Fall quarter, week 5 (due Nov. 7)

1. (20 pts) Let M be a compact oriented manifold of dimension n. As explained in class, Poincare duality implies that there is a non-degenerate pairing

$$
\lambda: \operatorname{Tors}\left(H^{p}(M, \mathbb{Z})\right) \times \operatorname{Tors}\left(H^{n-p+1}(M, \mathbb{Z})\right) \rightarrow \mathbb{Q} / \mathbb{Z}
$$

In this exercise we write an explicit formula for it. Let $\alpha \in H^{p}(M, \mathbb{Z})$ and $\beta \in H^{n-p+1}(M, \mathbb{Z})$ be torsion classes in the cohomology of M. Let a and b be cocycles representing α and β. Since α and β are torsion classes, there exist integers m and k, a $(p-1)$-cochain A, and a $(n-p)$-cochain B such that $m a=\delta A$ and $k b=\delta B$. Then we define TWO candidate pairings with values in \mathbb{Q} / \mathbb{Z} :

$$
\lambda_{1}(\alpha, \beta)=\frac{1}{m} \int_{X} A \cup b, \quad \lambda_{2}(\alpha, \beta)=\frac{1}{k} \int_{X} a \cup B .
$$

Show that both of these are well-defined, that is, independent of the choice of a, b, A, B. Also show that λ_{1} and λ_{2} are the same up to a sign, and determine this sign.
2. Compute the expression for the Lie bracket of vector fields X and Y in local coordinates.
3. Recall that a vector field X on a manifold M is called complete if every integral curve $\gamma: I \rightarrow M$ of X can be extended to an integral curve $\tilde{\gamma}: \mathbb{R} \rightarrow M$. If this property is not satisfied, the vector field is called incomplete. Give an example of an incomplete vector field on $M=\mathbb{R}$.
4. Compute the de Rham cohomology of $M=\mathbb{R}$ and verify that it isomorphic to the de singular cohomology of \mathbb{R} as well as singular homology of \mathbb{R}. Also compute the compactly-supported de Rham cohomology of $M=\mathbb{R}$ (it is defined in the same way as the de Rham cohomology of M, but all differential forms are assumed to be zero outside of a compact set). Show that it is isomorphic to the Borel-Moore homology of \mathbb{R}.

