Week 6 (due Feb. 14)

1 Consider the theory of a gauge field A_{μ} in three-dimensional space-time with a Lagrangian

$$L = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \frac{1}{2}k\epsilon^{\mu\nu\rho}A_{\mu}\partial_{\nu}A_{\rho}.$$

where $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$. The second term in the Lagrangian is called the Chern-Simons term, and the theory is called Chern-Simons-Maxwell theory.

(a) Show that the action $S = \int Ld^3x$ is gauge-invariant. Derive the equations of motion for the field A. Show that they imply that each component of the tensor $F_{\mu\nu}$ satisfies the massive Klein-Gordon equation for some mass m. Express m in terms of k. How many polarization states to these "massive waves" have?

(bc) In three dimensions the analog of the electric field $E_i = -\partial_0 A_i + \partial_i A_0$ is a vector, but the analog of the magnetic field $B = \epsilon_{ij}\partial_i A_j$ is a scalar. As in four dimensions, A_0 should be thought of as a Lagrange multiplier whose equation of motion gives a constraint (the analog of the Gauss law) and does not have a conjugate momentum, while the fields A_i , i = 1, 2, do. What is the analog of the Gauss law constraint $\partial_i E_i = 0$ in this theory ? Find the momenta conjugate to A_i . Write the Hamiltonian in terms of B and the momenta conjugate to A_i . Write the action in Hamiltonian form (i.e. in a form where the momenta and A_i are regarded as independent and the action is linear in time derivatives).

(d) Compute the Poisson brackets of E_i and B.

(e) Compute the propagator for A in the Lorenz gauge $\partial^{\mu}A_{\mu} = 0$.