffice to determine a unique
braiding rule that is compatible with the fusion rules.

Consistency conditions arise because we can make a sequence of “F -
moves” and “R-moves” to obtain an isomorphism relating two topological
Hilbert spaces. The isomorphism can be regarded as a unitary matrix
that relates the canonical orthonormal bases for two different spaces; this
unitary transformation does not depend on the particular sequence of
moves from which the isomorphism is constructed, only on the initial and
final bases.

For example, there are five different ways to fuse four particles (without
any particle exchanges), which are related by F -moves:

1 2 3 4

5

a

b
d

1 2 3 4

5

c

1 2 3 4

5

1 2 3 4

5

1 2 3 4

5

a c

b

e e

d

F

FF

F F

The basis shown furthest to the left in this pentagon diagram is the “left
standard basis” {|left; a, b〉}, in which particles 1 and 2 are fused first,
the resulting charge a is fused with particle 3 to yield charge b, and then
finally b is fused with particle 4 to yield the total charge 5. The basis
shown furthest to the right is the “right standard basis” {|right; c, d〉}, in
which the particles are fused from right to left instead of left to right.
Across the top of the pentagon, these two bases are related by two F -
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moves, and we obtain

|left; a, b〉 =
∑

c,d

|right; c, d〉
(

F 5
12c

)d

a

(

F 5
a34

)c

b
. (9.113)

Across the bottom of the pentagon, the bases are related by three F -
moves, and we find

|left; a, b〉 =
∑

c,d,e

|right; c, d〉
(

F d
234

)c

e

(

F 5
1e4

)d

b

(

F b
123

)e

a
. (9.114)

Equating our two expressions for |left; a, b〉, we obtain the pentagon equa-

tion:
(

F 5
12c

)d

a

(

F 5
a34

)c

b
=
∑

e

(

F d
234

)c

e

(

F 5
1e4

)d

b

(

F b
123

)e

a
. (9.115)

Another nontrivial consistency condition is found by considering the
various ways that three particles can fuse:

1 2 3

4

b

1 2 3

4

a

2 3 1

4

b

2 3 1

4

c

2 1 3

4

c

2 1 3

4

a

F R F

F

R R

The basis {|left; a〉} furthest to the left in this hexagon diagram is obtained
if the particles are arranged in the order 123, and particles 1 and 2 are
fused first, while the basis {|right, c〉} furthest to the right is obtained if
the particles are arranged in order 231, and particles 1 and 3 are fused
first. Across the top of the hexagon, the two bases are related by the
sequence of moves FRF :

|left, a〉 =
∑

b,c

|right; c〉
(

F 4
231

)c

b
R4

1b

(

F 4
123

)b

a
. (9.116)

Across the bottom of the hexagon, the bases are related by the sequence
of moves RFR, and we find

|left, a〉 =
∑

c

|right; c〉Rc
13

(

F 4
213

)c

a
Ra

12 . (9.117)
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Equating our two expressions for |left; a〉, we obtain the hexagon equation:

Rc
13

(

F 4
213

)c

a
Ra

12 =
∑

b

(

F 4
231

)c

b
R4

1b

(

F 4
123

)b

a
. (9.118)

A beautiful theorem, which I will not prove here, says that there are
no further conditions that must be imposed to ensure the consistency of
braiding and fusing. That is, for any choice of an initial and final basis
for n anyons, all sequences of R-moves and F -moves that take the initial
basis to the final basis yield the same isomorphism, provided that the
pentagon equation and hexagon equation are satisfied. This theorem is
an instance of the MacLane coherence theorem, a fundamental result in
category theory. The pentagon and hexagon equations together are called
the Moore-Seiberg polynomial equations — their relevance to physics was
first appreciated in studies of (1+1)-dimensional conformal field theory
during the 1980’s.

A solution to the polynomial equations defines a viable anyon model.
Therefore, there is a systematic procedure for constructing anyon models:

1. Choose a set of labels and assume a fusion rule.

2. Solve the polynomial equations for R and F .

If no solutions exist, then the hypothetical fusion rule is incompatible with
the principles of local quantum physics and must be rejected. If there is
more than one solution (not related to one another by any reshuffling of
the labels, redefinition of bases, etc.), then each distinct solution defines
a distinct model with the assumed fusion rule.

To illustrate the procedure, consider the polynomial equations for the
Fibonacci fusion rule. There are only two F -matrices that arise, which
we will denote as

F0111 ≡ F0 , F1111 ≡ F1 . (9.119)

F0 is really the 1 × 1 matrix

(F0)
b
a = δ1aδ

b
1 , (9.120)

while F1 is a 2× 2 matrix. The pentagon equation becomes

(Fc)
d
a (Fa)

c
b =

∑

e

(Fd)
c
e (Fe)

d
b (Fb)

e
a . (9.121)

The general solution for F ≡ F1 is

F =

(

τ eiφ
√
τ

e−iφ
√
τ −τ

)

, (9.122)
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where eiφ is an arbitrary phase (which we can set to 1 with a suitable
phase convention), and τ =

(√
5 − 1

)

/2 = φ − 1 ≈ .618, which satisfies

τ2 + τ = 1 . (9.123)

The 2× 2 R-matrix that describes a counterclockwise exchange of two
Fibonacci anyons has two eigenvalues — R0 for the case where the total
charge of the pair of anyons is trivial, and R1 for the case where the total
charge is nontrivial. The hexagon equation becomes

Rc (F )c
aR

a = (F )c
0 (F )0a + (F )c

1R
1 (F )1a . (9.124)

Using the expression for F found by solving the pentagon equation, we
can solve the hexagon equation for R, finding

R =

(

e4πi/5 0

0 −e2πi/5

)

, F =

(

τ
√
τ√

τ −τ

)

. (9.125)

The only other solution is the complex conjugate of this one; this second
solution really describes the same model, but with clockwise and coun-
terclockwise braiding interchanged. Therefore, an anyon model with the
Fibonacci fusion rule really does exist, and it is essentially unique.

9.17 Simulating a quantum circuit with Fibonacci anyons

Now we know enough to address whether a universal quantum computer
can be simulated using Fibonacci anyons. We need to explain how qubits
can be encoded with anyons, and how a universal set of quantum gates
can be realized.

First we note that the Hilbert space V 0
4 ≡ V 0

1111 has dimension N 0
4 = 2;

therefore a qubit can be encoded by four anyons with trivial total charge.
The anyons are lined up in order 1234, numbered from left to right; in the
standard basis state |0〉, anyons number 1 and number 2 fuse to yield total
charge 0, while in the standard basis state |1〉, anyons 1 and 2 fuse to yield
total charge 1. Acting on this standard basis, the braid group generator
σ1 (counterclockwise exchange of particles 1 and 2) is represented by

σ1 7→ R =

(

e4πi/5 0

0 −e2πi/5

)

, (9.126)

while the generator σ2 is represented by

σ2 7→ B = F−1RF , F =

(

τ
√
τ√

τ −τ

)

. (9.127)
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These matrices generate a representation of the braid group B3 on three
strands whose image is dense in SU(2). Indeed, R and B generate Z10

subgroups of U(2), about two distinct axes, and there is no finite sub-
group of U(2) that contains both of these subgroups — therefore, the
representation closes on the group containing all elements of U(2) with
determinant equal to a 10th root of unity. Similarly, for n anyons with
trivial total charge, the image of the representation of the braid group is
dense in SU(N 0

n).
To simulate a quantum circuit acting on n qubits, altogether 4n anyons

are used. We have just seen that by braiding within each cluster of four
anyons, arbitrary single-qubit gates can be realized. To complete a uni-
versal set, we will need two-qubit gates as well. But two neighboring
qubits are encoded by eight anyons, and exchanges of these anyons gen-
erate a representation of B8 whose image is dense in SU(N 0

8 )= SU(13),
which of course includes the SU(4) that acts on the two encoded qubits.
Therefore, each gate in a universal set can be simulated with arbitrary
accuracy by some finite braid.

Since we can braid clockwise as well as counterclockwise, the inverse
of each exchange gate is also in our repertoire. Therefore, we can ap-
ply the Solovay-Kitaev theorem to conclude that the universal gates of
the circuit model can be simulated to accuracy ε with braids of length
poly (log(1/ε)). It follows that an ideal quantum circuit with L gates
acting on all together n qubits can be simulated to fixed accuracy using
4n anyons and a braid of length O(L · poly(log(L)). As desired, we have
shown that a universal quantum computer can be simulated efficiently
with Fibonacci anyons. Note that, in contrast to the simulation using
the nonabelian superconductor model, no intermediate measurements are
needed to realize the universal gates.

In the analysis above, we have assumed that there are no errors in
the simulation other than those limiting the accuracy of the Solovay-
Kitaev approximation to the ideal gates. It is therefore implicit that the
temperature is small enough compared to the energy gap of the model
that thermally excited anyons are too rare to cause trouble, that the
anyons are kept far enough apart from one another that uncontrolled
exchange of charge can be neglected, and in general that errors in the
topological quantum computation are unimportant. If the error rate is
small but not completely negligible, then the standard theory of quantum
fault tolerance can be invoked to boost the accuracy of the simulation as
needed, at an additional overhead cost polylogarithmic in L. The fault-
tolerant procedure should include a method for controlling the “leakage”
of the encoded qubits — that is, to prevent the drift of the clusters of
four qubits from the two-dimensional computational space V 0

4 to its three-
dimensional orthogonal complement V 1

4 .
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9.18 Epilogue

That is as far as I got in class. I will mention briefly here a few other
topics that I might have covered if I had not run out of time.

9.18.1 Chern-Simons theory

We have discussed how anyon models can be constructed through a brute-
force solution to the polynomial equations. This method is foolproof,
but in practice models are often constructed using other, more efficient
methods. Indeed, most of the known anyon models have been found as
instances of Chern-Simons theory.

The fusion rules of a Chern-Simons theory are a truncated version of the
fusion rules for irreducible representations of a Lie group. For example,
associated with the group SU(2) there is a tower of Chern-Simons theories
indexed by a positive integer k. For SU(2), the irreducible representations
carry labels j = 0, 1

2 , 1,
3
2 , 2,

5
2 , . . . , and the fusion rules have the form

j1 × j2 =

j1+j2
∑

j=|j2−j1|

j . (9.128)

In the Chern-Simons theory denoted SU(2)k, the half-integer labels are
limited to j ≤ k/2, and the label j is contained in j1×j2 only if j1+j2+j ≤
k.

For example, the SU(2)1 model is abelian, and the nontrivial fusion
rules of the SU(2)2 model are

1
2 × 1

2 = 0 + 1 ,

1
2 × 1 =

1

2
,

1 × 1 = 0 . (9.129)

Therefore, the label 1
2 has quantum dimension d1/2 =

√
2, and the topo-

logical Hilbert space of 2m such anyons with total charge 0 has dimension

N 0

(1
2)

2m = 2m−1 . (9.130)

The polynomial equations for these fusion rules have multiple solutions
(only one of which describes the braiding properties of the SU(2)2 model),
but none of the resulting models have computationally universal braiding
rules. The space V 0

1
2

1
2

1
2

1
2

is two-dimensional, and the 2 × 2 matrices F ≡
F 1

2
1
2

1
2

1
2

and R ≡ R 1
2

1
2

are, up to overall phases and complex conjugation,

F = H =
1√
2

(

1 1
1 −1

)

, R = P =

(

1 0
0 i

)

. (9.131)
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There are Clifford-group quantum gates, inadequate for universality.
However, the SU(2)k models for k ≥ 3 are computationally universal.

The nontrivial fusion rules of SU(2)3 are

1
2 × 1

2 = 0 + 1 ,

1
2 × 1 =

1

2
+

3

2
,

1
2 × 3

2 = 1 ,

1 × 1 = 0 + 1 ,

1 × 3
2 =

1

2
,

3
2 × 3

2 = 0 . (9.132)

The Fibonacci (Yang-Lee) model that we have studied is obtained by
truncating SU(2)3, further, eliminating the noninteger labels 1

2 and 3
2

(i.e., this is the Chern-Simons theory SO(3)3); then the only remaining
nontrivial fusion rule is 1 × 1 = 0 + 1.

Wang (unpublished) has recently constructed all anyons models with
no more than four labels, and has found that all of the models are closely
related to the models that are found in Chern-Simons theory.

9.18.2 S-matrix

The modular S-matrix of an anyon model can be defined in terms of two
anyon world lines that form a Hopf link:

1b

a
S

D

ba

Here D is the total quantum dimension of the model, and we have used
the normalization where unlinked loops would have the value dadb; then
the matrix Sb

a is symmetric and unitary. In abelian anyon models, the
Hopf link arose in our discussion of topological degeneracy, where we
characterized how the vacuum state of an anyon model on the torus is
affected when an anyon is transported around one of the cycles of the
torus. The S-matrix has a similar interpretation in the nonabelian case.
By elementary reasoning, S can be related to the fusion rules:

(Na)
c
b =

∑

d

Sd
b

(

Sd
a

Sd
1

)

(

S−1
)c

d
; (9.133)
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that is, the S-matrix simulaneously diagonalizes all the matrices {Na}
(the Verlinde relation). Note that it follows from the definition that Sa

1 =
da/D.

9.18.3 Edge excitations

In our formulation of anyon models, we have discussed the fusing and
braiding of particles in the two-dimensional bulk. But there is another
aspect of the physics of two-dimensional media that we have not yet dis-
cussed, the properties of the one-dimensional edge of the sample. Typi-
cally, if a two-dimensional system supports anyons in the bulk, there are
also chiral massless excitations that propagate along the one-dimensional
edge. At nonzero temperature T , there is an energy flux along the edge
given by the expression

J =
π

12
c−T

2 ; (9.134)

here the constant c−, called the chiral central charge of the edge, is a
universal property that is unaffected by small changes in the underlying
Hamiltonian of the system.

While this chiral central charge is an intrinsic property of the two-
dimensional medium, the properties of the anyons in the bulk do not
determine it completely; rather we have

1

D
∑

a

d2
ae

2πiJa = e(2πi/8)c− , (9.135)

where the sum is over the complete label set of the anyon model, and
e2πiJa = R1

aā is the topological spin of the label a. This expression re-
lates the quantity c−, characteristic of the edge theory, to the quantum
dimensions and topological spins of the bulk theory, but determines c−
only modulo 8. Therefore, at least in principle, there can be multiple edge
theories corresponding to a single theory of anyons in the bulk.

9.19 Bibliographical notes

Some of the pioneering papers on the theory of anyons are reprinted in
[1].

What I have called the “nonabelian superconductor” model is often
referred to in the literature as the “quantum double,” and is studied
using the representation theory of Hopf algebras. For a review see [2].

That nonabelian anyons can be used for fault-tolerant quantum com-
puting was first suggested in [3]. This paper also discusses the toric code,
and related lattice models that have nonabelian phases. A particular real-
ization of universal quantum computation in a nonabelian superconductor
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was discussed in [4, 5]. My discussion of the universal gate set is based
on [6], where more general models are also discussed. Other schemes,
that make more extensive use of electric charges and that are universal
for smaller groups (like S3) are described in [7].

Diagrammatic methods, like those I used in the discussion of the quan-
tum dimension, are extensively applied to derive properties of anyons in
[8]. The role of the polynomial equations (pentagon and hexagon equa-
tions) in (1+1)-dimensional conformal field theory is discussed in [9].

Simulation of anyons using a quantum circuit is discussed in [10]. Simu-
lation of a universal quantum computer using the anyons of the SU(2)k=3

Chern-Simons theory is discussed in [11]. That the Yang-Lee model is
also universal was pointed out in [12].

I did not discuss physical implementations in my lectures, but I list a
few relevant references here anyway: Ideas about realizing abelian and
nonabelian anyons using superconducting Josephson-junction arrays are
discussed in [13]. A spin model with nearest-neighbor interactions that
has nonabelian anyons (though not ones that are computationally univer-
sal) is proposed and solved in [14], and a proposal for realizing this model
using cold atoms trapped in an optical lattice is described in [15]. Some
ideas about realizing the (computationally universal) SU(2)k=3 model in
a system of interacting electrons are discussed in [16].

Much of my understanding of the theory of computing with nonabelian
anyons was derived from many helpful discussions with Alexei Kitaev.
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