Homework 7

1. (10 pts) Consider a $U(1)$ gauge theory in four Euclidean dimensions (with the space-time assumed to be \mathbb{R}^{4}) and an action

$$
S=\frac{1}{4 g^{2}} \int F_{\mu \nu}^{2} d^{4} x+\frac{i \theta}{8 \pi^{2}} \int F \wedge F
$$

where $F=d A$ and $A=A_{\mu} d x^{\mu}$. Let

$$
\tau=\frac{\theta}{2 \pi}+\frac{2 \pi i}{g^{2}}
$$

This complex coupling takes values in the upper half-plane. Show that the theory with a coupling

$$
\tau^{\prime}=\frac{-1}{\tau}
$$

is equivalent to the original one. Use the same idea as for demonstrating T-duality: regard F as a closed 2 -form, and impose the closedness condition using a Lagrange multiplier field. Then integrate out F.
2. (10 pts) Problem 13.12 in Polchinski.
3. (10 pts) Problem 14.1 in Polchinski.

