Fall quarter, week 3 (due Oct. 24)

1. Compute the homology of the Klein bottle (with integer coefficients) using your favorite cell decomposition (it is easiest to think of the Klein bottle as a square with some sides identified).
2. Consider a hexagon with vertices A_{1}, \ldots, A_{6} (in this cyclic order). Identify the following pairs of sides: $A_{0} A_{1}$ and $A_{1} A_{2}, A_{2} A_{3}$ and $A_{3} A_{4}, A_{4} A_{5}$ and $A_{5} A_{0}$ (with this orientation). Compute the homology of the resulting surface.
3. A sphere of dimension n has a cell decomposition with only two cells, one of dimension n and one of dimension 0 . An alternative cell decomposition involves two cell in every dimension from 0 to n. It is constructed as follows: one decomposes S^{n} into two open hemispheres and a sphere of dimension $n-1$ (the equator). The two hemispheres are n-cells. Then one repeats the process with the equatorial S^{n-1}. The advantage of this cell decomposition is that the antipodal map just exchanges the two cells of each dimension. Therefore one gets a cell decomposition of $\mathbb{R} \mathbb{P}^{n}$ with one cell in each dimension from 0 to n. Use this cell decomposition to compute the homology of $\mathbb{R P}^{n}$ with integer coefficients.
4. Use the same cell decomposition as in problem 3 to compute the homology of \mathbb{R}^{n} with coefficients in $U(1)=\mathbb{R} / \mathbb{Z}$ and in \mathbb{Z}_{m} where m is an arbitrary positive integer.
