Homework 7

1. (10 pts) Analyze the theory of a p-form field C_{p} in n dimensions, with a gauge-invariance $C_{p} \mapsto C+d \lambda_{p-1}$, and an action

$$
S=\int d^{n} x|d C|^{2}
$$

Show that the theory describes a massless particle whose polarization state can be encoded in a completely anti-symmetric tensor of rank p in a Euclidean space with $n-2$ dimensions.
2. (10 pts) One cannot write down an action for a chiral scalar in 2d. But one can nevertheless define the corresponding quantum theory by specifying the Hamiltonian and equal-time commutation relations for a scalar field $\phi(x)$, where $x \in \mathbb{R}$ is the spatial coordinate. In fact, it is better to work with the field $p(x)=\partial_{x} \phi$. This can be justified by saying that shifting $\phi(x)$ by a constant. $\phi(x) \mapsto \phi(x)+c$, is a gauge symmetry. Write down a Hamiltonian and the commutator for $p(x)$ so that the corresponding Heisenberg equation of motion is $\partial_{0} p=\partial_{x} p$.
3. (10pts) Consider a theory of a 4 -form field C_{4} in $9+1 d$ and an equation of motion

$$
d C_{4}=\star d C_{4}
$$

where \star is the Hodge star operator. These equations of motion have a gaugeinvariance $C_{4} \mapsto C_{4}+d \lambda_{3}$ and are Lorenz-invariant. Nevertheless, there is no Lorenz-invariant and gauge-invariant action for C_{4} which would give rise to such equations of motion. Instead, let B_{3} be a 4 -form on the 9 -dimensional space obtained by restricting C_{4} to a time slice. Let $H_{5}=d B_{4}$, where the exterior derivative is understood in the 9 d sense. Write down a Hamiltonian and a commutator for the field H_{4} so that the corresponding Heisenberg equation of motion is essentially equivalent to above equation of motion for C_{4}. How many polarization states does the corresponding massless particle have?

