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Gapped phases of matter

In grade school we learn about the following phases: solid, liquid, gas.

Actually, liquid ' gas, and there are many crystalline solids distinguished
by their symmetries.

At low temperatures, the basic feature is the presence/absence of a gap
between the ground state and the 1st excited state.

If the gap is nonzero even for an infinite system, the phase is called
gapped.

Examples of gapless phases: crystals, superfluid 4He, Fermi liquid.

Examples of gapped phases: broken discrete symmetry, Quantum Hall
phases, confining and Higgs phases of gauge theories.
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Topological Phases of Matter

Old viewpoint: gapped phases of matter are “boring” because they all
look the same at long distances/time-scales.

Modern viewpoint: there is a variety of topological phases of matter which
are gapped.

To distinguish them one can either consider a nontrivial spatial topology or
to look at the edge physics.

Example: Fractional Quantum Hall states. (Ground-state degeneracy on a
space of nontrivial topology, gapless edge modes). IR physics is described
by a nontrivial 3D Topological Quantum Field Theory (TQFT).
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Classifying gapped phases

Want to classify ”gapped” ”local” ”lattice” Hamiltonians up to homotopy.

”Lattice”: the Hilbert space is a tensor product

H = ⊗v∈VHv

where V is the set of vertices of a d-dimensional lattice or triangulation,
and Hv is a finite-dimensional Hilbert space.

”Local”: the Hamiltonian has the form

H =
∑
v

Hv ,

where Hv acts as identity on all Hv ′ , except for v ′ in a neighborhood of v .

”Gapped”: the gap between the energies of ground state(s) and excited
states stays nonzero in the limit of infinite volume.
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Gapped phases and TQFTs

It is believed that gapped phases can be classified using TQFT.

Namely, the IR limit of a gapped phase is described by a TQFT, and it
carries complete information about the phase.

Hard to check for d ≥ 2 because neither TQFTs nor gapped phases have
been classified.

One can simplify the problem by imposing invertibility, or complicate it by
adding symmetry.
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Reminder on TQFTs

A TQFT in d + 1 dimensions attaches

to a closed oriented (d + 1)-manifold M, a complex number Z (M)
(the partition function)

to a closed oriented d-manifold N, a f.d. vector space H(N)

to a closed oriented (d − 1)-manifold K , a linear category C(K )

. . .

There are also rules for assigning algebraic objects to manifolds with
boundaries and corners.

Axioms:

diffeomorphism-invariance, disjoint union maps to product, gluing
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Invertible Gapped Phases and TQFTs

One can simplify the problem by restricting to invertible phases and
invertible TQFTs.

Both gapped phases and TQFTs form a monoid (a set with an associative
binary operation and a neutral element).

The operation corresponds to “stacking” systems together, the neutral
element is the trivial phase (TQFT).

Not all phases (TQFTs) have an inverse; those which do are called
invertible.

An invertible phase (TQFT) has a unique state (i.e. one dimensional space
of states) for any closed spatial geometry.
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Symmetry-Enhanced Phases and TQFTs

One can refine the classification problem by requiring the phase to have a
symmetry G . I will assume that G is finite, for simplicity.

A lattice model has a symmetry G if each Hv is a representation of G ,
and the action of G on ⊗vHv commutes with the Hamiltonian.

To define TQFTs with a symmetry G , we replace closed oriented manifolds
with closed oriented manifolds equipped with G -bundles. Or equivalently,
with closed oriented manifolds equipped with maps to BG = K (G , 1).

Thus, a G -equivariant TQFT attaches a vector space H(N,P) to every
G -bundle P over a closed oriented d-manifold N. If the TQFT is
invertible, this vector space is one-dimensional.
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Bosoni-Fermion dichotomy

An important modification: allow Hv to be Z2-graded. Physically, the
grading operator is (−1)F .

Vectors in Hv with (−1)F = −1 are called fermionic, vectors with
(−1)F = 1 are called bosonic.

The tensor product ⊗vHv is also understood in the Z2-graded sense (i.e.
fermionic operators localized at different v anti-commute). The
Hamiltonian is still even.

The symmetry group G commutes with (−1)F .

What is the analogous modification on the TQFTs side?
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Spin TQFTs

In a unitary relativistic QFT, statistics correlates with spin. Could
spin-TQFTs classify gapped fermionic phases?

Spin-TQFT attaches numbers, vector spaces, categories, . . . , to closed
manifolds with spin structure.

Spin-TQFTs have not been much studied, even in low dimensions. In what
follows I will explain how to construct spin-TQFTs in 2D and (if time
permits) in 3D.
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What is a spin structure?

A spin structure on an oriented manifold M is similar, but not the same as
a Z/2 gauge field on M.

To explain this, let me remind some mathematical terminology.

Anton Kapustin (California Institute of Technology)Fermionic phases of matter and spin structures October 15, 2015 12 / 1



Bluff your way into (co)chains and (co)cycles

We will think about (co)homology groups in terms of triangulations. A
k-chain E with values in an abelian group A is an A-valued function on
k-simplices. The group of k-chains is denoted Ck(M,A). The group of
cochains C k(M,A) is the same as Ck(M,A).

In this talk, we will make use of A = Z/2 and A = R/Z ' U(1).

There is a boundary operator ∂k : Ck(M,A)→ Ck−1(M,A) and a
coboundary operator δk : C k(M,A)→ C k+1(M,A). They satisfy ∂2 = 0,
δ2 = 0. A chain annihilated by ∂ is called a cycle, a cochain annihilated by
δ is called a cocycle. The subgroup of k-cycles is denoted Zk(M,A), the
subgroup of k-cocycles is denoted Z k(M,A).

One defines Hk(M,A) = ker∂k/im∂k+1, H
k(M,A) = kerδk/imδk−1.

Anton Kapustin (California Institute of Technology)Fermionic phases of matter and spin structures October 15, 2015 13 / 1



Bluff your way into spin structures I

A spin structure on an oriented D-manifold is a way to parallel-transport
spinors. It enables one to define the Dirac operator.

More formally, it is way to lift a principal SO(D)-bundle of oriented
orthonormal frames to a principal Spin(D)-bundle.

For D > 3, not every oriented D-manifold admits a spin structure: it exists
iff w2(M) = 0, where w2 ∈ H2(M,Z/2) is the 2nd Stiefel-Whitney class of
the tangent bundle of M. For D ≤ 3 the class w2 vanishes automatically.

Any two spin structures differ by a Z/2 gauge field, i.e. an element of
H1(M,Z/2). Thus the set of spin structures can be identified with
H1(M,Z/2), but not canonically.
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Bluff your way into spin structures II

On a circle, there are two spin structures because
H1(S1,Z/2) = Z/2. In this case there is a canonical identification
with Z/2 gauge fields on S1. The non-trivial Z/2 gauge field
corresponds to the Neveu-Schwarz (NS) spin structure, the trivial one
to the Ramond (R) spin structure. Mathematicians call them the
bounding and not-bounding spin structures, respectively.

On a Riemann surface of genus g , there are 22g spin structures. They
can be classified into even and odd ones, according to the number of
zero modes of the Dirac operator. But for g > 1 there is no natural
way to associate them with elements of H1(M,Z/2).
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Spin and statistics

The relation between spin and statistics in lattice models is far from
obvious.

The lattice breaks SO(d)-invariance, so it is not immediately clear
how to define a spin structure on a lattice. The key observation is
that w2(M) can be defined combinatorially, using a triangulation of
M. More on this later.

People working on lattice gauge theories and lattice QCD routinely
work with lattice Dirac operators. They have avoided the issue of spin
structure by working almost exclusively with cubic lattices and
periodic boundary conditions.
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Invertible fermionic phases in 2D

Simple check: classification of invertible fermionic phases with symmetry
G in 2D.

They are classified by elements of
H2(BG ,R/Z)× H1(BG ,Z/2)× H0(BG ,Z2).
Fidkowski and Kitaev, 2010; Chen, Gu, and Wen, 2011

The last factor H0(BG ,Z/2) = Z/2 classifies invertible fermionic phases
without any symmetry. The nontrivial element corresponds to a 1d system
with a single Mayorana zero mode at each edge.

The group structure is a bit non-obvious:

(α, β, γ) + (α′, β′, γ′) = (α + α′ +
1

2
β ∪ β′, β + β′, γ + γ′).
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Spin-TQFTs in 2D

(Unitary) spin-TQFTs in 2D have been studied by Moore and Segal, 2006,
for the case of trivial G . There is a unique nontrivial invertible spin-TQFT.

The partition function Z (M, η) = (−1)Arf (M,η). Here

Arf (M, η) = dim kerDL mod2.

where DL is the left-handed Dirac operator.

The vector space V (S1, η) is one-dimensional for both choices of η. It is
even for anti-periodic (NS) spin structure and odd for periodic (R) spin
structure.

The category C(pt) is the category of modules over the algebra Cl(1)
(single odd generator θ satisfying θ2 = 1).
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G -equivariant spin-TQFTs in 2D

If G is nontrivial, can appeal to a mathematical result (Freed, Hopkins):
invertible unitary equivariant TQFTs are classified by the (dual of torsion
part of) spin-bordism of BG .

The Atiyah-Hirzebruch spectral sequence collapses at E2 and gives
H2(BG ,R/Z)× H1(BG ,Z/2)× H0(BG ,Z2). The group structure is
non-trivial, as above.

Let me describe Z (M,A, η) for general G . Here A : π1(M)→ G describes
a gauge field on M. Can also think of A as a G -valued function on
1-simplices of M.
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Spin structures in 2D and quadratic refinements

Let M be a closed oriented 2D manifold. Its topology is determined by
g = 1

2 dimH1(M,Z/2).

On H1(M,Z/2) there is a non-degenerate bilinear form called the
intersection form:

b(x , y) =

∫
M
x ∪ y ∈ Z/2.

A quadratic refinement of b is a function q : H1(M,Z/2)→ Z2 satisfying

q(x + y)− q(x)− q(y) = b(x , y).

It turns out there is a 1-1 correspondence between spin structures on M
and quadratic refinements of b (Atiyah, 1971). Let qη be the quadratic
function corresponding to η.

Anton Kapustin (California Institute of Technology)Fermionic phases of matter and spin structures October 15, 2015 20 / 1



The 2D partition function

We have a gauge field A on M. If we triangulate M, A gives an element of
G for every 1-simplex. β ∈ H1(BG ,Z/2) is a function β : G → Z/2
satisfying β(g1g2) = β(g1) + β(g2) (i.e. a homomorphism from G to Z/2).
Then β(A) is a Z/2-valued gauge field on M. Call it βA ∈ Z 1(M,Z/2).

Mathematically, βA is a pull-back of β ∈ Z 1(BG ,Z/2) to M using a map
A : M → BG .

Similarly, α ∈ Z 2(BG ,R/Z) pulls back to a αA ∈ Z 2(M,R/Z) (”flat
B-field on M”). Then:

Z (M,A, η)α,β,γ = exp

(
2πi

∫
M
αA

)
(−1)qη(βA)(−1)γArf (M,η).
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Fermionic state-sum models

To explain the coincidence, we would like construct lattice models
corresponding to spin-cobordism classes.

Bosonic state-sum models involve variables living on simplices of various
dimensions and a weight (”action”) which depends on these variables. The
partition function is obtained as an ”integral” of the weight over all
allowed configurations of variables.

Fermionic state-sum models may also involve Grassmann variables. The
partition function involves a Berezin integral over these variables.

The Dirac action for free fermions is an example of a non-topological
fermionic state-sum model. We would like to construct models which are
quasi-topological (depend only on the spin structure).
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The Gu-Wen construction I

Let me focus on the case α = γ = 0. The general case will follow easily
once we understand this special case.

We need to construct qη(βA), where η is a spin structure on M and
βA ∈ Z 1(M,Z/2). From now on abbreviate βA to β.

We choose a triangulation of M, then β is a Z/2-valued function on
1-simplices.

On each 1-simplex e with β(e) = 1 we place a pair of Grassmann variables
θe , θ̄e . The integration measure is∏

e,β(e)=1

dθed θ̄e .
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The Gu-Wen construction II

The integrand s a product over all 2-simplices P. To write down the
contribution of a given 2-simplex, need to choose a local order on vertices
(branching structure).

We assume M is oriented, so each P is oriented. A branching structure
also gives an orientation to each P, so we have two kinds of 2-simplices (+
and −).

Each e is shared by a + triangle and a − triangle. If β(e) = 1, we assign
θe to the + side and θ̄e to the − sign.

The weight of a triangle P is a product of all Grassmann variables on its
edges, taken in the order specified by the global orientation. The weight of
each P is even.

The result of the integration is a sign σ(β) which depends on the cocycle
β, the triangulation, and the branching structure.
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The Gu-Wen construction III

To fix this, we need a correction factor (D.Gaiotto and A.K., 2015). For
simplicity, let the triangulation be the barycentric subdivision of another
triangulation, then there is a canonical branching structure. Still need to
worry about triangulation and choice of β within its cohomology class.

The correction factor is ∏
e∈E

(−1)β(e),

where E is a 1-chain satisfying ∂E =
∑

v .

The chain E defines a spin structure on M: σ(β) multiplied by the
correction factor is a quadratic function of [β] ∈ H1(M,Z/2) which refines
the intersection pairing.
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Spin-statistics relation on a lattice

We can regard the 1-chain E as a 1-cochain η on the dual cell complex.
Then the correction factor becomes

(−1)
∫
M β∪η.

The 2D case exemplifies a general principle: to construct a weight out of
Grassmann variables one needs to choose an order on vertices. To
eliminate the dependence on this order, one needs a correction factor.

The correction factor depends on a cochain η ∈ C 1(M,Z/2) such that
δη = w2, where w2 ∈ Z 2(M,Z/2) represents the 2nd Stiefel-Whitney
class.

The 1-cochain η is the lattice version of the spin structure. In the 2D case,
the Poincare dual of w2 is

∑
v , so that the 1-cycle E is the Poincare dual

of η.
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The Arf invariant as a state-sum

The Arf invariant Arf (M, η) can be expressed through qη:

(−1)Arf (M,η) = 2−g(M)
∑

β∈H1(M,Z/2)

(−1)qη(β).

This can be written as a state-sum too: apart from the Berezin integral,
one also has Z/2-valued variables β(e) on 1-simplices satisfying the
constraint δβ = 0.

This state-sum can be thought of as a topological Z/2 gauge theory, with
the gauge field β determining where the Grassmann variables θ, θ̄ live.

Thus Z (M,A, η)α,β,γ admits a fermionic state-sum construction for any
α, β, γ.
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State-sum construction of 2D oriented TQFTs

Fukuma, Hosono, Kawai, 1991

Input: semi-simple algebra A with a symmetric non-degenerate scalar
product A⊗ A→ C satisfying 〈a, bc〉 = 〈ab, c〉 (i.e. A is a semi-simple
Frobenius algebra).

Construction: choose an orthonormal basis ei ∈ A. Edges are labeled by
ei . Weights: Cijkei ⊗ ej ⊗ ek for a 2-simplex P whose sides are labeled by
ei , ej , ek . Then contract across edges using the scalar product.

This gives a TQFT because (1) Cijk are cyclically-symmetric; (2) define
associative multiplication.

Space attached to a circle V (S1) is the center of A.
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State-sum construction of 2D spin TQFTs

D. Gaiotto and A. K. 2015

Input: semi-simple Frobenius algebra A equipped with a Z/2-grading. The
scalar product is assumed symmetric and even.

Construction: the same thing, but take into account the Koszul sign arising
from permuting the factors in the tensor product before contracting.

The Koszul sign is σ(β), with β(e) telling us whether the edge e is labeled
by a bosonic or a fermionic element of A.

Inserting the correction factor∏
e∈E

(−1)β(e) = (−1)
∫
M β∪η,

get a triangulation-independent partition function.
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Bosonization in 2D

The same data (Z/2-graded semi-simple algebra) can be used to construct
a TQFT with symmetry Z/2. This leads to a correspondence between
bosonic phases with Z/2-symmetry and fermionic phases with no
symmetry (apart from (−1)F ).

This might seem surprising: there are no nontrivial invertible bosonic
phase with Z/2 symmetry, but there is a nontrivial invertible spin-TQFT
with Z (M, η) = (−1)Arf (M,η).

Resolution: the nontrivial invertible fermionic phase is mapped to the
trivial bosonic phase with Z/2 symmetry, while the trivial fermionic phase
is mapped to a bosonic phase with a spontaneously broken Z/2.
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Bosonization in 2D, cont.

In general, the correspondence is easy to describe on the level of partition
functions.

A bosonic partition functions Zb(M, β) depends on a gauge field
β ∈ H1(M,R/Z). A fermionic partition function Zf (M, η) depends on a
spin structure η ∈ Spin(M).

The map and its inverse are

Zf (M, η) = 2−g(M)
∑

β∈H1(M,Z/2)

Zb(M, β)(−1)qη(β).

Zb(M, β) = 2−g(M)
∑

η∈Spin(M)

Zf (M, η)(−1)qη(β).
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Invertible fermionic phases in 3D with symmetry G

In 2+1D, invertible spin-TQFTs with symmetry G are classified by the
dual of 3D spin-bordism of BG . This group can be described as the space
of solutions of the equation

δα =
1

2
β ∪ β +

1

4
P(γ ∪ γ),

where α ∈ C 3(BG ,R/Z), β ∈ Z 2(BG ,Z/2), γ ∈ Z 1(BG ,Z/2) (modulo
some complicated equivalence relation). P is the Pontryagin square.

For example, for G = Z/2, the space of solutions is Z/8. This agrees with
the result of Gu and Levin.

For γ = 0, there is a fermionic state-sum construction of the
corresponding partition function Z (M,A, η)α,β. It uses a 3D version of the
Gu-Wen Grassmann integral.
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The Gu-Wen construction in 3D

One uses the gauge field A on M to produce a αA ∈ Z 3(M,R/Z) and
βA ∈ Z 2(M,Z/2). Grassmann variables θP , θ̄P live on 2-simplices P for
which βA(P) = 1.

The weight is a product of weights associated with 3-simplices. Each
3-simplex T contributes exp(2παA(T )) times a monomial in θ, θ̄.

The result of fermionic integration is

Znaive = exp(2πi

∫
M
αA)σ(βA),

where σ(βA) is a sign. It depends on the branching structure and
triangulation. Znaive may also change sign if one replaces (α, β) by an
equivalent one.

This can be fixed using a correction factor
∏

P∈E (−1)β(P), where
E ∈ Z2(M,Z/2) satisfies ∂E =

∑
e. E is the dual of a spin structure.
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State-sum construction of 3D oriented TQFTs

Turaev and Viro, 1992

Input: spherical fusion category C.

The partition function is a sum over labelings of a triangulation.
1-simplices are labeled by simple objects Ei of C, 2-simplices are labeled by
basis vectors of Hom(1,Ei ⊗ Ej ⊗ Ek).

The weight of a labeled triangulation is, roughly, a product over
3-simplices. Each 3-simplex contributes a 6j symbol.
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State-sum construction of 3D spin TQFTs

Gu, Wang, and Wen, 2010; Gaiotto and A. K. 2015.

Input: spherical super-fusion category.

This means that morphism spaces are Z/2-graded. In particular, for any
simple object Ei the endomorphism space is a super-division algebra, i.e.
either C or Cl(1).

If for every simple Ei we have Hom(Ei ,Ei ) = C, then the construction is
the same as above, except that the weight is multiplied by the Gu-Wen
sign σ(β) and the correction factor

∏
P∈E (−1)β(P). Here β ∈ Z 2(M,Z/2)

tells us which 2-simplices are labeled by fermionic basis elements.

The general case (when Hom(Ei ,Ei ) = Cl(1) for some i) is not completely
understood.
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Bosonization in 3D

There is a 1-1 correspondence between 3D fermionic phases and 3D
bosonic phases with an anomalous 1-form Z/2-symmetry.

A parameter of a global 1-form Z/2 symmetry is a Z/2-valued 1-cocycle
(i.e. a Z/2 gauge field). Gauging means coupling the system to a 2-form
gauge field B ∈ Z 2(M,Z/2).

The symmetry is anomalous in the sense that the partition function is not
invariant under B 7→ B + δλ, λ ∈ C 1(M,Z/2). Instead:

Zb(B + δλ) = Zb(B) exp(πi

∫
M

(λ ∪ δλ+ λ ∪ B + B ∪ λ)).
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Bosonization in D dimensions

It appears that in D dimensions there is a relation between fermionic
phases and bosonic phases with an anomalous (D−2)-form Z/2 symmetry.

The partition function of the bosonic theory depends on a (D − 1)-cocycle
β ∈ ZD−1(M,Z/2).

The anomaly is controlled by a (D + 1)-dimensional topological action∫
X Sq2β, where Sq2 is the Steenrod square operation.
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Some open questions

What does a fermionic state-sum construction look like for a general
super-fusion category?

For D > 3, not every oriented manifold is spin. How does this affect
bosonization?

Can one prove a spin-statistics relation for unitary lattice models in all
dimensions?

What is the ”right” lattice version of the Dirac operator, so that it
depends on a lattice spin structure?
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