1. (a)

Take everything to be in $1+1$ dimenstions. Inserting the resolution of the identity and remembering what $\langle p \mid q\rangle$ is gives us

$$
\begin{align*}
K\left(q^{\prime}, q ; T\right) & =\left\langle q^{\prime}\right| e^{-i H T} \int \mathrm{~d} p|p\rangle\langle p \mid q\rangle \\
& =\int \mathrm{d} p\left\langle q^{\prime}\right| e^{-i p^{2} T / 2 m}|p\rangle\langle p \mid q\rangle \\
& =\int \frac{\mathrm{d} p}{2 \pi} e^{-i p^{2} T / 2 m} e^{i p q^{\prime}} e^{-i p q} \tag{1}\\
& =\int \frac{\mathrm{d} p}{2 \pi} \exp \left\{\frac{-i T}{2 m}\left[p^{2}+\frac{2 m\left(q-q^{\prime}\right)}{T} p\right]\right\} \\
& =\exp \left[\frac{i m\left(q^{\prime}-q\right)^{2}}{2 T}\right] \int \frac{\mathrm{d} p}{2 \pi} \exp \left\{\frac{-i T}{2 m}\left[p+\frac{m\left(q-q^{\prime}\right)}{T}\right]^{2}\right\}
\end{align*}
$$

The remaining integral is Gaussian, and we get

$$
\begin{align*}
K\left(q^{\prime}, q ; T\right) & =\frac{1}{2 \pi} \sqrt{\frac{\pi}{i T / 2 m}} \exp \left[\frac{i m\left(q^{\prime}-q\right)^{2}}{2 T}\right] \\
& =\sqrt{\frac{m}{2 \pi i T}} \exp \left[\frac{i m\left(q^{\prime}-q\right)^{2}}{2 T}\right] . \tag{2}
\end{align*}
$$

1. (b)

First, let's prove that the propagator and the 2-point Green's function are equal:

$$
\begin{align*}
G\left(q^{\prime}, q ; T\right) & \equiv\langle 0| \Psi\left(T, q^{\prime}\right) \Psi^{\dagger}(0, q)|0\rangle \\
& =\langle 0| e^{-i H T} \Psi\left(0, q^{\prime}\right) e^{i H T} \Psi^{\dagger}(0, q)|0\rangle \tag{3}\\
& =\langle 0| \Psi\left(0, q^{\prime}\right) e^{i H T} \Psi^{\dagger}(0, q)|0\rangle
\end{align*}
$$

The last line comes from the fact that $H|0\rangle=0 \rightarrow e^{-i H T}|0\rangle=|0\rangle$. Then we have

$$
\begin{equation*}
G\left(q^{\prime}, q ; T\right)=\left\langle q^{\prime}\right| e^{i H T}|q\rangle=K\left(q^{\prime}, q ; T\right) \tag{4}
\end{equation*}
$$

since $\Psi^{\dagger}(0, q)|0\rangle=|q\rangle$. To confirm this in the case $V=0$, expand in Fourier series:

$$
\begin{align*}
G\left(q^{\prime}, q ; T\right) & =\langle 0| \int \frac{\mathrm{d} p}{2 \pi} a_{k} e^{-i E_{k} T+i k q^{\prime}} \int \frac{\mathrm{d} p}{2 \pi} a_{p}^{\dagger} e^{-i p q}|0\rangle \\
& =\int \frac{\mathrm{d} p \mathrm{~d} k}{(2 \pi)^{2}} e^{-i E_{k} T+i k q^{\prime}} e^{-i p q}\langle 0|\left[a_{k}, a_{p}^{\dagger}\right]|0\rangle \tag{5}\\
& =\int \frac{\mathrm{d} p \mathrm{~d} k}{(2 \pi)^{2}} e^{-i E_{k} T+i k q^{\prime}} e^{-i p q}(2 \pi) \delta(p-k) \\
& =\int \frac{\mathrm{d} p}{2 \pi} e^{-i p^{2} T / 2 m} e^{i p q^{\prime}} e^{-i p q} .
\end{align*}
$$

This is (literally) the same integral we already evaluated in (1), so the solution is the same:

$$
\begin{equation*}
G\left(q^{\prime}, q ; T\right)=\sqrt{\frac{m}{2 \pi i T}} \exp \left[\frac{i m\left(q^{\prime}-q\right)^{2}}{2 T}\right]=K\left(q^{\prime}, q ; T\right) . \tag{6}
\end{equation*}
$$

1. (c)

We could evaluate the Gaussian integral directly, but let's just see what happens for $\mathrm{N}=1$. In this case, there is no integral, and $\epsilon=T$. Then we have

$$
\begin{align*}
K_{1}\left(q^{\prime}, q ; T\right) & =F(\epsilon)^{1} \exp \left[\frac{i \epsilon m}{2 \epsilon^{2}}\left(q^{\prime}-q\right)\right] \\
& =F(\epsilon) \exp \left[\frac{i m\left(q^{\prime}-q\right)^{2}}{2 T}\right] . \tag{7}
\end{align*}
$$

Apparently when there is no potential the path integral will give the correct answer with any choice of subdivision of the path. Then (7) will match (6) if

$$
\begin{equation*}
F(\epsilon)=\sqrt{\frac{m}{2 \pi i \epsilon}} \text {. } \tag{8}
\end{equation*}
$$

1. (d)

It is possible to do this using matrices, but let's just start by seeing what happens if we integrate over a particular q_{i} :

$$
\begin{align*}
& K\left(q, q^{\prime} ; T\right) \\
& \begin{aligned}
=\lim _{N \rightarrow \infty} & F(\epsilon)^{N} \int \mathrm{~d} q_{1} \ldots \mathrm{~d} q_{N-1} \exp \left\{i \epsilon \sum_{i=1}^{N-1}\left[\frac{m\left(q_{i+1}-q_{i}\right)^{2}}{2 \epsilon^{2}}+f q_{i}\right]\right\} \\
& =\cdots \int \mathrm{d} q_{i} \exp \frac{i m}{2 \epsilon}\left[\left(q_{i+1}-q_{i}\right)^{2}+\frac{2 \epsilon^{2}}{m} f q_{i}+\left(q_{i}-q_{i-1}\right)^{2}\right] \ldots
\end{aligned}
\end{align*}
$$

Expanding and factoring out the terms which don't depend on q_{i} gives us

$$
\begin{align*}
& K\left(q, q^{\prime} ; T\right)=\ldots \exp \left[\frac{i m}{2 \epsilon}\left(q_{i+1}^{2}+q_{i-1}^{2}\right)\right] \\
& \times \int \mathrm{d} q_{i} \exp \left\{\frac{i m}{2 \epsilon}\left[-2 q_{i+1} q_{i}+q_{i}^{2}+\frac{2 \epsilon^{2}}{m} f q_{i}+q_{i}^{2}-2 q_{i} q_{i-1}\right]\right\} \ldots \\
&=\ldots \exp \left[\frac{i m}{2 \epsilon}\left(q_{i+1}^{2}+q_{i-1}^{2}\right)\right] \\
& \times \int \mathrm{d} q_{i} \exp \left\{\frac{i m}{\epsilon}\left[q_{i}^{2}-\left(q_{i+1}+q_{i-1}-\frac{\epsilon^{2}}{m} f\right) q_{i}\right]\right\} \ldots \tag{10}
\end{align*}
$$

We can complete the square for q_{i} :

$$
\begin{align*}
& q_{i}^{2}-\left(q_{i+1}+q_{i-1}-\frac{\epsilon^{2}}{m} f\right) q_{i} \\
& \quad=\left[q_{i}-\frac{1}{2}\left(q_{i+1}+q_{i-1}-\frac{\epsilon^{2}}{m} f\right)\right]^{2}-\frac{1}{4}\left(q_{i+1}+q_{i-1}-\frac{\epsilon^{2}}{m} f\right)^{2} \tag{11}
\end{align*}
$$

Then we have

$$
\begin{align*}
& K\left(q, q^{\prime} ; T\right) \\
& \qquad \begin{array}{r}
=\ldots \exp \left\{\frac{i m}{4 \epsilon}\left[2 q_{i+1}^{2}+2 q_{i-1}^{2}-\left(q_{i+1}+q_{i-1}-\frac{\epsilon^{2}}{m} f\right)^{2}\right]\right\} \\
\\
\quad \times \int \mathrm{d} q_{i}^{\prime} \exp \left(\frac{i m}{\epsilon} q_{i}^{\prime 2}\right) \ldots
\end{array}
\end{align*}
$$

$$
\begin{align*}
=\ldots \exp \left[\frac { i m } { 4 \epsilon } \left(q_{i+1}-\right.\right. & \left.\left.q_{i-i}\right)^{2}+\frac{i \epsilon}{2} f\left(q_{i+1}+q_{i-1}\right)-\frac{i \epsilon^{3}}{4 m} f^{2}\right] \sqrt{\frac{\pi}{-i m \epsilon}} \cdots \\
& =\ldots \sqrt{\frac{\pi i \epsilon}{m}} \exp \left(-\frac{i \epsilon^{3}}{4 m} f^{2}\right) \\
& \times \exp \left[\frac{i m}{4 \epsilon}\left(q_{i+1}-q_{i-i}\right)^{2}+\frac{i \epsilon}{2} f\left(q_{i+1}+q_{i-1}\right)\right] \ldots \tag{13}
\end{align*}
$$

Now, take N to be even and do the integrals over q_{i} for odd i. Then we are left with the following:

$$
\begin{align*}
K\left(q, q^{\prime} ; T\right)=\lim _{N \rightarrow \infty} & F(\epsilon)^{N} \sqrt{\frac{\pi i \epsilon}{m}}^{N / 2} \\
& \times \exp \left(-\frac{i \epsilon^{3}}{4 m} f^{2}\right)^{N / 2} \exp \left[\frac{i \epsilon}{2} f\left(q_{N}+q_{0}\right)\right] \\
& \times \int\{\mathrm{d} q\} \exp \left\{\sum_{j}\left[\frac{i m\left(q_{j+1}-q_{j}\right)^{2}}{4 \epsilon}-2 i \epsilon f q_{j}\right]\right\} \tag{14}
\end{align*}
$$

$\{\mathrm{d} q\}$ represents the remaining variables that have not yet been integrated over, and j should be taken to run over only these variables. The remaining integral is identical to our original integral, but with $\epsilon \rightarrow 2 \epsilon$. This makes sense, because we are effectively doubling the time step between points. So we see what will happen if we iterate this process: we will halve the number of steps each time and produce a factor out front. Let's evaluate the prefactor P out front, taking $N=2^{M}$:

$$
\begin{align*}
P=F(\epsilon)^{N} \prod_{j=0}^{M-1} \sqrt{\frac{2^{j} \pi i \epsilon}{m}} \prod_{k=0}^{N / 2^{j+1}} \exp (& \left.-\frac{i 2^{3 k} \epsilon^{3}}{4 m} f^{2}\right)^{N / 2^{k+1}} \\
& \times \prod_{q=0}^{M-1} \exp \left[\frac{i 2^{q} \epsilon}{2} f\left(q_{N}+q_{0}\right)\right] \tag{15}
\end{align*}
$$

First, note that the first two factors are identical to the free case, since they just come from performing the Gaussian integrals. This implies that they must give

$$
\begin{equation*}
F(\epsilon)^{N} \prod_{j=0}^{M-1}{\sqrt{\frac{2^{j} \pi i \epsilon}{m}}}^{N / 2^{j+1}} \rightarrow \sqrt{\frac{m}{2 \pi i T}} \tag{16}
\end{equation*}
$$

as N goes to infinity. Now let's deal with the edge term. We have

$$
\begin{align*}
\prod_{q=0}^{M-1} \exp \left[\frac{i 2^{q} \epsilon}{2} f\left(q_{N}+q_{0}\right)\right] & =\exp \left[\frac{i \epsilon}{2} f\left(q_{N}+q_{0}\right) \sum_{q=0}^{M-1} 2^{q}\right] \\
& =\exp \left[\frac{i \epsilon}{2} f\left(q_{N}+q_{0}\right) \frac{2^{M}-1}{2-1}\right] \tag{17}\\
& \rightarrow \exp \left[\frac{i N \epsilon}{2} f\left(q_{N}+q_{0}\right)\right] \\
& =\exp \left[\frac{i T}{2} f\left(q_{N}+q_{0}\right)\right]
\end{align*}
$$

The remaining factor is

$$
\begin{align*}
\prod_{k=0}^{M-1} \exp \left(-\frac{i 2^{3 k} \epsilon^{3}}{4 m} f^{2}\right)^{N / 2^{k+1}} & =\exp \left(-\frac{i N \epsilon^{3}}{4 m} f^{2} \sum_{k=0}^{M-1} \frac{2^{3 k}}{2^{k+1}}\right) \tag{18}\\
& =\exp \left(-\frac{i N \epsilon^{3}}{4 m} f^{2} \sum_{k=0}^{M-1} 2^{2 k-1}\right)
\end{align*}
$$

But

$$
\begin{align*}
\sum_{k=0}^{M-1} 2^{2 k-1} & =\frac{1}{2} \sum_{k=0}^{M-1} 4^{k} \\
& =\frac{4^{M}-1}{2(4-1)} \tag{19}\\
& =\frac{1}{6}\left(2^{2 M}-1\right) \\
& =\frac{1}{6}\left(N^{2}-1\right),
\end{align*}
$$

so

$$
\begin{align*}
\prod_{k=0}^{M-1} \exp \left(-\frac{i 2^{3 k} \epsilon^{3}}{4 m} f^{2}\right)^{N / 2^{k+1}} & \rightarrow \exp \left(-\frac{i N^{3} \epsilon^{3} f^{2}}{24 m}\right) \tag{20}\\
& =\exp \left(-\frac{i T^{3} f^{2}}{24 m}\right)
\end{align*}
$$

Then the prefactor is

$$
\begin{equation*}
P \rightarrow \exp \left[\frac{i T}{2} f\left(q_{N}+q_{0}\right)\right] \exp \left(-\frac{i T^{3} f^{2}}{24 m}\right) \tag{21}
\end{equation*}
$$

and the final expression for the path integral should be

$$
\begin{align*}
& K\left(q, q^{\prime} ; T\right) \\
& \qquad \begin{aligned}
\rightarrow \sqrt{\frac{m}{2 \pi i T}} & \exp \left[\frac{i T}{2} f\left(q^{\prime}+q\right)\right] \exp \left(-\frac{i T^{3} f^{2}}{24 m}\right) \exp \left[\frac{i m\left(q^{\prime}-q\right)^{2}}{4\left(2^{M-1} \epsilon\right)}\right] \\
& =\sqrt{\frac{m}{2 \pi i T}} \exp \left[\frac{i m}{2 T}\left(q^{\prime}-q\right)^{2}+\frac{i T}{2} f\left(q^{\prime}+q\right)-\frac{i T^{3} f^{2}}{24 m}\right] .
\end{aligned}
\end{align*}
$$

