1. In class, we defined the Lie derivative of a p-form and of a vector field. One can define the Lie derivative of a general tensor field recursively using the following requirement: if A and B are tensors (i.e. are sections of the tensor or exterior product of several copies of the tangent and/or cotangent bundles, then

$$
L_{X}(A \otimes B)=\left(L_{X} A\right) \otimes B+A \otimes L_{X} B, \quad X \in V e c t(M)
$$

Use this definition to compute the expression for the Lie derivative of a 2 -form and a symmetric tensor of rank 2 in local coordinates.
2. The divergence of a vector field X on a Riemannian manifold is a function defined as $\star d \star \tilde{X}$, where \tilde{X} is a 1-form obtained by "lowering indices" on the vector field X. Compute the expression for divergence in local coordinates. Also compute the expression for Δf in local coordinates. Here Δ is the Laplace-Beltrami operator, and f is a smooth function (regarded as a 0 -form).
3. A Weyl transformation on a metric on M is a multiplication of the metric by a positive real function on M. It maps a Riemannian metric to a Riemannian metric.
(a) Consider the following action functional for a p-form in n space-time dimensions:

$$
S=\int_{M} d \omega \wedge \star d \omega
$$

For which p and n is this action invariant under Weyl transformations of the metric? Assume that the p-form ω is not transformed.
(b) Let $n=2 p+2$, and consider the following PDE for a p-form ω :

$$
d \omega=\star d \omega .
$$

For which p is this equation invariant under Weyl transformations? Assume that the p-form ω is not transformed.

