Week 4 (May 5)

1. (a) Consider the open string action (in flat coordinates) on a half-space:

$$
S=\frac{1}{2} \int d \tau d \sigma g_{\mu \nu}(X)\left(\partial_{\tau} X^{\mu} \partial_{\tau} X^{\nu}-\partial_{\sigma} X^{\mu} \partial_{\sigma} X^{\nu}\right)+\int_{\sigma=0} d \tau A_{\mu}(X) \partial_{\tau} X^{\mu}
$$

Here $\sigma \in[0, \infty], \tau \in[-\infty, \infty], g_{\mu \nu}(X)$ is an arbitrary metric on target space, and $A_{\mu}(X)$ is an arbitrary 1-form on the target space. Suppose X^{μ} on the boundary $\sigma=0$ is unconstrained. By varying the action and requiring the boundary terms in the variation to vanish, determine the boundary condition on the derivatives of X.
(b) Now consider the $N=1$ supersymmetric version of the string, and for simplicity assume that $g_{\mu \nu}$ is constant. The bosonic part of the action is unchanged, so one finds the same boundary condition on X as before. By requiring the left-moving and right-moving superconformal currents to agree on the boundary, deduce the boundary condition for ψ_{+}^{μ} and ψ_{-}^{μ}. (You should get a total of d constraints, where d is the dimension of the target space).

