1. Srednicki 48.5
48.5) Let $g \equiv c_{1} G_{\mathrm{F}} f_{\pi}$; the vertex factor is then $(i g)\left(i k_{\mu}\right) \gamma^{\mu}\left(1-\gamma_{5}\right)=-g \not k\left(1-\gamma_{5}\right)$, where k is the fourmomentum of the pion. Thus we have $i \mathcal{T}=-g \bar{u}_{1} \not \psi_{(}\left(1-\gamma_{5}\right) v_{2}$, where p_{1} is the muon momentum and p_{2} is the antineutrino momentum. We now use $\not \nless=\not p_{1}+\not p_{2}, \not{ }_{2}\left(1-\gamma_{5}\right)=\left(1+\gamma_{5}\right) \not p_{2}$, $\bar{u}_{1} \not p_{1}=-m_{\mu} \bar{u}_{1}$, and $\not 2_{2} v_{2}=0$ to get $\mathcal{T}=-i g m_{\mu} \bar{u}_{1}\left(1-\gamma_{5}\right) v_{2}$. Then $\overline{\mathcal{T}}=+i g m_{\mu} \bar{v}_{2}\left(1+\gamma_{5}\right) u_{1}$, and $|\mathcal{T}|^{2}=g^{2} m_{\mu}^{2} \operatorname{Tr}\left[u_{1} \bar{u}_{1}\left(1-\gamma_{5}\right) v_{2} \bar{v}_{2}\left(1+\gamma_{5}\right)\right]$. Summing over final spins yields

$$
\begin{align*}
\left.\left.\langle | \mathcal{T}\right|^{2}\right\rangle & =g^{2} m_{\mu}^{2} \operatorname{Tr}\left[\left(-\not{ }_{1}+m_{\mu}\right)\left(1-\gamma_{5}\right)\left(-\not p_{2}\right)\left(1+\gamma_{5}\right)\right] \\
& =g^{2} m_{\mu}^{2} \operatorname{Tr}\left[\left(-\not p_{1}+m_{\mu}\right)\left(-\not p_{2}\right)\left(1+\gamma_{5}\right)\left(1+\gamma_{5}\right)\right] \\
& =2 g^{2} m_{\mu}^{2} \operatorname{Tr}\left[\left(-\not p_{1}+m_{\mu}\right)(-\not \not 2)\left(1+\gamma_{5}\right)\right] \\
& =2 g^{2} m_{\mu}^{2} \operatorname{Tr}\left[\not p_{1} \not p_{2}\right] \\
& =2 g^{2} m_{\mu}^{2}\left(-4 p_{1} p_{2}\right) \\
& =4 g^{2} m_{\mu}^{2}\left[-\left(p_{1}+p_{2}\right)^{2}+p_{1}^{2}+p_{2}^{2}\right] \\
& =4 g^{2} m_{\mu}^{2}\left(-k^{2}+p_{1}^{2}+p_{2}^{2}\right) \\
& =4 g^{2} m_{\mu}^{2}\left(m_{\pi}^{2}-\not m_{\mu}^{2}+0\right) . \tag{48.60}
\end{align*}
$$

We then have $\left.\Gamma=\left.\langle | T\right|^{2}\right\rangle\left|\mathbf{p}_{1}\right| / 8 \pi m_{\pi}^{2}$, and $\left|\mathbf{p}_{1}\right|=\left(m_{\pi}^{2}-m_{\mu}^{2}\right) / 2 m_{\pi}^{2}$, so

$$
\begin{equation*}
\Gamma=\frac{g^{2} m_{\mu}^{2}}{4 \pi m_{\pi}^{3}}\left(m_{\pi}^{2}-m_{\mu}^{2}\right)^{2} . \tag{48.61}
\end{equation*}
$$

Using $\Gamma=\hbar c / c \tau=\left(1.973 \times 10^{-14} \mathrm{GeV} \mathrm{cm}\right) /\left(2.998 \times 10^{10} \mathrm{~cm} / \mathrm{s}\right)\left(2.603 \times 10^{-8} \mathrm{~s}\right)=2.528 \times$ $10^{-17} \mathrm{GeV}$, we find $g=1.058 \times 10^{-6} \mathrm{GeV}$, and so $f_{\pi}=93.14$; after including electromagnetic loop corrections, the result drops slightly to $f_{\pi}=92.4$.
2. Srednicki 52.3
(a) Since $d g / d \ln \mu=b_{0} g^{3} / 16 \pi^{2}$ and $d \lambda / d \ln \mu=\left(c_{0} g^{4}+c_{1} \lambda g^{2}+c_{2} \lambda^{2}\right) / 16 \pi^{2}$, for $\rho \equiv \lambda / g^{2}$ we have (by the chain rule)

$$
\begin{align*}
\frac{d \rho}{d \ln \mu} & =\frac{g^{2}}{16 \pi^{2}}\left(c_{0}+\left(c_{1}-2 b_{0}\right) \rho+c_{2} \rho^{2}\right) \tag{1}\\
& =\frac{g^{2}}{16 \pi^{2}} c_{2}\left(\rho-\rho_{+}^{*}\right)\left(\rho-\rho_{-}^{*}\right)
\end{align*}
$$

where $\rho_{ \pm}^{*}=\left[2 b_{0}-c_{1} \pm \sqrt{\left(c_{1}-2 b_{0}\right)^{2}-4 c_{0} c_{2}}\right] / 2 c_{2}$. Working with g and ρ is better because the beta function for ρ is now separable. For our case, $b_{0}=5, c_{0}=$ $-48, c_{1}=8, c_{2}=3$.
(b) $d \rho / d \ln \mu=0$ gives two solutions, $\rho_{ \pm}^{*}=(1 \pm \sqrt{145}) / 3=4.32$ and -3.68 .
(c) Since g is small, we can treat it as approximately constant. For $\rho=0, \beta_{\rho}$ is negative, and so ρ increases as μ decreases, and approaches ρ_{+}^{*} from below; ρ decreases as μ increases, and approaches ρ_{-}^{*} from above.
(d) When $\rho=5, \beta_{\rho}>0, \rho$ flows to ρ_{+}^{*} in the IR (low energy limit), and runs off to infinity in the UV (high energy limit).
(e) When $\rho=-5, \beta_{\rho}>0, \rho$ flows to ρ_{-}^{*} in the UV, and runs off to negative infinity in the IR.
(f) We have $d \rho / d g=\beta_{\rho} / \beta_{g}=\left(c_{2} / b_{0}\right)\left(\rho-\rho_{+}^{*}\right)\left(\rho-\rho_{-}^{*}\right) / g^{2}$. This can be separated and integrated to get

$$
\begin{gather*}
\int \frac{d \rho}{\left(\rho-\rho_{+}^{*}\right)\left(\rho-\rho_{-}^{*}\right)}=\frac{c_{2}}{b_{0}} \int \frac{d g}{g}, \tag{2}\\
\frac{1}{\rho_{+}^{*}-\rho_{-}^{*}} \ln \left|\frac{\rho-\rho_{+}^{*}}{\rho-\rho_{-}^{*}}\right|=\frac{c_{2}}{b_{0}} \ln \left|g / g_{0}\right|, \tag{3}
\end{gather*}
$$

which yields the claimed result with $\nu=b_{0} /\left[c_{2}\left(\rho_{+}^{*}-\rho_{-}^{*}\right)\right]=0.208$. The RG flow diagram is shown in Figure. 1.
(g) As energy increases, RG flow runs away from ρ_{+}^{*}, thus ρ_{+}^{*} is a IR fixed point; RG flow runs to ρ_{-}^{*}, thus ρ_{-}^{*} is a UV fixed point.

Figure 1: RG flow diagram in $\rho-g$ plane. Arrows are directed towards where energy is increasing.

