Ph250a: Solutions to Homework 5

Problem 1.

Let us first consider state corresponding to $c(z)$ and find what modes of b annihilate it. From the contour integral

$$
\begin{equation*}
b_{n}|c\rangle=\int \frac{d z}{2 \pi i z} z^{n+2} b(z) c(0)|0\rangle=\int \frac{d z}{2 \pi i z} z^{n+2}\left(\frac{1}{z}+\ldots\right)|0\rangle \tag{1}
\end{equation*}
$$

we see that $b_{n}|c\rangle=0$ iff $n \geq 0$, i.e. it is the same as the state $|\downarrow\rangle$. The same conclusion follows if we apply the usual state-operator correspondence $\left(\phi_{-h}|0\rangle=|\phi\rangle\right)$ to the vacuum $|0\rangle=b_{-1}|\downarrow\rangle$.

For the state corresponding to $b(z)$ we find

$$
\begin{equation*}
c_{n}|b\rangle=\int \frac{d z}{2 \pi i z} z^{n-1} c(z) b(0)|0\rangle=\int \frac{d z}{2 \pi i z} z^{n-1}\left(\frac{1}{z}+\ldots\right)|0\rangle \tag{2}
\end{equation*}
$$

i.e. $c_{n}|b\rangle=0$ iff $n \geq 3$. It is the same state as $b_{-2} b_{-1}|\downarrow\rangle$.

We have already determined the operator corresponding to $|\downarrow\rangle$. In order to find operator corresponding to $|\uparrow\rangle$ we notice that it should not be annihilated by both b_{1} and b_{2} modes (this means it must have first and second order pole in OPE with b) and also it must have ghost charge 2 greater than the vacuum operator. Therefore, a natural guess is : $c \partial c:(z)$. Direct check confirms this.

Problem 2.

The general state on the second level looks like

$$
\begin{equation*}
|\phi\rangle=\left(A_{\mu \nu} \alpha_{-1}^{\mu} \alpha_{-1}^{\nu}+B_{\mu} \alpha_{-2}^{\mu}\right)|0, p\rangle \tag{3}
\end{equation*}
$$

Before checking the physical condition on this state let us write the relevant terms in the Virasoro operators

$$
\begin{align*}
L_{0} & =\alpha^{\prime} p^{2}+\alpha_{-1} \cdot \alpha_{-1}+\alpha_{-2} \cdot \alpha_{-2}+\ldots \tag{4}\\
L_{1} & =\sqrt{2 \alpha^{\prime}} p \cdot \alpha_{1}+\alpha_{-1} \cdot \alpha_{2}+\ldots \tag{5}\\
L_{2} & =\sqrt{2 \alpha^{\prime}} p \cdot \alpha_{2}+\frac{1}{2} \alpha_{1} \cdot \alpha_{1}+\ldots \tag{6}\\
L_{-1} & =\sqrt{2 \alpha^{\prime}} p \cdot \alpha_{-1}+\alpha_{-2} \cdot \alpha_{1}+\ldots \tag{7}\\
L_{-2} & =\sqrt{2 \alpha^{\prime}} p \cdot \alpha_{-2}+\frac{1}{2} \alpha_{-1} \cdot \alpha_{-1}+\ldots \tag{8}
\end{align*}
$$

Let us now write down Virasoro constraints. The first one reads

$$
\begin{equation*}
\left(L_{0}-a\right)|\phi\rangle=\left(\alpha^{\prime} p^{2}+2-a\right)|\phi\rangle \tag{9}
\end{equation*}
$$

which can be solved by $\alpha^{\prime} m^{2} \equiv-\alpha^{\prime} p^{2}=2-a$. The second constraint reads

$$
\begin{equation*}
L_{1}|\phi\rangle=2\left(\sqrt{2 \alpha^{\prime}} A_{\mu \nu} p^{\mu}+B_{\nu}\right) \alpha_{-1}^{\nu}|0, p\rangle \tag{10}
\end{equation*}
$$

which can be solved by

$$
\begin{equation*}
B_{\mu}=-\sqrt{2 \alpha^{\prime}} A_{\mu \nu} p^{\nu} \tag{11}
\end{equation*}
$$

The last constraint is

$$
\begin{equation*}
L_{2}|\phi\rangle=\left(A_{\mu}^{\mu}+2 \sqrt{2 \alpha^{\prime}} p \cdot B\right) \tag{12}
\end{equation*}
$$

i.e. tensor $A_{\mu \nu}$ must satisfy

$$
\begin{equation*}
A_{\mu}^{\mu}=4 \alpha^{\prime} p \cdot A \cdot p \tag{13}
\end{equation*}
$$

The general spurious state on this level looks like
$|\chi\rangle=\left(L_{-1} \beta_{\mu} \alpha_{-1}^{\mu}+\gamma L_{-2}\right)|0, p\rangle=\left(\sqrt{2 \alpha^{\prime}} \beta_{\mu} p_{\nu}+\frac{\gamma}{2} \eta_{\mu \nu}\right) \alpha_{-1}^{\mu} \alpha_{-1}^{\nu}|0, p\rangle+\left(\beta_{\mu}+\sqrt{2 \alpha^{\prime}} \gamma p_{\mu}\right) \alpha_{-2}^{\mu}|0, p\rangle$

Not all of these states are physical. The condition for the spurious state to become physical is easier to do in the rest-frame where $p_{\mu}=(m, 0,0, \ldots, 0)$. The conditions are

$$
\begin{align*}
\left(-4 \alpha^{\prime} m^{2}+\frac{D}{2}\right) \gamma & =3 \sqrt{2 \alpha^{\prime}} \beta_{0} m \\
\left(1-\alpha^{\prime} m^{2}\right) \beta_{i} & =0 \tag{15}\\
2\left(1-\alpha^{\prime} m^{2}\right) \beta_{0} & =\left(\sqrt{2 \alpha^{\prime}} m \beta_{0}-3 \gamma\right) \sqrt{2 \alpha^{\prime}} m
\end{align*}
$$

where β_{0} and β_{i} are time and space parts of β_{μ}.

Now we can analyse the spectrum. For general D and a there are no spurious states and the number of physical states is $\frac{D(D+1)}{2}-1$. This can be decomposed as $\frac{D(D+1)}{2}-1=$ $\left(\frac{D(D-1)}{2}-1\right)+(D-1)+(1)$, i.e. traceless symmetric + vector + scalar representations of $S O(D-1)$. From the equations (15) one can see that when $a=1$ the vector spurious state become null removing the vector particle. And also for all values of D there exist a such that scalar particle become null ($a=1$ and $D=26$ is an example of this).

Let us write down these states explicitly

$$
\begin{align*}
\text { traceless symmetric: } & A_{\mu \nu} p^{\nu}=0 \quad A_{\mu}^{\mu}=0 \quad B_{\mu}=0 \tag{16}\\
\text { vector: } & A_{\mu \nu}=p_{\mu} v_{\nu}+p_{\nu} v_{\mu} \quad B_{\mu}=\sqrt{2 \alpha^{\prime}} m^{2} v_{\mu} \quad p \cdot v=0 \tag{17}\\
\text { scalar: } & A_{\nu}^{\mu}=\frac{1+4 \alpha^{\prime} m^{2}}{D+4 \alpha^{\prime} m^{2}} \delta_{\nu}^{\mu}+\frac{p^{\mu} p_{\nu}}{m^{2}} \quad B_{\mu}=\frac{\sqrt{2 \alpha^{\prime}}(D-1)}{D+4 \alpha^{\prime} m^{2}} p_{\mu} \tag{18}
\end{align*}
$$

The norm can be found to be

$$
\begin{equation*}
2 A^{\mu \nu} A_{\mu \nu}+2 B_{\mu} B^{\mu} \tag{19}
\end{equation*}
$$

Since traceless symmetric tensor has no time-like components in the rest frame its norm is always positive. The norm of the vector particle is given by

$$
\begin{equation*}
2 A^{\mu \nu} A_{\mu \nu}+2 B_{\mu} B^{\mu}=4 v^{2} m^{2}\left(\alpha^{\prime} m^{2}-1\right)=4 \frac{v^{2}}{\alpha^{\prime}}(2-a)(1-a) \tag{20}
\end{equation*}
$$

Therefore the norm of this state is positive for $a<1$ or $a>2$ and negative in the interval $1<a<2$.

The norm of the scalar field is given by

$$
\begin{equation*}
2 A^{\mu \nu} A_{\mu \nu}+2 B_{\mu} B^{\mu}=\frac{(D-1)\left[(2 a-3)(D-1)+(9-4 a)^{2}\right]}{(D+8-4 a)^{2}} \tag{21}
\end{equation*}
$$

For the special case $a=1$ it becomes

$$
\begin{equation*}
\frac{(D-1)(26-D)}{(D+4)^{2}} \tag{22}
\end{equation*}
$$

So the norm is negative for $D>26$. At $D=26$ this state has zero norm and removed from the spectrum by the ghosts.

