Homework 3

1. (a) (20 pts) One can discretize the free massless boson field in 2 d as follows. Consider a square lattice $\mathbb{Z}^{2} \subset \mathbb{R}^{2}$ and place a real variable $\phi(v)$ on each vertex $v \in \mathbb{Z}^{2}$. Consider an action

$$
S(\phi)=\frac{1}{2} \sum_{e}\left(\phi\left(v_{+}(e)\right)-\phi\left(v_{-}(e)\right)^{2}\right.
$$

where the sum is over all edges e of the lattice and $v_{+}(e)$ and $v_{-}(e)$ are the two vertices of the edge e. Let the partition function be

$$
Z(\beta)=\sum_{\phi} e^{-\beta S(\phi)}
$$

This is ill-defined, for two reasons. First, there is a divergence arising from an infinite number of vertices. To avoid this, let us work on a torus of size $L \times L$ instead of \mathbb{R}^{2}. Thus we only have L^{2} vertices. Second, the integrand is invariant under a shift $\phi(v) \mapsto \phi(v)+\epsilon$, so there is a divergence arising from the non-compactness of the range of the variables $\phi(v)$. We will just ignore this divergence.

By mimicking the continuum argument for T-duality, show that $Z(\beta)$ and $Z(1 / \beta)$ are proportional and determine how the proportionality coefficient depends on β and L. Be careful: on a torus not every closed 1-form is exact, and a similar statement is true for our discretized torus.
(b) (10 pts) Consider the observable $W_{\alpha}(v)=e^{i \alpha \phi(v)}$, where α is a real number. This is a lattice analog of the vertex operator $e^{i p X(z, \bar{z})}$. Repeat the manipulations of part (a) for the expectation value

$$
\left\langle W_{\alpha}(v) W_{-\alpha}\left(v^{\prime}\right)\right\rangle
$$

and determine the image of $W_{\alpha}(v)$ under T-duality.

