Ph250a: Solutions to Homework 3

Problem 1.

The field $\phi(z)$ has Laurent series expansion

$$
\begin{equation*}
\phi(z)=\sum_{n \in \mathbb{Z}} \phi_{n} z^{-n-h} \tag{1}
\end{equation*}
$$

where modes ϕ_{n} satisfy $\phi_{n}|0\rangle=0$ for $n>-h$. Therefore,

$$
\begin{equation*}
\phi(0)|0\rangle=\phi_{-h}|0\rangle \equiv|\phi\rangle \tag{2}
\end{equation*}
$$

where singular terms in the Laurent series are zero due to condition $\phi_{n}|0\rangle=0$ for $n>-h$ and non-singular are zero at $z=0$ leaving only ϕ_{-h} contribution. Action of L_{n} on the state $|\phi\rangle$ by definition is given by

$$
\begin{equation*}
L_{n}|\phi\rangle \equiv \int_{|z|=\delta} \frac{d z}{2 \pi i} z^{n+1} T(z)|\phi\rangle \tag{3}
\end{equation*}
$$

which is equal to

$$
\begin{equation*}
\int_{|z|=\delta} \frac{d z}{2 \pi i} z^{n+1} T(z) \phi(0)|0\rangle \tag{4}
\end{equation*}
$$

by state-operator correspondence. Since ϕ is a primary field it has the following OPE with $T(z)$

$$
\begin{equation*}
T(z) \phi(0) \sim \frac{h \phi(0)}{z^{2}}+\frac{\partial \phi(0)}{z}+\ldots \tag{5}
\end{equation*}
$$

Substituting this expansion in (4) we have

$$
\begin{equation*}
\int_{|z|=\delta} \frac{d z}{2 \pi i} z^{n+1} T(z) \phi(0)|0\rangle=\int_{|z|=\delta} \frac{d z}{2 \pi i} z^{n+1}\left(\frac{h \phi}{z^{2}}+\frac{\partial \phi}{z}+\ldots\right)|0\rangle \tag{6}
\end{equation*}
$$

Since the integrand is regular at $z=0$ for $n>0$ the integral vanishes.

Problem 2.

Let us assume that OPE $T(z)$ and $\phi(0)$ has the following form

$$
\begin{equation*}
T(z) \phi(0)=\sum_{n \in \mathbb{Z}} \frac{A_{n}}{z^{n+2}} \tag{7}
\end{equation*}
$$

where A_{n} are operator valued coefficients of Laurent series. Using the same manipulation as in previous problem we get

$$
\begin{equation*}
L_{n}|\phi\rangle=\int_{|z|=\delta} \frac{d z}{2 \pi i} z^{n+1} T(z) \phi(0)|0\rangle=\sum_{m \in \mathbb{Z}} \int_{|z|=\delta} \frac{d z}{2 \pi i} z^{n-m-1} A_{m}|0\rangle \tag{8}
\end{equation*}
$$

This integral is non-zero only when integrand is proportional to $\frac{1}{z}$.

$$
\begin{equation*}
L_{n}|\phi\rangle=\sum_{m \in \mathbb{Z}} \int_{|z|=\delta} \frac{d z}{2 \pi i} z^{n-m-1} A_{m}|0\rangle=\sum_{m \in \mathbb{Z}} \delta_{n, m} A_{m}|0\rangle=A_{n}|0\rangle=\left|A_{n}\right\rangle \tag{9}
\end{equation*}
$$

where in the last step we used state-operator correspondence. From $L_{n}|\phi\rangle=0$ for $n>0$ we see that all terms with poles of order greater than 2 vanish in (7). From $L_{0}|\phi\rangle=h|\phi\rangle$ we see that $A_{0}=h \phi(0)$. And from $L_{-1}|\phi\rangle=L_{-1} \phi(0)|0\rangle=\left[L_{-1}, \phi(0)\right]|0\rangle=\partial \phi(0)|0\rangle$ we find that $A_{-1}=\partial \phi(0)$. Therefore the OPE looks like

$$
\begin{equation*}
T(z) \phi(0) \sim \frac{h \phi(0)}{z^{2}}+\frac{\partial \phi(0)}{z}+\ldots \tag{10}
\end{equation*}
$$

which implies that ϕ is a primary field of dimension h.

