1. Each subproblem is worth 10 points.
(a) Let V be a vector space, Show that $v_{1}, \ldots, v_{k} \in V$ are linearly independent iff $v_{1} \wedge \ldots \wedge v_{k} \neq 0$.
(b) Let $v_{1}, \ldots, v_{k} \in V$ and $w_{1}, \ldots, w_{k} \in V$ be two sets of linearlyindependent vectors. Show that they span the same subspace iff $v_{1} \wedge \ldots \wedge v_{k}=$ $c w_{1} \wedge \ldots \wedge w_{k}$, where c is a constant.
(c) Suppose V has a positive scalar product. In class we defined the Hodge star operation $\star: \Lambda^{p}(V) \rightarrow \Lambda^{n-p}(V)$ using an arbitrary oriented orthonormal basis for V. Show that the definition does not depend on the choice of such a basis. Also show that $\star \star=(-1)^{p(n-p)}$.
(d) Given a scalar product on V, one can define a scalar product on $\Lambda^{p}(V)$ by declaring that an orthonormal basis for it is given by $e_{i_{1}} \wedge \ldots \wedge e_{i_{p}}$, where $i_{1}<i_{2}<\ldots<i_{p}$, and $e_{i}, i=1, \ldots, n$, is an orthonormal basis for V. Let ϕ and ψ be arbitrary elements of $\Lambda^{p}(V)$. Show that the scalar product can be expressed through the Hodge star operation as follows:

$$
\langle\phi, \psi\rangle=\star(\phi \wedge \star \psi)=\star(\psi \wedge \star \phi) .
$$

